메뉴 건너뛰기




Volumn 15, Issue 7, 2019, Pages

Machine and deep learning meet genome-scale metabolic modeling

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; GENES; METABOLISM;

EID: 85069783975     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1007084     Document Type: Review
Times cited : (205)

References (119)
  • 1
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: Integrating 'omics' data sets
    • pmid:16496022
    • Joyce AR, Palsson BØ, The model organism as a system: integrating 'omics' data sets. Nature reviews Molecular cell biology. 2006;7(3):198. doi: 10.1038/nrm1857 pmid: 16496022
    • (2006) Nature reviews Molecular cell biology , vol.7 , Issue.3 , pp. 198
    • Joyce, A.R.1    Palsson, B.Ø.2
  • 2
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype–phenotype interactions
    • pmid:25582081
    • Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D, Methods of integrating data to uncover genotype–phenotype interactions. Nature Reviews Genetics. 2015;16(2):85. doi: 10.1038/nrg3868 pmid: 25582081
    • (2015) Nature Reviews Genetics , vol.16 , Issue.2 , pp. 85
    • Ritchie, M.D.1    Holzinger, E.R.2    Li, R.3    Pendergrass, S.A.4    Kim, D.5
  • 3
    • 85009781625 scopus 로고    scopus 로고
    • Single-cell multiomics: Multiple measurements from single cells
    • pmid:28089370
    • Macaulay IC, Ponting CP, Voet T, Single-cell multiomics: multiple measurements from single cells. Trends in Genetics. 2017;33(2):155–168. doi: 10.1016/j.tig.2016.12.003 pmid: 28089370
    • (2017) Trends in Genetics , vol.33 , Issue.2 , pp. 155-168
    • Macaulay, I.C.1    Ponting, C.P.2    Voet, T.3
  • 4
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • pmid:25948244
    • Libbrecht MW, Noble WS, Machine learning applications in genetics and genomics. Nature Reviews Genetics. 2015;16(6):321. doi: 10.1038/nrg3920 pmid: 25948244
    • (2015) Nature Reviews Genetics , vol.16 , Issue.6 , pp. 321
    • Libbrecht, M.W.1    Noble, W.S.2
  • 7
    • 84949818508 scopus 로고    scopus 로고
    • Machine learning in genomic medicine: A review of computational problems and data sets
    • Leung MK, Delong A, Alipanahi B, Frey BJ, Machine learning in genomic medicine: a review of computational problems and data sets. Proceedings of the IEEE. 2016;104(1):176–197.
    • (2016) Proceedings of the IEEE , vol.104 , Issue.1 , pp. 176-197
    • Leung, M.K.1    Delong, A.2    Alipanahi, B.3    Frey, B.J.4
  • 9
    • 85032586119 scopus 로고    scopus 로고
    • Deep learning in bioinformatics
    • pmid:27473064
    • Min S, Lee B, Yoon S, Deep learning in bioinformatics. Briefings in bioinformatics. 2017;18(5):851–869. doi: 10.1093/bib/bbw068 pmid: 27473064
    • (2017) Briefings in bioinformatics , vol.18 , Issue.5 , pp. 851-869
    • Min, S.1    Lee, B.2    Yoon, S.3
  • 10
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • pmid:24430943
    • Bordbar A, Monk JM, King ZA, Palsson BO, Constraint-based models predict metabolic and associated cellular functions. Nature Reviews Genetics. 2014;15(2):107. doi: 10.1038/nrg3643 pmid: 24430943
    • (2014) Nature Reviews Genetics , vol.15 , Issue.2 , pp. 107
    • Bordbar, A.1    Monk, J.M.2    King, Z.A.3    Palsson, B.O.4
  • 11
    • 57549102595 scopus 로고    scopus 로고
    • Genome-scale models of bacterial metabolism: Reconstruction and applications
    • pmid:19067749
    • Durot M, Bourguignon PY, Schachter V, Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS microbiology reviews. 2008;33(1):164–190. doi: 10.1111/j.1574-6976.2008.00146.x pmid: 19067749
    • (2008) FEMS microbiology reviews , vol.33 , Issue.1 , pp. 164-190
    • Durot, M.1    Bourguignon, P.Y.2    Schachter, V.3
  • 12
    • 84874976941 scopus 로고    scopus 로고
    • Plant genome-scale metabolic reconstruction and modelling
    • pmid:22947602
    • de Oliveira Dal'Molin CG, Nielsen LK, Plant genome-scale metabolic reconstruction and modelling. Current opinion in biotechnology. 2013;24(2):271–277. doi: 10.1016/j.copbio.2012.08.007 pmid: 22947602
    • (2013) Current opinion in biotechnology , vol.24 , Issue.2 , pp. 271-277
    • de Oliveira Dal'Molin, C.G.1    Nielsen, L.K.2
  • 13
    • 85041388327 scopus 로고    scopus 로고
    • In silico analysis of human metabolism: Reconstruction, contextualization and application of genome-scale models
    • Geng J, Nielsen J, In silico analysis of human metabolism: Reconstruction, contextualization and application of genome-scale models. Current Opinion in Systems Biology. 2017;2:29–38.
    • (2017) Current Opinion in Systems Biology , vol.2 , pp. 29-38
    • Geng, J.1    Nielsen, J.2
  • 14
    • 84900303762 scopus 로고    scopus 로고
    • Optimizing genome-scale network reconstructions
    • pmid:24811519
    • Monk J, Nogales J, Palsson BO, Optimizing genome-scale network reconstructions. Nature biotechnology. 2014;32(5):447. doi: 10.1038/nbt.2870 pmid: 24811519
    • (2014) Nature biotechnology , vol.32 , Issue.5 , pp. 447
    • Monk, J.1    Nogales, J.2    Palsson, B.O.3
  • 15
    • 85009064138 scopus 로고    scopus 로고
    • Metabolic network modeling with model organisms
    • pmid:28088694
    • Yilmaz LS, Walhout AJ, Metabolic network modeling with model organisms. Current opinion in chemical biology. 2017;36:32–39. doi: 10.1016/j.cbpa.2016.12.025 pmid: 28088694
    • (2017) Current opinion in chemical biology , vol.36 , pp. 32-39
    • Yilmaz, L.S.1    Walhout, A.J.2
  • 16
    • 85041021273 scopus 로고    scopus 로고
    • Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling
    • Cuperlovic-Culf M, Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling. Metabolites. 2018;8(1):4.
    • (2018) Metabolites , vol.8 , Issue.1 , pp. 4
    • Cuperlovic-Culf, M.1
  • 17
    • 85057522434 scopus 로고    scopus 로고
    • Seeing the wood for the trees: A forest of methods for optimization and omic-network integration in metabolic modelling
    • Vijayakumar S, Conway M, Lió P, Angione C, Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Briefings in bioinformatics. 2017;19(6):1218–1235.
    • (2017) Briefings in bioinformatics , vol.19 , Issue.6 , pp. 1218-1235
    • Vijayakumar, S.1    Conway, M.2    Lió, P.3    Angione, C.4
  • 18
    • 34547683819 scopus 로고    scopus 로고
    • Bayesian flux balance analysis applied to a skeletal muscle metabolic model
    • pmid:17568615
    • Heino J, Tunyan K, Calvetti D, Somersalo E, Bayesian flux balance analysis applied to a skeletal muscle metabolic model. Journal of theoretical biology. 2007;248(1):91–110. doi: 10.1016/j.jtbi.2007.04.002 pmid: 17568615
    • (2007) Journal of theoretical biology , vol.248 , Issue.1 , pp. 91-110
    • Heino, J.1    Tunyan, K.2    Calvetti, D.3    Somersalo, E.4
  • 19
    • 84938074954 scopus 로고    scopus 로고
    • Co-evolution of strain design methods based on flux balance and elementary mode analysis
    • Machado D, Herrgård MJ, Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metabolic Engineering Communications. 2015;2:85–92.
    • (2015) Metabolic Engineering Communications , vol.2 , pp. 85-92
    • Machado, D.1    Herrgård, M.J.2
  • 20
    • 84944727589 scopus 로고    scopus 로고
    • Predictive analytics of environmental adaptability in multi-omic network models
    • pmid:26482106
    • Angione C, Lió P, Predictive analytics of environmental adaptability in multi-omic network models. Scientific reports. 2015;5:15147. doi: 10.1038/srep15147 pmid: 26482106
    • (2015) Scientific reports , vol.5 , pp. 15147
    • Angione, C.1    Lió, P.2
  • 21
    • 77956649528 scopus 로고    scopus 로고
    • Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks
    • pmid:20692823
    • Ruppin E, Papin JA, De Figueiredo LF, Schuster S, Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Current opinion in biotechnology. 2010;21(4):502–510. doi: 10.1016/j.copbio.2010.07.002 pmid: 20692823
    • (2010) Current opinion in biotechnology , vol.21 , Issue.4 , pp. 502-510
    • Ruppin, E.1    Papin, J.A.2    De Figueiredo, L.F.3    Schuster, S.4
  • 22
    • 84978924623 scopus 로고    scopus 로고
    • Multiplex methods provide effective integration of multi-omic data in genome-scale models
    • Angione C, Conway M, Lió P, Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC bioinformatics. 2016;17(4):83.
    • (2016) BMC bioinformatics , vol.17 , Issue.4 , pp. 83
    • Angione, C.1    Conway, M.2    Lió, P.3
  • 23
    • 84947982943 scopus 로고    scopus 로고
    • A Markov chain model for N-linked protein glycosylation–towards a low-parameter tool for model-driven glycoengineering
    • pmid:26537759
    • Spahn PN, Hansen AH, Hansen HG, Arnsdorf J, Kildegaard HF, Lewis NE, A Markov chain model for N-linked protein glycosylation–towards a low-parameter tool for model-driven glycoengineering. Metabolic engineering. 2016;33:52–66. doi: 10.1016/j.ymben.2015.10.007 pmid: 26537759
    • (2016) Metabolic engineering , vol.33 , pp. 52-66
    • Spahn, P.N.1    Hansen, A.H.2    Hansen, H.G.3    Arnsdorf, J.4    Kildegaard, H.F.5    Lewis, N.E.6
  • 25
    • 33746747476 scopus 로고    scopus 로고
    • Machine learning in bioinformatics: A brief survey and recommendations for practitioners
    • pmid:16226240
    • Bhaskar H, Hoyle DC, Singh S, Machine learning in bioinformatics: A brief survey and recommendations for practitioners. Computers in biology and medicine. 2006;36(10):1104–1125. doi: 10.1016/j.compbiomed.2005.09.002 pmid: 16226240
    • (2006) Computers in biology and medicine , vol.36 , Issue.10 , pp. 1104-1125
    • Bhaskar, H.1    Hoyle, D.C.2    Singh, S.3
  • 26
    • 84872256757 scopus 로고    scopus 로고
    • Machine learning and its applications to biology
    • pmid:17604446
    • Tarca AL, Carey VJ, Chen Xw, Romero R, Drăghici S, Machine learning and its applications to biology. PLoS Comput Biol. 2007;3(6):e116. doi: 10.1371/journal.pcbi.0030116 pmid: 17604446
    • (2007) PLoS Comput Biol , vol.3 , Issue.6
    • Tarca, A.L.1    Carey, V.J.2    Chen, X.3    Romero, R.4    Drăghici, S.5
  • 27
    • 85050100656 scopus 로고    scopus 로고
    • Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science)
    • pmid:29497285, 1177932218759292
    • Zeng ISL, Lumley T, Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science). Bioinformatics and Biology Insights. 2018;12:1177932218759292. doi: 10.1177/1177932218759292 pmid: 29497285
    • (2018) Bioinformatics and Biology Insights , vol.12
    • Zeng, I.S.L.1    Lumley, T.2
  • 28
    • 85046294667 scopus 로고    scopus 로고
    • Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization
    • pmid:28859695
    • Cai Y, Gu H, Kenney T, Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization. Microbiome. 2017;5(1):110. doi: 10.1186/s40168-017-0323-1 pmid: 28859695
    • (2017) Microbiome , vol.5 , Issue.1 , pp. 110
    • Cai, Y.1    Gu, H.2    Kenney, T.3
  • 29
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research: A review
    • pmid:22275205
    • Xu R, Wunsch DC, Clustering algorithms in biomedical research: a review. IEEE Reviews in Biomedical Engineering. 2010;3:120–154. doi: 10.1109/RBME.2010.2083647 pmid: 22275205
    • (2010) IEEE Reviews in Biomedical Engineering , vol.3 , pp. 120-154
    • Xu, R.1    Wunsch, D.C.2
  • 30
    • 85069238575 scopus 로고    scopus 로고
    • Integration of omics: More than the sum of its parts
    • Buescher JM, Driggers EM, Integration of omics: more than the sum of its parts. Cancer & metabolism. 2016;4(1):4.
    • (2016) Cancer & metabolism , vol.4 , Issue.1 , pp. 4
    • Buescher, J.M.1    Driggers, E.M.2
  • 32
    • 84948703087 scopus 로고    scopus 로고
    • Methods for biological data integration: Perspectives and challenges
    • Gligorijević V, Pržulj N, Methods for biological data integration: perspectives and challenges. Journal of the Royal Society Interface. 2015;12(112):20150571.
    • (2015) Journal of the Royal Society Interface , vol.12 , Issue.112 , pp. 20150571
    • Gligorijević, V.1    Pržulj, N.2
  • 33
    • 85018787862 scopus 로고    scopus 로고
    • Multi-omics approaches to disease
    • pmid:28476144
    • Hasin Y, Seldin M, Lusis A, Multi-omics approaches to disease. Genome biology. 2017;18(1):83. doi: 10.1186/s13059-017-1215-1 pmid: 28476144
    • (2017) Genome biology , vol.18 , Issue.1 , pp. 83
    • Hasin, Y.1    Seldin, M.2    Lusis, A.3
  • 35
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S, A survey of multi-view machine learning. Neural Computing and Applications. 2013;23(7–8):2031–2038.
    • (2013) Neural Computing and Applications , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 36
    • 85049474548 scopus 로고    scopus 로고
    • A review on machine learning principles for multi-view biological data integration
    • Li Y, Wu FX, Ngom A, A review on machine learning principles for multi-view biological data integration. Briefings in bioinformatics. 2016;19(2):325–340.
    • (2016) Briefings in bioinformatics , vol.19 , Issue.2 , pp. 325-340
    • Li, Y.1    Wu, F.X.2    Ngom, A.3
  • 37
    • 84995810932 scopus 로고    scopus 로고
    • Transcriptomic and metabolomic data integration
    • pmid:26467821
    • Cavill R, Jennen D, Kleinjans J, Briedé JJ, Transcriptomic and metabolomic data integration. Briefings in bioinformatics. 2015;17(5):891–901. doi: 10.1093/bib/bbv090 pmid: 26467821
    • (2015) Briefings in bioinformatics , vol.17 , Issue.5 , pp. 891-901
    • Cavill, R.1    Jennen, D.2    Kleinjans, J.3    Briedé, J.J.4
  • 38
    • 84925409378 scopus 로고    scopus 로고
    • Kernel methods for large-scale genomic data analysis
    • pmid:25053743
    • Wang X, Xing EP, Schaid DJ, Kernel methods for large-scale genomic data analysis. Briefings in bioinformatics. 2014;16(2):183–192. doi: 10.1093/bib/bbu024 pmid: 25053743
    • (2014) Briefings in bioinformatics , vol.16 , Issue.2 , pp. 183-192
    • Wang, X.1    Xing, E.P.2    Schaid, D.J.3
  • 39
    • 85045298116 scopus 로고    scopus 로고
    • Metabolomics-driven understanding of genotype-phenotype relations in model organisms
    • Zampieri M, Sauer U, Metabolomics-driven understanding of genotype-phenotype relations in model organisms. Current Opinion in Systems Biology. 2017;6:28–36.
    • (2017) Current Opinion in Systems Biology , vol.6 , pp. 28-36
    • Zampieri, M.1    Sauer, U.2
  • 40
    • 85052727111 scopus 로고    scopus 로고
    • Metabolism as a signal generator across trans-omic networks at distinct time scales
    • Yugi K, Kuroda S, Metabolism as a signal generator across trans-omic networks at distinct time scales. Current Opinion in Systems Biology. 2017;8:59–66.
    • (2017) Current Opinion in Systems Biology , vol.8 , pp. 59-66
    • Yugi, K.1    Kuroda, S.2
  • 41
    • 85033687968 scopus 로고    scopus 로고
    • Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data
    • pmid:27200361
    • Sriyudthsak K, Shiraishi F, Hirai MY, Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Frontiers in molecular biosciences. 2016;3:15. doi: 10.3389/fmolb.2016.00015 pmid: 27200361
    • (2016) Frontiers in molecular biosciences , vol.3 , pp. 15
    • Sriyudthsak, K.1    Shiraishi, F.2    Hirai, M.Y.3
  • 42
    • 84966348806 scopus 로고    scopus 로고
    • Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology
    • Aretz I, Meierhofer D, Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. International journal of molecular sciences. 2016;17(5):632.
    • (2016) International journal of molecular sciences , vol.17 , Issue.5 , pp. 632
    • Aretz, I.1    Meierhofer, D.2
  • 43
    • 84919338721 scopus 로고    scopus 로고
    • How to measure metabolic fluxes: A taxonomic guide for 13C fluxomics
    • pmid:25531408
    • Niedenführ S, Wiechert W, Nöh K, How to measure metabolic fluxes: a taxonomic guide for 13C fluxomics. Current opinion in biotechnology. 2015;34:82–90. doi: 10.1016/j.copbio.2014.12.003 pmid: 25531408
    • (2015) Current opinion in biotechnology , vol.34 , pp. 82-90
    • Niedenführ, S.1    Wiechert, W.2    Nöh, K.3
  • 44
    • 0033580813 scopus 로고    scopus 로고
    • Systems properties of the Haemophilus influenzaeRd metabolic genotype
    • pmid:10364169
    • Edwards JS, Palsson BO, Systems properties of the Haemophilus influenzaeRd metabolic genotype. Journal of Biological Chemistry. 1999;274(25):17410–17416. doi: 10.1074/jbc.274.25.17410 pmid: 10364169
    • (1999) Journal of Biological Chemistry , vol.274 , Issue.25 , pp. 17410-17416
    • Edwards, J.S.1    Palsson, B.O.2
  • 45
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities
    • Edwards J, Palsson B, The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences. 2000;97(10):5528–5533.
    • (2000) Proceedings of the National Academy of Sciences , vol.97 , Issue.10 , pp. 5528-5533
    • Edwards, J.1    Palsson, B.2
  • 46
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • pmid:20212490
    • Orth JD, Thiele I, Palsson BØ, What is flux balance analysis?Nature biotechnology. 2010;28(3):245. doi: 10.1038/nbt.1614 pmid: 20212490
    • (2010) Nature biotechnology , vol.28 , Issue.3 , pp. 245
    • Orth, J.D.1    Thiele, I.2    Palsson, B.Ø.3
  • 47
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
    • pmid:22367118
    • Lewis NE, Nagarajan H, Palsson BO, Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology. 2012;10(4):291. doi: 10.1038/nrmicro2737 pmid: 22367118
    • (2012) Nature Reviews Microbiology , vol.10 , Issue.4 , pp. 291
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 48
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • pmid:26000478
    • O'Brien EJ, Monk JM, Palsson BO, Using genome-scale models to predict biological capabilities. Cell. 2015;161(5):971–987. doi: 10.1016/j.cell.2015.05.019 pmid: 26000478
    • (2015) Cell , vol.161 , Issue.5 , pp. 971-987
    • O'Brien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 49
    • 84992648219 scopus 로고    scopus 로고
    • Multi-omic data integration enables discovery of hidden biological regularities
    • pmid:27782110
    • Ebrahim A, Brunk E, Tan J, O'brien EJ, Kim D, Szubin R, et al. Multi-omic data integration enables discovery of hidden biological regularities. Nature communications. 2016;7:13091. doi: 10.1038/ncomms13091 pmid: 27782110
    • (2016) Nature communications , vol.7 , pp. 13091
    • Ebrahim, A.1    Brunk, E.2    Tan, J.3    O'brien, E.J.4    Kim, D.5    Szubin, R.6
  • 51
    • 84884565153 scopus 로고    scopus 로고
    • The evolution of genome-scale models of cancer metabolism
    • pmid:24027532
    • Lewis NE, Abdel-Haleem AM, The evolution of genome-scale models of cancer metabolism. Frontiers in physiology. 2013;4:237. doi: 10.3389/fphys.2013.00237 pmid: 24027532
    • (2013) Frontiers in physiology , vol.4 , pp. 237
    • Lewis, N.E.1    Abdel-Haleem, A.M.2
  • 52
    • 85061915038 scopus 로고    scopus 로고
    • Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0
    • pmid:30787451
    • Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nature protocols. 2019;14(3):639–702. doi: 10.1038/s41596-018-0098-2 pmid: 30787451
    • (2019) Nature protocols , vol.14 , Issue.3 , pp. 639-702
    • Heirendt, L.1    Arreckx, S.2    Pfau, T.3    Mendoza, S.N.4    Richelle, A.5    Heinken, A.6
  • 54
    • 79960126760 scopus 로고    scopus 로고
    • rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks
    • pmid:21596791
    • Thorleifsson SG, Thiele I, rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics. 2011;27(14):2009–2010. doi: 10.1093/bioinformatics/btr308 pmid: 21596791
    • (2011) Bioinformatics , vol.27 , Issue.14 , pp. 2009-2010
    • Thorleifsson, S.G.1    Thiele, I.2
  • 55
    • 85054504207 scopus 로고    scopus 로고
    • Fast automated reconstruction of genome-scale metabolic models for microbial species and communities
    • pmid:30192979
    • Machado D, Andrejev S, Tramontano M, Patil KR, Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Research. 2018;46:7542–7553. doi: 10.1093/nar/gky537 pmid: 30192979
    • (2018) Nucleic Acids Research , vol.46 , pp. 7542-7553
    • Machado, D.1    Andrejev, S.2    Tramontano, M.3    Patil, K.R.4
  • 56
    • 85052068503 scopus 로고    scopus 로고
    • Methods for automated genome-scale metabolic model reconstruction
    • pmid:30065105
    • Faria JP, Rocha M, Rocha I, Henry CS, Methods for automated genome-scale metabolic model reconstruction. Biochemical Society Transactions. 2018;46(4):931–936. doi: 10.1042/BST20170246 pmid: 30065105
    • (2018) Biochemical Society Transactions , vol.46 , Issue.4 , pp. 931-936
    • Faria, J.P.1    Rocha, M.2    Rocha, I.3    Henry, C.S.4
  • 57
    • 84995959470 scopus 로고    scopus 로고
    • Principles of proteome allocation are revealed using proteomic data and genome-scale models
    • pmid:27857205
    • Yang L, Yurkovich JT, Lloyd CJ, Ebrahim A, Saunders MA, Palsson BO, Principles of proteome allocation are revealed using proteomic data and genome-scale models. Scientific reports. 2016;6:36734. doi: 10.1038/srep36734 pmid: 27857205
    • (2016) Scientific reports , vol.6 , pp. 36734
    • Yang, L.1    Yurkovich, J.T.2    Lloyd, C.J.3    Ebrahim, A.4    Saunders, M.A.5    Palsson, B.O.6
  • 58
    • 85041416386 scopus 로고    scopus 로고
    • Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism
    • pmid:28968777
    • Angione C, Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics. 2018;34(3):494–501. doi: 10.1093/bioinformatics/btx562 pmid: 28968777
    • (2018) Bioinformatics , vol.34 , Issue.3 , pp. 494-501
    • Angione, C.1
  • 59
    • 84974663176 scopus 로고    scopus 로고
    • Advances in the integration of transcriptional regulatory information into genome-scale metabolic models
    • pmid:27287878
    • Vivek-Ananth R, Samal A, Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems. 2016;147:1–10. doi: 10.1016/j.biosystems.2016.06.001 pmid: 27287878
    • (2016) Biosystems , vol.147 , pp. 1-10
    • Vivek-Ananth, R.1    Samal, A.2
  • 60
    • 84923239523 scopus 로고    scopus 로고
    • Integration of metabolomics data into metabolic networks
    • pmid:25741348
    • Töpfer N, Kleessen S, Nikoloski Z, Integration of metabolomics data into metabolic networks. Frontiers in plant science. 2015;6:49. doi: 10.3389/fpls.2015.00049 pmid: 25741348
    • (2015) Frontiers in plant science , vol.6 , pp. 49
    • Töpfer, N.1    Kleessen, S.2    Nikoloski, Z.3
  • 61
    • 79951745716 scopus 로고    scopus 로고
    • iMAT: An integrative metabolic analysis tool
    • pmid:21081510
    • Zur H, Ruppin E, Shlomi T, iMAT: an integrative metabolic analysis tool. Bioinformatics. 2010;26(24):3140–3142. doi: 10.1093/bioinformatics/btq602 pmid: 21081510
    • (2010) Bioinformatics , vol.26 , Issue.24 , pp. 3140-3142
    • Zur, H.1    Ruppin, E.2    Shlomi, T.3
  • 62
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • pmid:22615553
    • Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J, Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8(5):e1002518. doi: 10.1371/journal.pcbi.1002518 pmid: 22615553
    • (2012) PLoS Comput Biol , vol.8 , Issue.5
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3    Pornputtapong, N.4    Nookaew, I.5    Nielsen, J.6
  • 63
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • pmid:20529914
    • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T, Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics. 2010;26(12):i255–i260. doi: 10.1093/bioinformatics/btq183 pmid: 20529914
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i255-i260
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 64
    • 85028309923 scopus 로고    scopus 로고
    • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
    • pmid:28779005
    • Sánchez BJ, Zhang C, Nilsson A, Lahtvee PJ, Kerkhoven EJ, Nielsen J, Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Molecular systems biology. 2017;13(8):935. doi: 10.15252/msb.20167411 pmid: 28779005
    • (2017) Molecular systems biology , vol.13 , Issue.8 , pp. 935
    • Sánchez, B.J.1    Zhang, C.2    Nilsson, A.3    Lahtvee, P.J.4    Kerkhoven, E.J.5    Nielsen, J.6
  • 65
    • 84872093417 scopus 로고    scopus 로고
    • Analysis of omics data with genome-scale models of metabolism
    • pmid:23247105
    • Hyduke DR, Lewis NE, Palsson BØ, Analysis of omics data with genome-scale models of metabolism. Molecular BioSystems. 2013;9(2):167–174. doi: 10.1039/c2mb25453k pmid: 23247105
    • (2013) Molecular BioSystems , vol.9 , Issue.2 , pp. 167-174
    • Hyduke, D.R.1    Lewis, N.E.2    Palsson, B.Ø.3
  • 66
    • 85014511954 scopus 로고    scopus 로고
    • Biomedical applications of cell-and tissue-specific metabolic network models
    • pmid:28242343
    • Fouladiha H, Marashi SA, Biomedical applications of cell-and tissue-specific metabolic network models. Journal of biomedical informatics. 2017;68:35–49. doi: 10.1016/j.jbi.2017.02.014 pmid: 28242343
    • (2017) Journal of biomedical informatics , vol.68 , pp. 35-49
    • Fouladiha, H.1    Marashi, S.A.2
  • 67
    • 84918774598 scopus 로고    scopus 로고
    • Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli
    • pmid:25502413
    • Sridhara V, Meyer AG, Rai P, Barrick JE, Ravikumar P, Segrè D, et al. Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli. PLoS ONE. 2014;9(12):e114608. doi: 10.1371/journal.pone.0114608 pmid: 25502413
    • (2014) PLoS ONE , vol.9 , Issue.12
    • Sridhara, V.1    Meyer, A.G.2    Rai, P.3    Barrick, J.E.4    Ravikumar, P.5    Segrè, D.6
  • 68
    • 84962140627 scopus 로고    scopus 로고
    • Metabolic Network Prediction of Drug Side Effects
    • pmid:27135366
    • Shaked I, Oberhardt MA, Atias N, Sharan R, Ruppin E, Metabolic Network Prediction of Drug Side Effects. Cell Systems. 2016;2(3):209–213. doi: 10.1016/j.cels.2016.03.001 pmid: 27135366
    • (2016) Cell Systems , vol.2 , Issue.3 , pp. 209-213
    • Shaked, I.1    Oberhardt, M.A.2    Atias, N.3    Sharan, R.4    Ruppin, E.5
  • 69
    • 85029370809 scopus 로고    scopus 로고
    • Differential Search Algorithm in Deep Neural Network for the Predictive Analysis of Xylitol Production in Escherichia Coli
    • In:,. p., –
    • Yousoff SNM, Baharin A, Abdullah A. Differential Search Algorithm in Deep Neural Network for the Predictive Analysis of Xylitol Production in Escherichia Coli. In: Asian Simulation Conference. New York: Springer; 2017. p. 53–67.
    • (2017) Asian Simulation Conference. New York: Springer; , pp. 53-67
    • Yousoff, S.N.M.1    Baharin, A.2    Abdullah, A.3
  • 70
    • 85060049392 scopus 로고    scopus 로고
    • Machine learning framework for assessment of microbial factory performance
    • pmid:30645629
    • Oyetunde T, Liu D, Martin HG, Tang YJ, Machine learning framework for assessment of microbial factory performance. PLoS ONE. 2019;14(1):e0210558. doi: 10.1371/journal.pone.0210558 pmid: 30645629
    • (2019) PLoS ONE , vol.14 , Issue.1
    • Oyetunde, T.1    Liu, D.2    Martin, H.G.3    Tang, Y.J.4
  • 71
    • 85048727194 scopus 로고    scopus 로고
    • Dynamic elementary mode modelling of non-steady state flux data
    • pmid:29914483
    • Folch-Fortuny A, Teusink B, Hoefsloot HC, Smilde AK, Ferrer A, Dynamic elementary mode modelling of non-steady state flux data. BMC systems biology. 2018;12(1):71. doi: 10.1186/s12918-018-0589-3 pmid: 29914483
    • (2018) BMC systems biology , vol.12 , Issue.1 , pp. 71
    • Folch-Fortuny, A.1    Teusink, B.2    Hoefsloot, H.C.3    Smilde, A.K.4    Ferrer, A.5
  • 72
    • 85064188785 scopus 로고    scopus 로고
    • Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks
    • pmid:30417106
    • DiMucci D, Kon M, Segre D, Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks. mSystems. 2018;3(5):e00181–18. doi: 10.1128/mSystems.00181-18 pmid: 30417106
    • (2018) mSystems , vol.3 , Issue.5 , pp. e00181-e00118
    • DiMucci, D.1    Kon, M.2    Segre, D.3
  • 73
    • 85071915672 scopus 로고    scopus 로고
    • Predicting the Plant Root-Associated Ecological Niche of 21 Pseudomonas Species Using Machine Learning and Metabolic Modeling
    • [cited 2019 Feb 10]. Available from
    • Chien J, Larsen P, Predicting the Plant Root-Associated Ecological Niche of 21 Pseudomonas Species Using Machine Learning and Metabolic Modeling. arXiv [Preprint]. 2017 [cited 2019 Feb 10]. Available from: https://arxiv.org/abs/1701.03220.
    • (2017) arXiv [Preprint]
    • Chien, J.1    Larsen, P.2
  • 74
    • 11244297914 scopus 로고    scopus 로고
    • Modular epistasis in yeast metabolism
    • pmid:15592468
    • Segre D, DeLuna A, Church GM, Kishony R, Modular epistasis in yeast metabolism. Nature genetics. 2005;37(1):77. doi: 10.1038/ng1489 pmid: 15592468
    • (2005) Nature genetics , vol.37 , Issue.1 , pp. 77
    • Segre, D.1    DeLuna, A.2    Church, G.M.3    Kishony, R.4
  • 75
    • 85011094697 scopus 로고    scopus 로고
    • Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
    • pmid:27893703
    • Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature biotechnology. 2017;35(1):81. doi: 10.1038/nbt.3703 pmid: 27893703
    • (2017) Nature biotechnology , vol.35 , Issue.1 , pp. 81
    • Magnúsdóttir, S.1    Heinken, A.2    Kutt, L.3    Ravcheev, D.A.4    Bauer, E.5    Noronha, A.6
  • 76
    • 65349142617 scopus 로고    scopus 로고
    • Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation
    • Barrett CL, Herrgard MJ, Palsson B, Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation. BMC systems biology. 2009;3(1):30.
    • (2009) BMC systems biology , vol.3 , Issue.1 , pp. 30
    • Barrett, C.L.1    Herrgard, M.J.2    Palsson, B.3
  • 79
    • 51049105047 scopus 로고    scopus 로고
    • Machine learning based analyses on metabolic networks supports high-throughput knockout screens
    • Plaimas K, Mallm JP, Oswald M, Svara F, Sourjik V, Eils R, et al. Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC systems biology. 2008;2(1):67.
    • (2008) BMC systems biology , vol.2 , Issue.1 , pp. 67
    • Plaimas, K.1    Mallm, J.P.2    Oswald, M.3    Svara, F.4    Sourjik, V.5    Eils, R.6
  • 80
    • 79959687662 scopus 로고    scopus 로고
    • An integrated approach to characterize genetic interaction networks in yeast metabolism
    • pmid:21623372
    • Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature genetics. 2011;43(7):656. doi: 10.1038/ng.846 pmid: 21623372
    • (2011) Nature genetics , vol.43 , Issue.7 , pp. 656
    • Szappanos, B.1    Kovács, K.2    Szamecz, B.3    Honti, F.4    Costanzo, M.5    Baryshnikova, A.6
  • 81
    • 85026307146 scopus 로고    scopus 로고
    • An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features
    • pmid:28671706
    • Nandi S, Subramanian A, Sarkar RR, An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features. Molecular BioSystems. 2017;13(8):1584–1596. doi: 10.1039/c7mb00234c pmid: 28671706
    • (2017) Molecular BioSystems , vol.13 , Issue.8 , pp. 1584-1596
    • Nandi, S.1    Subramanian, A.2    Sarkar, R.R.3
  • 82
    • 1242274402 scopus 로고    scopus 로고
    • Flux coupling analysis of genome-scale metabolic network reconstructions
    • pmid:14718379
    • Burgard AP, Nikolaev EV, Schilling CH, Maranas CD, Flux coupling analysis of genome-scale metabolic network reconstructions. Genome research. 2004;14(2):301–312. doi: 10.1101/gr.1926504 pmid: 14718379
    • (2004) Genome research , vol.14 , Issue.2 , pp. 301-312
    • Burgard, A.P.1    Nikolaev, E.V.2    Schilling, C.H.3    Maranas, C.D.4
  • 83
    • 77957556494 scopus 로고    scopus 로고
    • Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines
    • Li L, Zhou X, Ching WK, Wang P, Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines. BMC bioinformatics. 2010;11(1):501.
    • (2010) BMC bioinformatics , vol.11 , Issue.1 , pp. 501
    • Li, L.1    Zhou, X.2    Ching, W.K.3    Wang, P.4
  • 84
    • 85056727331 scopus 로고    scopus 로고
    • The poly-omics of ageing through individual-based metabolic modelling
    • Yaneske E, Angione C, The poly-omics of ageing through individual-based metabolic modelling. BMC bioinformatics. 2018;19(14):415.
    • (2018) BMC bioinformatics , vol.19 , Issue.14 , pp. 415
    • Yaneske, E.1    Angione, C.2
  • 85
    • 85059150278 scopus 로고    scopus 로고
    • In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production
    • pmid:30588397
    • Occhipinti A, Eyassu F, Rahman TJ, Rahman PK, Angione C, In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production. PeerJ. 2018;6:e6046. doi: 10.7717/peerj.6046 pmid: 30588397
    • (2018) PeerJ , vol.6
    • Occhipinti, A.1    Eyassu, F.2    Rahman, T.J.3    Rahman, P.K.4    Angione, C.5
  • 87
    • 84990177186 scopus 로고    scopus 로고
    • Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
    • pmid:27713404
    • Kim M, Rai N, Zorraquino V, Tagkopoulos I, Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nature communications. 2016;7:13090. doi: 10.1038/ncomms13090 pmid: 27713404
    • (2016) Nature communications , vol.7 , pp. 13090
    • Kim, M.1    Rai, N.2    Zorraquino, V.3    Tagkopoulos, I.4
  • 88
    • 85050431959 scopus 로고    scopus 로고
    • Linking metabolic network features to phenotypes using sparse group lasso
    • pmid:29077809
    • Samal SS, Radulescu O, Weber A, Fröhlich H, Linking metabolic network features to phenotypes using sparse group lasso. Bioinformatics. 2017;33(21):3445–3453. doi: 10.1093/bioinformatics/btx427 pmid: 29077809
    • (2017) Bioinformatics , vol.33 , Issue.21 , pp. 3445-3453
    • Samal, S.S.1    Radulescu, O.2    Weber, A.3    Fröhlich, H.4
  • 89
    • 84952637898 scopus 로고    scopus 로고
    • iSCHRUNK–in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
    • pmid:26474788
    • Andreozzi S, Miskovic L, Hatzimanikatis V, iSCHRUNK–in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metabolic engineering. 2016;33:158–168. doi: 10.1016/j.ymben.2015.10.002 pmid: 26474788
    • (2016) Metabolic engineering , vol.33 , pp. 158-168
    • Andreozzi, S.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 90
    • 85073466506 scopus 로고    scopus 로고
    • DeepMetabolism: A Deep Learning System to Predict Phenotype from Genome Sequencing
    • [cited 2019 Feb 10]. Available from
    • Guo W, Xu Y, Feng X, DeepMetabolism: A Deep Learning System to Predict Phenotype from Genome Sequencing. arXiv [Preprint]. 2017 [cited 2019 Feb 10]. Available from: https://arxiv.org/abs/1705.03094.
    • (2017) arXiv [Preprint]
    • Guo, W.1    Xu, Y.2    Feng, X.3
  • 91
    • 84939810702 scopus 로고    scopus 로고
    • A hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation
    • pmid:25856685
    • Angione C, Pratanwanich N, Lió P, A hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation. ACS synthetic biology. 2015;4(8):880–889. doi: 10.1021/sb5003407 pmid: 25856685
    • (2015) ACS synthetic biology , vol.4 , Issue.8 , pp. 880-889
    • Angione, C.1    Pratanwanich, N.2    Lió, P.3
  • 92
    • 85071908177 scopus 로고    scopus 로고
    • GEESE: Metabolically driven latent space learning for gene expression data
    • [cited 2019 Feb 10]. Available from
    • Barsacchi M, Andres-Terre H, Lió P, GEESE: Metabolically driven latent space learning for gene expression data. bioRxiv [Preprint]. 2018 [cited 2019 Feb 10]. Available from: https://www.biorxiv.org/content/10.1101/365643v1.
    • (2018) bioRxiv [Preprint]
    • Barsacchi, M.1    Andres-Terre, H.2    Lió, P.3
  • 93
    • 84964774521 scopus 로고    scopus 로고
    • Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming
    • pmid:27092947
    • Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, et al. Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming. PLoS Comput Biol. 2016;12(4):e1004838. doi: 10.1371/journal.pcbi.1004838 pmid: 27092947
    • (2016) PLoS Comput Biol , vol.12 , Issue.4
    • Wu, S.G.1    Wang, Y.2    Jiang, W.3    Oyetunde, T.4    Yao, R.5    Zhang, X.6
  • 94
    • 84969752776 scopus 로고    scopus 로고
    • Characterizing strain variation in engineered E. coli using a multi-omics-based workflow
    • pmid:27211860
    • Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baidoo E, Wang G, et al. Characterizing strain variation in engineered E. coli using a multi-omics-based workflow. Cell systems. 2016;2(5):335–346. doi: 10.1016/j.cels.2016.04.004 pmid: 27211860
    • (2016) Cell systems , vol.2 , Issue.5 , pp. 335-346
    • Brunk, E.1    George, K.W.2    Alonso-Gutierrez, J.3    Thompson, M.4    Baidoo, E.5    Wang, G.6
  • 96
    • 85058107207 scopus 로고    scopus 로고
    • Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
    • pmid:30531987
    • Heckmann D, Lloyd CJ, Mih N, Ha Y, Zielinski DC, Haiman ZB, et al. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nature Communications. 2018;9(1):5252. doi: 10.1038/s41467-018-07652-6 pmid: 30531987
    • (2018) Nature Communications , vol.9 , Issue.1 , pp. 5252
    • Heckmann, D.1    Lloyd, C.J.2    Mih, N.3    Ha, Y.4    Zielinski, D.C.5    Haiman, Z.B.6
  • 97
    • 84988644290 scopus 로고    scopus 로고
    • Integrative analysis of human omics data using biomolecular networks
    • pmid:27510223
    • Robinson JL, Nielsen J, Integrative analysis of human omics data using biomolecular networks. Molecular BioSystems. 2016;12(10):2953–2964. doi: 10.1039/c6mb00476h pmid: 27510223
    • (2016) Molecular BioSystems , vol.12 , Issue.10 , pp. 2953-2964
    • Robinson, J.L.1    Nielsen, J.2
  • 98
    • 84940999709 scopus 로고    scopus 로고
    • Multiple sources of bias confound functional enrichment analysis of global-omics data
    • Timmons JA, Szkop KJ, Gallagher IJ, Multiple sources of bias confound functional enrichment analysis of global-omics data. Genome biology. 2015;16(1):186.
    • (2015) Genome biology , vol.16 , Issue.1 , pp. 186
    • Timmons, J.A.1    Szkop, K.J.2    Gallagher, I.J.3
  • 99
    • 84864843180 scopus 로고    scopus 로고
    • In silico method for modelling metabolism and gene product expression at genome scale
    • pmid:22760628
    • Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nature communications. 2012;3:929. doi: 10.1038/ncomms1928 pmid: 22760628
    • (2012) Nature communications , vol.3 , pp. 929
    • Lerman, J.A.1    Hyduke, D.R.2    Latif, H.3    Portnoy, V.A.4    Lewis, N.E.5    Orth, J.D.6
  • 100
    • 85019116437 scopus 로고    scopus 로고
    • TRFBA: An algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data
    • Motamedian E, Mohammadi M, Shojaosadati SA, Heydari M, TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data. Bioinformatics. 2016;33(7):1057–1063.
    • (2016) Bioinformatics , vol.33 , Issue.7 , pp. 1057-1063
    • Motamedian, E.1    Mohammadi, M.2    Shojaosadati, S.A.3    Heydari, M.4
  • 101
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • pmid:20057383
    • Thiele I, Palsson BØ, A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature protocols. 2010;5(1):93. doi: 10.1038/nprot.2009.203 pmid: 20057383
    • (2010) Nature protocols , vol.5 , Issue.1 , pp. 93
    • Thiele, I.1    Palsson, B.Ø.2
  • 102
    • 24144437385 scopus 로고    scopus 로고
    • The “omics” haystack: Defining sources of sample bias in expression profiling
    • pmid:16120944
    • Semmes OJ, The “omics” haystack: defining sources of sample bias in expression profiling. Clinical Chemistry. 2005;51(9):1571–1572. doi: 10.1373/clinchem.2005.053405 pmid: 16120944
    • (2005) Clinical Chemistry , vol.51 , Issue.9 , pp. 1571-1572
    • Semmes, O.J.1
  • 103
    • 85016060109 scopus 로고    scopus 로고
    • Why batch effects matter in omics data, and how to avoid them
    • pmid:28351613
    • Goh WWB, Wang W, Wong L, Why batch effects matter in omics data, and how to avoid them. Trends in biotechnology. 2017;35(6):498–507. doi: 10.1016/j.tibtech.2017.02.012 pmid: 28351613
    • (2017) Trends in biotechnology , vol.35 , Issue.6 , pp. 498-507
    • Goh, W.W.B.1    Wang, W.2    Wong, L.3
  • 104
    • 85045795883 scopus 로고    scopus 로고
    • The discrepancy between data for and expectations on metabolic models: How to match experiments and computational efforts to arrive at quantitative predictions?
    • Tummler K, Klipp E, The discrepancy between data for and expectations on metabolic models: How to match experiments and computational efforts to arrive at quantitative predictions?Current Opinion in Systems Biology. 2017;8:1–6.
    • (2017) Current Opinion in Systems Biology , vol.8 , pp. 1-6
    • Tummler, K.1    Klipp, E.2
  • 105
    • 0035125986 scopus 로고    scopus 로고
    • In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    • pmid:11175725
    • Edwards JS, Ibarra RU, Palsson BO, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature biotechnology. 2001;19(2):125. doi: 10.1038/84379 pmid: 11175725
    • (2001) Nature biotechnology , vol.19 , Issue.2 , pp. 125
    • Edwards, J.S.1    Ibarra, R.U.2    Palsson, B.O.3
  • 106
    • 33751567092 scopus 로고    scopus 로고
    • Experimental and computational assessment of conditionally essential genes in Escherichia coli
    • pmid:17012394
    • Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, et al. Experimental and computational assessment of conditionally essential genes in Escherichia coli. Journal of bacteriology. 2006;188(23):8259–8271. doi: 10.1128/JB.00740-06 pmid: 17012394
    • (2006) Journal of bacteriology , vol.188 , Issue.23 , pp. 8259-8271
    • Joyce, A.R.1    Reed, J.L.2    White, A.3    Edwards, R.4    Osterman, A.5    Baba, T.6
  • 108
    • 85007574032 scopus 로고    scopus 로고
    • Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion
    • pmid:27986597
    • King ZA, O'Brien EJ, Feist AM, Palsson BO, Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion. Metabolic engineering. 2017;39:220–227. doi: 10.1016/j.ymben.2016.12.004 pmid: 27986597
    • (2017) Metabolic engineering , vol.39 , pp. 220-227
    • King, Z.A.1    O'Brien, E.J.2    Feist, A.M.3    Palsson, B.O.4
  • 109
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • pmid:24762745
    • Machado D, Herrgård M, Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol. 2014;10(4):e1003580. doi: 10.1371/journal.pcbi.1003580 pmid: 24762745
    • (2014) PLoS Comput Biol , vol.10 , Issue.4
    • Machado, D.1    Herrgård, M.2
  • 110
    • 45149111660 scopus 로고    scopus 로고
    • The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli
    • pmid:18536691
    • Feist AM, Palsson BØ, The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature biotechnology. 2008;26(6):659. doi: 10.1038/nbt1401 pmid: 18536691
    • (2008) Nature biotechnology , vol.26 , Issue.6 , pp. 659
    • Feist, A.M.1    Palsson, B.Ø.2
  • 112
    • 84864813894 scopus 로고    scopus 로고
    • Molecular signatures from omics data: From chaos to consensus
    • pmid:22528809
    • Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND, Molecular signatures from omics data: from chaos to consensus. Biotechnology journal. 2012;7(8):946–957. doi: 10.1002/biot.201100305 pmid: 22528809
    • (2012) Biotechnology journal , vol.7 , Issue.8 , pp. 946-957
    • Sung, J.1    Wang, Y.2    Chandrasekaran, S.3    Witten, D.M.4    Price, N.D.5
  • 113
    • 84920937371 scopus 로고    scopus 로고
    • Computational methods in metabolic engineering for strain design
    • pmid:25576846
    • Long MR, Ong WK, Reed JL, Computational methods in metabolic engineering for strain design. Current opinion in biotechnology. 2015;34:135–141. doi: 10.1016/j.copbio.2014.12.019 pmid: 25576846
    • (2015) Current opinion in biotechnology , vol.34 , pp. 135-141
    • Long, M.R.1    Ong, W.K.2    Reed, J.L.3
  • 114
    • 85030540936 scopus 로고    scopus 로고
    • The Impact of Systems Biology on Bioprocessing
    • pmid:28987922
    • Campbell K, Xia J, Nielsen J, The Impact of Systems Biology on Bioprocessing. Trends in Biotechnology. 2017;35(12):1156–1168. doi: 10.1016/j.tibtech.2017.08.011 pmid: 28987922
    • (2017) Trends in Biotechnology , vol.35 , Issue.12 , pp. 1156-1168
    • Campbell, K.1    Xia, J.2    Nielsen, J.3
  • 116
    • 85062825440 scopus 로고    scopus 로고
    • Integration of single-cell RNA-seq data into population models to characterize cancer metabolism
    • pmid:30818329
    • Damiani C, Maspero D, Di Filippo M, Colombo R, Pescini D, Graudenzi A, et al. Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLoS Comput Biol. 2019;15(2):e1006733. doi: 10.1371/journal.pcbi.1006733 pmid: 30818329
    • (2019) PLoS Comput Biol , vol.15 , Issue.2
    • Damiani, C.1    Maspero, D.2    Di Filippo, M.3    Colombo, R.4    Pescini, D.5    Graudenzi, A.6
  • 118
    • 85051792338 scopus 로고    scopus 로고
    • The Mythos of Model Interpretability
    • Lipton ZC, The Mythos of Model Interpretability. Queue. 2018;16(3):30.
    • (2018) Queue , vol.16 , Issue.3 , pp. 30
    • Lipton, Z.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.