-
1
-
-
33644527950
-
The model organism as a system: Integrating 'omics' data sets
-
pmid:16496022
-
Joyce AR, Palsson BØ, The model organism as a system: integrating 'omics' data sets. Nature reviews Molecular cell biology. 2006;7(3):198. doi: 10.1038/nrm1857 pmid: 16496022
-
(2006)
Nature reviews Molecular cell biology
, vol.7
, Issue.3
, pp. 198
-
-
Joyce, A.R.1
Palsson, B.Ø.2
-
2
-
-
84925031191
-
Methods of integrating data to uncover genotype–phenotype interactions
-
pmid:25582081
-
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D, Methods of integrating data to uncover genotype–phenotype interactions. Nature Reviews Genetics. 2015;16(2):85. doi: 10.1038/nrg3868 pmid: 25582081
-
(2015)
Nature Reviews Genetics
, vol.16
, Issue.2
, pp. 85
-
-
Ritchie, M.D.1
Holzinger, E.R.2
Li, R.3
Pendergrass, S.A.4
Kim, D.5
-
3
-
-
85009781625
-
Single-cell multiomics: Multiple measurements from single cells
-
pmid:28089370
-
Macaulay IC, Ponting CP, Voet T, Single-cell multiomics: multiple measurements from single cells. Trends in Genetics. 2017;33(2):155–168. doi: 10.1016/j.tig.2016.12.003 pmid: 28089370
-
(2017)
Trends in Genetics
, vol.33
, Issue.2
, pp. 155-168
-
-
Macaulay, I.C.1
Ponting, C.P.2
Voet, T.3
-
4
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
pmid:25948244
-
Libbrecht MW, Noble WS, Machine learning applications in genetics and genomics. Nature Reviews Genetics. 2015;16(6):321. doi: 10.1038/nrg3920 pmid: 25948244
-
(2015)
Nature Reviews Genetics
, vol.16
, Issue.6
, pp. 321
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
5
-
-
85045190865
-
Opportunities and obstacles for deep learning in biology and medicine
-
Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface. 2018;15(141):20170387.
-
(2018)
Journal of The Royal Society Interface
, vol.15
, Issue.141
, pp. 20170387
-
-
Ching, T.1
Himmelstein, D.S.2
Beaulieu-Jones, B.K.3
Kalinin, A.A.4
Do, B.T.5
Way, G.P.6
-
7
-
-
84949818508
-
Machine learning in genomic medicine: A review of computational problems and data sets
-
Leung MK, Delong A, Alipanahi B, Frey BJ, Machine learning in genomic medicine: a review of computational problems and data sets. Proceedings of the IEEE. 2016;104(1):176–197.
-
(2016)
Proceedings of the IEEE
, vol.104
, Issue.1
, pp. 176-197
-
-
Leung, M.K.1
Delong, A.2
Alipanahi, B.3
Frey, B.J.4
-
8
-
-
84980022857
-
Deep learning for computational biology
-
pmid:27474269
-
Angermueller C, Pärnamaa T, Parts L, Stegle O, Deep learning for computational biology. Molecular systems biology. 2016;12(7):878. doi: 10.15252/msb.20156651 pmid: 27474269
-
(2016)
Molecular systems biology
, vol.12
, Issue.7
, pp. 878
-
-
Angermueller, C.1
Pärnamaa, T.2
Parts, L.3
Stegle, O.4
-
9
-
-
85032586119
-
Deep learning in bioinformatics
-
pmid:27473064
-
Min S, Lee B, Yoon S, Deep learning in bioinformatics. Briefings in bioinformatics. 2017;18(5):851–869. doi: 10.1093/bib/bbw068 pmid: 27473064
-
(2017)
Briefings in bioinformatics
, vol.18
, Issue.5
, pp. 851-869
-
-
Min, S.1
Lee, B.2
Yoon, S.3
-
10
-
-
84892788440
-
Constraint-based models predict metabolic and associated cellular functions
-
pmid:24430943
-
Bordbar A, Monk JM, King ZA, Palsson BO, Constraint-based models predict metabolic and associated cellular functions. Nature Reviews Genetics. 2014;15(2):107. doi: 10.1038/nrg3643 pmid: 24430943
-
(2014)
Nature Reviews Genetics
, vol.15
, Issue.2
, pp. 107
-
-
Bordbar, A.1
Monk, J.M.2
King, Z.A.3
Palsson, B.O.4
-
11
-
-
57549102595
-
Genome-scale models of bacterial metabolism: Reconstruction and applications
-
pmid:19067749
-
Durot M, Bourguignon PY, Schachter V, Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS microbiology reviews. 2008;33(1):164–190. doi: 10.1111/j.1574-6976.2008.00146.x pmid: 19067749
-
(2008)
FEMS microbiology reviews
, vol.33
, Issue.1
, pp. 164-190
-
-
Durot, M.1
Bourguignon, P.Y.2
Schachter, V.3
-
12
-
-
84874976941
-
Plant genome-scale metabolic reconstruction and modelling
-
pmid:22947602
-
de Oliveira Dal'Molin CG, Nielsen LK, Plant genome-scale metabolic reconstruction and modelling. Current opinion in biotechnology. 2013;24(2):271–277. doi: 10.1016/j.copbio.2012.08.007 pmid: 22947602
-
(2013)
Current opinion in biotechnology
, vol.24
, Issue.2
, pp. 271-277
-
-
de Oliveira Dal'Molin, C.G.1
Nielsen, L.K.2
-
13
-
-
85041388327
-
In silico analysis of human metabolism: Reconstruction, contextualization and application of genome-scale models
-
Geng J, Nielsen J, In silico analysis of human metabolism: Reconstruction, contextualization and application of genome-scale models. Current Opinion in Systems Biology. 2017;2:29–38.
-
(2017)
Current Opinion in Systems Biology
, vol.2
, pp. 29-38
-
-
Geng, J.1
Nielsen, J.2
-
14
-
-
84900303762
-
Optimizing genome-scale network reconstructions
-
pmid:24811519
-
Monk J, Nogales J, Palsson BO, Optimizing genome-scale network reconstructions. Nature biotechnology. 2014;32(5):447. doi: 10.1038/nbt.2870 pmid: 24811519
-
(2014)
Nature biotechnology
, vol.32
, Issue.5
, pp. 447
-
-
Monk, J.1
Nogales, J.2
Palsson, B.O.3
-
15
-
-
85009064138
-
Metabolic network modeling with model organisms
-
pmid:28088694
-
Yilmaz LS, Walhout AJ, Metabolic network modeling with model organisms. Current opinion in chemical biology. 2017;36:32–39. doi: 10.1016/j.cbpa.2016.12.025 pmid: 28088694
-
(2017)
Current opinion in chemical biology
, vol.36
, pp. 32-39
-
-
Yilmaz, L.S.1
Walhout, A.J.2
-
16
-
-
85041021273
-
Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling
-
Cuperlovic-Culf M, Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling. Metabolites. 2018;8(1):4.
-
(2018)
Metabolites
, vol.8
, Issue.1
, pp. 4
-
-
Cuperlovic-Culf, M.1
-
17
-
-
85057522434
-
Seeing the wood for the trees: A forest of methods for optimization and omic-network integration in metabolic modelling
-
Vijayakumar S, Conway M, Lió P, Angione C, Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Briefings in bioinformatics. 2017;19(6):1218–1235.
-
(2017)
Briefings in bioinformatics
, vol.19
, Issue.6
, pp. 1218-1235
-
-
Vijayakumar, S.1
Conway, M.2
Lió, P.3
Angione, C.4
-
18
-
-
34547683819
-
Bayesian flux balance analysis applied to a skeletal muscle metabolic model
-
pmid:17568615
-
Heino J, Tunyan K, Calvetti D, Somersalo E, Bayesian flux balance analysis applied to a skeletal muscle metabolic model. Journal of theoretical biology. 2007;248(1):91–110. doi: 10.1016/j.jtbi.2007.04.002 pmid: 17568615
-
(2007)
Journal of theoretical biology
, vol.248
, Issue.1
, pp. 91-110
-
-
Heino, J.1
Tunyan, K.2
Calvetti, D.3
Somersalo, E.4
-
19
-
-
84938074954
-
Co-evolution of strain design methods based on flux balance and elementary mode analysis
-
Machado D, Herrgård MJ, Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metabolic Engineering Communications. 2015;2:85–92.
-
(2015)
Metabolic Engineering Communications
, vol.2
, pp. 85-92
-
-
Machado, D.1
Herrgård, M.J.2
-
20
-
-
84944727589
-
Predictive analytics of environmental adaptability in multi-omic network models
-
pmid:26482106
-
Angione C, Lió P, Predictive analytics of environmental adaptability in multi-omic network models. Scientific reports. 2015;5:15147. doi: 10.1038/srep15147 pmid: 26482106
-
(2015)
Scientific reports
, vol.5
, pp. 15147
-
-
Angione, C.1
Lió, P.2
-
21
-
-
77956649528
-
Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks
-
pmid:20692823
-
Ruppin E, Papin JA, De Figueiredo LF, Schuster S, Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Current opinion in biotechnology. 2010;21(4):502–510. doi: 10.1016/j.copbio.2010.07.002 pmid: 20692823
-
(2010)
Current opinion in biotechnology
, vol.21
, Issue.4
, pp. 502-510
-
-
Ruppin, E.1
Papin, J.A.2
De Figueiredo, L.F.3
Schuster, S.4
-
22
-
-
84978924623
-
Multiplex methods provide effective integration of multi-omic data in genome-scale models
-
Angione C, Conway M, Lió P, Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC bioinformatics. 2016;17(4):83.
-
(2016)
BMC bioinformatics
, vol.17
, Issue.4
, pp. 83
-
-
Angione, C.1
Conway, M.2
Lió, P.3
-
23
-
-
84947982943
-
A Markov chain model for N-linked protein glycosylation–towards a low-parameter tool for model-driven glycoengineering
-
pmid:26537759
-
Spahn PN, Hansen AH, Hansen HG, Arnsdorf J, Kildegaard HF, Lewis NE, A Markov chain model for N-linked protein glycosylation–towards a low-parameter tool for model-driven glycoengineering. Metabolic engineering. 2016;33:52–66. doi: 10.1016/j.ymben.2015.10.007 pmid: 26537759
-
(2016)
Metabolic engineering
, vol.33
, pp. 52-66
-
-
Spahn, P.N.1
Hansen, A.H.2
Hansen, H.G.3
Arnsdorf, J.4
Kildegaard, H.F.5
Lewis, N.E.6
-
24
-
-
84984666490
-
-
New York IEEE p
-
Pierobon M, Sakkaff Z, Catlett JL, Buan NR, Mutual information upper bound of molecular communication based on cell metabolism. In: Signal Processing Advances in Wireless Communications (SPAWC), 2016 IEEE 17th International Workshop on. New York: IEEE; 2016. p. 1–6.
-
(2016)
Mutual information upper bound of molecular communication based on cell metabolism. In: Signal Processing Advances in Wireless Communications (SPAWC), 2016 IEEE 17th International Workshop on
, pp. 1-6
-
-
Pierobon, M.1
Sakkaff, Z.2
Catlett, J.L.3
Buan, N.R.4
-
25
-
-
33746747476
-
Machine learning in bioinformatics: A brief survey and recommendations for practitioners
-
pmid:16226240
-
Bhaskar H, Hoyle DC, Singh S, Machine learning in bioinformatics: A brief survey and recommendations for practitioners. Computers in biology and medicine. 2006;36(10):1104–1125. doi: 10.1016/j.compbiomed.2005.09.002 pmid: 16226240
-
(2006)
Computers in biology and medicine
, vol.36
, Issue.10
, pp. 1104-1125
-
-
Bhaskar, H.1
Hoyle, D.C.2
Singh, S.3
-
26
-
-
84872256757
-
Machine learning and its applications to biology
-
pmid:17604446
-
Tarca AL, Carey VJ, Chen Xw, Romero R, Drăghici S, Machine learning and its applications to biology. PLoS Comput Biol. 2007;3(6):e116. doi: 10.1371/journal.pcbi.0030116 pmid: 17604446
-
(2007)
PLoS Comput Biol
, vol.3
, Issue.6
-
-
Tarca, A.L.1
Carey, V.J.2
Chen, X.3
Romero, R.4
Drăghici, S.5
-
27
-
-
85050100656
-
Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science)
-
pmid:29497285, 1177932218759292
-
Zeng ISL, Lumley T, Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science). Bioinformatics and Biology Insights. 2018;12:1177932218759292. doi: 10.1177/1177932218759292 pmid: 29497285
-
(2018)
Bioinformatics and Biology Insights
, vol.12
-
-
Zeng, I.S.L.1
Lumley, T.2
-
28
-
-
85046294667
-
Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization
-
pmid:28859695
-
Cai Y, Gu H, Kenney T, Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization. Microbiome. 2017;5(1):110. doi: 10.1186/s40168-017-0323-1 pmid: 28859695
-
(2017)
Microbiome
, vol.5
, Issue.1
, pp. 110
-
-
Cai, Y.1
Gu, H.2
Kenney, T.3
-
29
-
-
78650121315
-
Clustering algorithms in biomedical research: A review
-
pmid:22275205
-
Xu R, Wunsch DC, Clustering algorithms in biomedical research: a review. IEEE Reviews in Biomedical Engineering. 2010;3:120–154. doi: 10.1109/RBME.2010.2083647 pmid: 22275205
-
(2010)
IEEE Reviews in Biomedical Engineering
, vol.3
, pp. 120-154
-
-
Xu, R.1
Wunsch, D.C.2
-
30
-
-
85069238575
-
Integration of omics: More than the sum of its parts
-
Buescher JM, Driggers EM, Integration of omics: more than the sum of its parts. Cancer & metabolism. 2016;4(1):4.
-
(2016)
Cancer & metabolism
, vol.4
, Issue.1
, pp. 4
-
-
Buescher, J.M.1
Driggers, E.M.2
-
31
-
-
84991380039
-
Dimension reduction techniques for the integrative analysis of multi-omics data
-
pmid:26969681
-
Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC, Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in bioinformatics. 2016;17(4):628–641. doi: 10.1093/bib/bbv108 pmid: 26969681
-
(2016)
Briefings in bioinformatics
, vol.17
, Issue.4
, pp. 628-641
-
-
Meng, C.1
Zeleznik, O.A.2
Thallinger, G.G.3
Kuster, B.4
Gholami, A.M.5
Culhane, A.C.6
-
32
-
-
84948703087
-
Methods for biological data integration: Perspectives and challenges
-
Gligorijević V, Pržulj N, Methods for biological data integration: perspectives and challenges. Journal of the Royal Society Interface. 2015;12(112):20150571.
-
(2015)
Journal of the Royal Society Interface
, vol.12
, Issue.112
, pp. 20150571
-
-
Gligorijević, V.1
Pržulj, N.2
-
33
-
-
85018787862
-
Multi-omics approaches to disease
-
pmid:28476144
-
Hasin Y, Seldin M, Lusis A, Multi-omics approaches to disease. Genome biology. 2017;18(1):83. doi: 10.1186/s13059-017-1215-1 pmid: 28476144
-
(2017)
Genome biology
, vol.18
, Issue.1
, pp. 83
-
-
Hasin, Y.1
Seldin, M.2
Lusis, A.3
-
35
-
-
84887452388
-
A survey of multi-view machine learning
-
Sun S, A survey of multi-view machine learning. Neural Computing and Applications. 2013;23(7–8):2031–2038.
-
(2013)
Neural Computing and Applications
, vol.23
, Issue.7-8
, pp. 2031-2038
-
-
Sun, S.1
-
36
-
-
85049474548
-
A review on machine learning principles for multi-view biological data integration
-
Li Y, Wu FX, Ngom A, A review on machine learning principles for multi-view biological data integration. Briefings in bioinformatics. 2016;19(2):325–340.
-
(2016)
Briefings in bioinformatics
, vol.19
, Issue.2
, pp. 325-340
-
-
Li, Y.1
Wu, F.X.2
Ngom, A.3
-
37
-
-
84995810932
-
Transcriptomic and metabolomic data integration
-
pmid:26467821
-
Cavill R, Jennen D, Kleinjans J, Briedé JJ, Transcriptomic and metabolomic data integration. Briefings in bioinformatics. 2015;17(5):891–901. doi: 10.1093/bib/bbv090 pmid: 26467821
-
(2015)
Briefings in bioinformatics
, vol.17
, Issue.5
, pp. 891-901
-
-
Cavill, R.1
Jennen, D.2
Kleinjans, J.3
Briedé, J.J.4
-
38
-
-
84925409378
-
Kernel methods for large-scale genomic data analysis
-
pmid:25053743
-
Wang X, Xing EP, Schaid DJ, Kernel methods for large-scale genomic data analysis. Briefings in bioinformatics. 2014;16(2):183–192. doi: 10.1093/bib/bbu024 pmid: 25053743
-
(2014)
Briefings in bioinformatics
, vol.16
, Issue.2
, pp. 183-192
-
-
Wang, X.1
Xing, E.P.2
Schaid, D.J.3
-
39
-
-
85045298116
-
Metabolomics-driven understanding of genotype-phenotype relations in model organisms
-
Zampieri M, Sauer U, Metabolomics-driven understanding of genotype-phenotype relations in model organisms. Current Opinion in Systems Biology. 2017;6:28–36.
-
(2017)
Current Opinion in Systems Biology
, vol.6
, pp. 28-36
-
-
Zampieri, M.1
Sauer, U.2
-
40
-
-
85052727111
-
Metabolism as a signal generator across trans-omic networks at distinct time scales
-
Yugi K, Kuroda S, Metabolism as a signal generator across trans-omic networks at distinct time scales. Current Opinion in Systems Biology. 2017;8:59–66.
-
(2017)
Current Opinion in Systems Biology
, vol.8
, pp. 59-66
-
-
Yugi, K.1
Kuroda, S.2
-
41
-
-
85033687968
-
Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data
-
pmid:27200361
-
Sriyudthsak K, Shiraishi F, Hirai MY, Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Frontiers in molecular biosciences. 2016;3:15. doi: 10.3389/fmolb.2016.00015 pmid: 27200361
-
(2016)
Frontiers in molecular biosciences
, vol.3
, pp. 15
-
-
Sriyudthsak, K.1
Shiraishi, F.2
Hirai, M.Y.3
-
42
-
-
84966348806
-
Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology
-
Aretz I, Meierhofer D, Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. International journal of molecular sciences. 2016;17(5):632.
-
(2016)
International journal of molecular sciences
, vol.17
, Issue.5
, pp. 632
-
-
Aretz, I.1
Meierhofer, D.2
-
43
-
-
84919338721
-
How to measure metabolic fluxes: A taxonomic guide for 13C fluxomics
-
pmid:25531408
-
Niedenführ S, Wiechert W, Nöh K, How to measure metabolic fluxes: a taxonomic guide for 13C fluxomics. Current opinion in biotechnology. 2015;34:82–90. doi: 10.1016/j.copbio.2014.12.003 pmid: 25531408
-
(2015)
Current opinion in biotechnology
, vol.34
, pp. 82-90
-
-
Niedenführ, S.1
Wiechert, W.2
Nöh, K.3
-
44
-
-
0033580813
-
Systems properties of the Haemophilus influenzaeRd metabolic genotype
-
pmid:10364169
-
Edwards JS, Palsson BO, Systems properties of the Haemophilus influenzaeRd metabolic genotype. Journal of Biological Chemistry. 1999;274(25):17410–17416. doi: 10.1074/jbc.274.25.17410 pmid: 10364169
-
(1999)
Journal of Biological Chemistry
, vol.274
, Issue.25
, pp. 17410-17416
-
-
Edwards, J.S.1
Palsson, B.O.2
-
45
-
-
0034625143
-
The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities
-
Edwards J, Palsson B, The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences. 2000;97(10):5528–5533.
-
(2000)
Proceedings of the National Academy of Sciences
, vol.97
, Issue.10
, pp. 5528-5533
-
-
Edwards, J.1
Palsson, B.2
-
46
-
-
77749320898
-
What is flux balance analysis?
-
pmid:20212490
-
Orth JD, Thiele I, Palsson BØ, What is flux balance analysis?Nature biotechnology. 2010;28(3):245. doi: 10.1038/nbt.1614 pmid: 20212490
-
(2010)
Nature biotechnology
, vol.28
, Issue.3
, pp. 245
-
-
Orth, J.D.1
Thiele, I.2
Palsson, B.Ø.3
-
47
-
-
84858439602
-
Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
-
pmid:22367118
-
Lewis NE, Nagarajan H, Palsson BO, Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology. 2012;10(4):291. doi: 10.1038/nrmicro2737 pmid: 22367118
-
(2012)
Nature Reviews Microbiology
, vol.10
, Issue.4
, pp. 291
-
-
Lewis, N.E.1
Nagarajan, H.2
Palsson, B.O.3
-
48
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
pmid:26000478
-
O'Brien EJ, Monk JM, Palsson BO, Using genome-scale models to predict biological capabilities. Cell. 2015;161(5):971–987. doi: 10.1016/j.cell.2015.05.019 pmid: 26000478
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 971-987
-
-
O'Brien, E.J.1
Monk, J.M.2
Palsson, B.O.3
-
49
-
-
84992648219
-
Multi-omic data integration enables discovery of hidden biological regularities
-
pmid:27782110
-
Ebrahim A, Brunk E, Tan J, O'brien EJ, Kim D, Szubin R, et al. Multi-omic data integration enables discovery of hidden biological regularities. Nature communications. 2016;7:13091. doi: 10.1038/ncomms13091 pmid: 27782110
-
(2016)
Nature communications
, vol.7
, pp. 13091
-
-
Ebrahim, A.1
Brunk, E.2
Tan, J.3
O'brien, E.J.4
Kim, D.5
Szubin, R.6
-
50
-
-
85006107025
-
Constraint-based stoichiometric modelling from single organisms to microbial communities
-
Gottstein W, Olivier BG, Bruggeman FJ, Teusink B, Constraint-based stoichiometric modelling from single organisms to microbial communities. Journal of the Royal Society Interface. 2016;13(124):20160627.
-
(2016)
Journal of the Royal Society Interface
, vol.13
, Issue.124
, pp. 20160627
-
-
Gottstein, W.1
Olivier, B.G.2
Bruggeman, F.J.3
Teusink, B.4
-
51
-
-
84884565153
-
The evolution of genome-scale models of cancer metabolism
-
pmid:24027532
-
Lewis NE, Abdel-Haleem AM, The evolution of genome-scale models of cancer metabolism. Frontiers in physiology. 2013;4:237. doi: 10.3389/fphys.2013.00237 pmid: 24027532
-
(2013)
Frontiers in physiology
, vol.4
, pp. 237
-
-
Lewis, N.E.1
Abdel-Haleem, A.M.2
-
52
-
-
85061915038
-
Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0
-
pmid:30787451
-
Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nature protocols. 2019;14(3):639–702. doi: 10.1038/s41596-018-0098-2 pmid: 30787451
-
(2019)
Nature protocols
, vol.14
, Issue.3
, pp. 639-702
-
-
Heirendt, L.1
Arreckx, S.2
Pfau, T.3
Mendoza, S.N.4
Richelle, A.5
Heinken, A.6
-
54
-
-
79960126760
-
rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks
-
pmid:21596791
-
Thorleifsson SG, Thiele I, rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics. 2011;27(14):2009–2010. doi: 10.1093/bioinformatics/btr308 pmid: 21596791
-
(2011)
Bioinformatics
, vol.27
, Issue.14
, pp. 2009-2010
-
-
Thorleifsson, S.G.1
Thiele, I.2
-
55
-
-
85054504207
-
Fast automated reconstruction of genome-scale metabolic models for microbial species and communities
-
pmid:30192979
-
Machado D, Andrejev S, Tramontano M, Patil KR, Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Research. 2018;46:7542–7553. doi: 10.1093/nar/gky537 pmid: 30192979
-
(2018)
Nucleic Acids Research
, vol.46
, pp. 7542-7553
-
-
Machado, D.1
Andrejev, S.2
Tramontano, M.3
Patil, K.R.4
-
56
-
-
85052068503
-
Methods for automated genome-scale metabolic model reconstruction
-
pmid:30065105
-
Faria JP, Rocha M, Rocha I, Henry CS, Methods for automated genome-scale metabolic model reconstruction. Biochemical Society Transactions. 2018;46(4):931–936. doi: 10.1042/BST20170246 pmid: 30065105
-
(2018)
Biochemical Society Transactions
, vol.46
, Issue.4
, pp. 931-936
-
-
Faria, J.P.1
Rocha, M.2
Rocha, I.3
Henry, C.S.4
-
57
-
-
84995959470
-
Principles of proteome allocation are revealed using proteomic data and genome-scale models
-
pmid:27857205
-
Yang L, Yurkovich JT, Lloyd CJ, Ebrahim A, Saunders MA, Palsson BO, Principles of proteome allocation are revealed using proteomic data and genome-scale models. Scientific reports. 2016;6:36734. doi: 10.1038/srep36734 pmid: 27857205
-
(2016)
Scientific reports
, vol.6
, pp. 36734
-
-
Yang, L.1
Yurkovich, J.T.2
Lloyd, C.J.3
Ebrahim, A.4
Saunders, M.A.5
Palsson, B.O.6
-
58
-
-
85041416386
-
Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism
-
pmid:28968777
-
Angione C, Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics. 2018;34(3):494–501. doi: 10.1093/bioinformatics/btx562 pmid: 28968777
-
(2018)
Bioinformatics
, vol.34
, Issue.3
, pp. 494-501
-
-
Angione, C.1
-
59
-
-
84974663176
-
Advances in the integration of transcriptional regulatory information into genome-scale metabolic models
-
pmid:27287878
-
Vivek-Ananth R, Samal A, Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems. 2016;147:1–10. doi: 10.1016/j.biosystems.2016.06.001 pmid: 27287878
-
(2016)
Biosystems
, vol.147
, pp. 1-10
-
-
Vivek-Ananth, R.1
Samal, A.2
-
60
-
-
84923239523
-
Integration of metabolomics data into metabolic networks
-
pmid:25741348
-
Töpfer N, Kleessen S, Nikoloski Z, Integration of metabolomics data into metabolic networks. Frontiers in plant science. 2015;6:49. doi: 10.3389/fpls.2015.00049 pmid: 25741348
-
(2015)
Frontiers in plant science
, vol.6
, pp. 49
-
-
Töpfer, N.1
Kleessen, S.2
Nikoloski, Z.3
-
61
-
-
79951745716
-
iMAT: An integrative metabolic analysis tool
-
pmid:21081510
-
Zur H, Ruppin E, Shlomi T, iMAT: an integrative metabolic analysis tool. Bioinformatics. 2010;26(24):3140–3142. doi: 10.1093/bioinformatics/btq602 pmid: 21081510
-
(2010)
Bioinformatics
, vol.26
, Issue.24
, pp. 3140-3142
-
-
Zur, H.1
Ruppin, E.2
Shlomi, T.3
-
62
-
-
84863662483
-
Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
-
pmid:22615553
-
Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J, Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8(5):e1002518. doi: 10.1371/journal.pcbi.1002518 pmid: 22615553
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.5
-
-
Agren, R.1
Bordel, S.2
Mardinoglu, A.3
Pornputtapong, N.4
Nookaew, I.5
Nielsen, J.6
-
63
-
-
77954197778
-
Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
-
pmid:20529914
-
Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T, Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics. 2010;26(12):i255–i260. doi: 10.1093/bioinformatics/btq183 pmid: 20529914
-
(2010)
Bioinformatics
, vol.26
, Issue.12
, pp. i255-i260
-
-
Yizhak, K.1
Benyamini, T.2
Liebermeister, W.3
Ruppin, E.4
Shlomi, T.5
-
64
-
-
85028309923
-
Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
-
pmid:28779005
-
Sánchez BJ, Zhang C, Nilsson A, Lahtvee PJ, Kerkhoven EJ, Nielsen J, Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Molecular systems biology. 2017;13(8):935. doi: 10.15252/msb.20167411 pmid: 28779005
-
(2017)
Molecular systems biology
, vol.13
, Issue.8
, pp. 935
-
-
Sánchez, B.J.1
Zhang, C.2
Nilsson, A.3
Lahtvee, P.J.4
Kerkhoven, E.J.5
Nielsen, J.6
-
65
-
-
84872093417
-
Analysis of omics data with genome-scale models of metabolism
-
pmid:23247105
-
Hyduke DR, Lewis NE, Palsson BØ, Analysis of omics data with genome-scale models of metabolism. Molecular BioSystems. 2013;9(2):167–174. doi: 10.1039/c2mb25453k pmid: 23247105
-
(2013)
Molecular BioSystems
, vol.9
, Issue.2
, pp. 167-174
-
-
Hyduke, D.R.1
Lewis, N.E.2
Palsson, B.Ø.3
-
66
-
-
85014511954
-
Biomedical applications of cell-and tissue-specific metabolic network models
-
pmid:28242343
-
Fouladiha H, Marashi SA, Biomedical applications of cell-and tissue-specific metabolic network models. Journal of biomedical informatics. 2017;68:35–49. doi: 10.1016/j.jbi.2017.02.014 pmid: 28242343
-
(2017)
Journal of biomedical informatics
, vol.68
, pp. 35-49
-
-
Fouladiha, H.1
Marashi, S.A.2
-
67
-
-
84918774598
-
Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli
-
pmid:25502413
-
Sridhara V, Meyer AG, Rai P, Barrick JE, Ravikumar P, Segrè D, et al. Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli. PLoS ONE. 2014;9(12):e114608. doi: 10.1371/journal.pone.0114608 pmid: 25502413
-
(2014)
PLoS ONE
, vol.9
, Issue.12
-
-
Sridhara, V.1
Meyer, A.G.2
Rai, P.3
Barrick, J.E.4
Ravikumar, P.5
Segrè, D.6
-
68
-
-
84962140627
-
Metabolic Network Prediction of Drug Side Effects
-
pmid:27135366
-
Shaked I, Oberhardt MA, Atias N, Sharan R, Ruppin E, Metabolic Network Prediction of Drug Side Effects. Cell Systems. 2016;2(3):209–213. doi: 10.1016/j.cels.2016.03.001 pmid: 27135366
-
(2016)
Cell Systems
, vol.2
, Issue.3
, pp. 209-213
-
-
Shaked, I.1
Oberhardt, M.A.2
Atias, N.3
Sharan, R.4
Ruppin, E.5
-
69
-
-
85029370809
-
Differential Search Algorithm in Deep Neural Network for the Predictive Analysis of Xylitol Production in Escherichia Coli
-
In:,. p., –
-
Yousoff SNM, Baharin A, Abdullah A. Differential Search Algorithm in Deep Neural Network for the Predictive Analysis of Xylitol Production in Escherichia Coli. In: Asian Simulation Conference. New York: Springer; 2017. p. 53–67.
-
(2017)
Asian Simulation Conference. New York: Springer;
, pp. 53-67
-
-
Yousoff, S.N.M.1
Baharin, A.2
Abdullah, A.3
-
70
-
-
85060049392
-
Machine learning framework for assessment of microbial factory performance
-
pmid:30645629
-
Oyetunde T, Liu D, Martin HG, Tang YJ, Machine learning framework for assessment of microbial factory performance. PLoS ONE. 2019;14(1):e0210558. doi: 10.1371/journal.pone.0210558 pmid: 30645629
-
(2019)
PLoS ONE
, vol.14
, Issue.1
-
-
Oyetunde, T.1
Liu, D.2
Martin, H.G.3
Tang, Y.J.4
-
71
-
-
85048727194
-
Dynamic elementary mode modelling of non-steady state flux data
-
pmid:29914483
-
Folch-Fortuny A, Teusink B, Hoefsloot HC, Smilde AK, Ferrer A, Dynamic elementary mode modelling of non-steady state flux data. BMC systems biology. 2018;12(1):71. doi: 10.1186/s12918-018-0589-3 pmid: 29914483
-
(2018)
BMC systems biology
, vol.12
, Issue.1
, pp. 71
-
-
Folch-Fortuny, A.1
Teusink, B.2
Hoefsloot, H.C.3
Smilde, A.K.4
Ferrer, A.5
-
72
-
-
85064188785
-
Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks
-
pmid:30417106
-
DiMucci D, Kon M, Segre D, Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks. mSystems. 2018;3(5):e00181–18. doi: 10.1128/mSystems.00181-18 pmid: 30417106
-
(2018)
mSystems
, vol.3
, Issue.5
, pp. e00181-e00118
-
-
DiMucci, D.1
Kon, M.2
Segre, D.3
-
73
-
-
85071915672
-
Predicting the Plant Root-Associated Ecological Niche of 21 Pseudomonas Species Using Machine Learning and Metabolic Modeling
-
[cited 2019 Feb 10]. Available from
-
Chien J, Larsen P, Predicting the Plant Root-Associated Ecological Niche of 21 Pseudomonas Species Using Machine Learning and Metabolic Modeling. arXiv [Preprint]. 2017 [cited 2019 Feb 10]. Available from: https://arxiv.org/abs/1701.03220.
-
(2017)
arXiv [Preprint]
-
-
Chien, J.1
Larsen, P.2
-
74
-
-
11244297914
-
Modular epistasis in yeast metabolism
-
pmid:15592468
-
Segre D, DeLuna A, Church GM, Kishony R, Modular epistasis in yeast metabolism. Nature genetics. 2005;37(1):77. doi: 10.1038/ng1489 pmid: 15592468
-
(2005)
Nature genetics
, vol.37
, Issue.1
, pp. 77
-
-
Segre, D.1
DeLuna, A.2
Church, G.M.3
Kishony, R.4
-
75
-
-
85011094697
-
Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
-
pmid:27893703
-
Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature biotechnology. 2017;35(1):81. doi: 10.1038/nbt.3703 pmid: 27893703
-
(2017)
Nature biotechnology
, vol.35
, Issue.1
, pp. 81
-
-
Magnúsdóttir, S.1
Heinken, A.2
Kutt, L.3
Ravcheev, D.A.4
Bauer, E.5
Noronha, A.6
-
76
-
-
65349142617
-
Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation
-
Barrett CL, Herrgard MJ, Palsson B, Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation. BMC systems biology. 2009;3(1):30.
-
(2009)
BMC systems biology
, vol.3
, Issue.1
, pp. 30
-
-
Barrett, C.L.1
Herrgard, M.J.2
Palsson, B.3
-
77
-
-
84959160888
-
Principal elementary mode analysis (PEMA)
-
pmid:26905301
-
Folch-Fortuny A, Marques R, Isidro IA, Oliveira R, Ferrer A, Principal elementary mode analysis (PEMA). Molecular BioSystems. 2016;12(3):737–746. doi: 10.1039/c5mb00828j pmid: 26905301
-
(2016)
Molecular BioSystems
, vol.12
, Issue.3
, pp. 737-746
-
-
Folch-Fortuny, A.1
Marques, R.2
Isidro, I.A.3
Oliveira, R.4
Ferrer, A.5
-
78
-
-
85071939160
-
Principal metabolic flux mode analysis
-
Bhadra S, Blomberg P, Castillo S, Rousu J, Wren J, Principal metabolic flux mode analysis. Bioinformatics. 2018;1:9.
-
(2018)
Bioinformatics
, vol.1
, pp. 9
-
-
Bhadra, S.1
Blomberg, P.2
Castillo, S.3
Rousu, J.4
Wren, J.5
-
79
-
-
51049105047
-
Machine learning based analyses on metabolic networks supports high-throughput knockout screens
-
Plaimas K, Mallm JP, Oswald M, Svara F, Sourjik V, Eils R, et al. Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC systems biology. 2008;2(1):67.
-
(2008)
BMC systems biology
, vol.2
, Issue.1
, pp. 67
-
-
Plaimas, K.1
Mallm, J.P.2
Oswald, M.3
Svara, F.4
Sourjik, V.5
Eils, R.6
-
80
-
-
79959687662
-
An integrated approach to characterize genetic interaction networks in yeast metabolism
-
pmid:21623372
-
Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature genetics. 2011;43(7):656. doi: 10.1038/ng.846 pmid: 21623372
-
(2011)
Nature genetics
, vol.43
, Issue.7
, pp. 656
-
-
Szappanos, B.1
Kovács, K.2
Szamecz, B.3
Honti, F.4
Costanzo, M.5
Baryshnikova, A.6
-
81
-
-
85026307146
-
An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features
-
pmid:28671706
-
Nandi S, Subramanian A, Sarkar RR, An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features. Molecular BioSystems. 2017;13(8):1584–1596. doi: 10.1039/c7mb00234c pmid: 28671706
-
(2017)
Molecular BioSystems
, vol.13
, Issue.8
, pp. 1584-1596
-
-
Nandi, S.1
Subramanian, A.2
Sarkar, R.R.3
-
82
-
-
1242274402
-
Flux coupling analysis of genome-scale metabolic network reconstructions
-
pmid:14718379
-
Burgard AP, Nikolaev EV, Schilling CH, Maranas CD, Flux coupling analysis of genome-scale metabolic network reconstructions. Genome research. 2004;14(2):301–312. doi: 10.1101/gr.1926504 pmid: 14718379
-
(2004)
Genome research
, vol.14
, Issue.2
, pp. 301-312
-
-
Burgard, A.P.1
Nikolaev, E.V.2
Schilling, C.H.3
Maranas, C.D.4
-
83
-
-
77957556494
-
Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines
-
Li L, Zhou X, Ching WK, Wang P, Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines. BMC bioinformatics. 2010;11(1):501.
-
(2010)
BMC bioinformatics
, vol.11
, Issue.1
, pp. 501
-
-
Li, L.1
Zhou, X.2
Ching, W.K.3
Wang, P.4
-
84
-
-
85056727331
-
The poly-omics of ageing through individual-based metabolic modelling
-
Yaneske E, Angione C, The poly-omics of ageing through individual-based metabolic modelling. BMC bioinformatics. 2018;19(14):415.
-
(2018)
BMC bioinformatics
, vol.19
, Issue.14
, pp. 415
-
-
Yaneske, E.1
Angione, C.2
-
85
-
-
85059150278
-
In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production
-
pmid:30588397
-
Occhipinti A, Eyassu F, Rahman TJ, Rahman PK, Angione C, In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production. PeerJ. 2018;6:e6046. doi: 10.7717/peerj.6046 pmid: 30588397
-
(2018)
PeerJ
, vol.6
-
-
Occhipinti, A.1
Eyassu, F.2
Rahman, T.J.3
Rahman, P.K.4
Angione, C.5
-
86
-
-
85071952113
-
A poly-omics machine-learning method to predict metabolite production in CHO cells
-
In:,., Basel, Switzerland,:, MDPI AG;,. p
-
Zampieri G, Coggins M, Valle G, Angione C. A poly-omics machine-learning method to predict metabolite production in CHO cells. In: Metabolomics, The 2nd International Electronic Conference on. Basel, Switzerland: MDPI AG; 2017. p. 4993.
-
(2017)
Metabolomics, The 2nd International Electronic Conference on
, pp. 4993
-
-
Zampieri, G.1
Coggins, M.2
Valle, G.3
Angione, C.4
-
87
-
-
84990177186
-
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
-
pmid:27713404
-
Kim M, Rai N, Zorraquino V, Tagkopoulos I, Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nature communications. 2016;7:13090. doi: 10.1038/ncomms13090 pmid: 27713404
-
(2016)
Nature communications
, vol.7
, pp. 13090
-
-
Kim, M.1
Rai, N.2
Zorraquino, V.3
Tagkopoulos, I.4
-
88
-
-
85050431959
-
Linking metabolic network features to phenotypes using sparse group lasso
-
pmid:29077809
-
Samal SS, Radulescu O, Weber A, Fröhlich H, Linking metabolic network features to phenotypes using sparse group lasso. Bioinformatics. 2017;33(21):3445–3453. doi: 10.1093/bioinformatics/btx427 pmid: 29077809
-
(2017)
Bioinformatics
, vol.33
, Issue.21
, pp. 3445-3453
-
-
Samal, S.S.1
Radulescu, O.2
Weber, A.3
Fröhlich, H.4
-
89
-
-
84952637898
-
iSCHRUNK–in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
-
pmid:26474788
-
Andreozzi S, Miskovic L, Hatzimanikatis V, iSCHRUNK–in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metabolic engineering. 2016;33:158–168. doi: 10.1016/j.ymben.2015.10.002 pmid: 26474788
-
(2016)
Metabolic engineering
, vol.33
, pp. 158-168
-
-
Andreozzi, S.1
Miskovic, L.2
Hatzimanikatis, V.3
-
90
-
-
85073466506
-
DeepMetabolism: A Deep Learning System to Predict Phenotype from Genome Sequencing
-
[cited 2019 Feb 10]. Available from
-
Guo W, Xu Y, Feng X, DeepMetabolism: A Deep Learning System to Predict Phenotype from Genome Sequencing. arXiv [Preprint]. 2017 [cited 2019 Feb 10]. Available from: https://arxiv.org/abs/1705.03094.
-
(2017)
arXiv [Preprint]
-
-
Guo, W.1
Xu, Y.2
Feng, X.3
-
91
-
-
84939810702
-
A hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation
-
pmid:25856685
-
Angione C, Pratanwanich N, Lió P, A hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation. ACS synthetic biology. 2015;4(8):880–889. doi: 10.1021/sb5003407 pmid: 25856685
-
(2015)
ACS synthetic biology
, vol.4
, Issue.8
, pp. 880-889
-
-
Angione, C.1
Pratanwanich, N.2
Lió, P.3
-
92
-
-
85071908177
-
GEESE: Metabolically driven latent space learning for gene expression data
-
[cited 2019 Feb 10]. Available from
-
Barsacchi M, Andres-Terre H, Lió P, GEESE: Metabolically driven latent space learning for gene expression data. bioRxiv [Preprint]. 2018 [cited 2019 Feb 10]. Available from: https://www.biorxiv.org/content/10.1101/365643v1.
-
(2018)
bioRxiv [Preprint]
-
-
Barsacchi, M.1
Andres-Terre, H.2
Lió, P.3
-
93
-
-
84964774521
-
Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming
-
pmid:27092947
-
Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, et al. Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming. PLoS Comput Biol. 2016;12(4):e1004838. doi: 10.1371/journal.pcbi.1004838 pmid: 27092947
-
(2016)
PLoS Comput Biol
, vol.12
, Issue.4
-
-
Wu, S.G.1
Wang, Y.2
Jiang, W.3
Oyetunde, T.4
Yao, R.5
Zhang, X.6
-
94
-
-
84969752776
-
Characterizing strain variation in engineered E. coli using a multi-omics-based workflow
-
pmid:27211860
-
Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baidoo E, Wang G, et al. Characterizing strain variation in engineered E. coli using a multi-omics-based workflow. Cell systems. 2016;2(5):335–346. doi: 10.1016/j.cels.2016.04.004 pmid: 27211860
-
(2016)
Cell systems
, vol.2
, Issue.5
, pp. 335-346
-
-
Brunk, E.1
George, K.W.2
Alonso-Gutierrez, J.3
Thompson, M.4
Baidoo, E.5
Wang, G.6
-
95
-
-
85017208176
-
Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
-
Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson OE, Palsson BO, Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Nature Communications. 2017;7:46249.
-
(2017)
Nature Communications
, vol.7
, pp. 46249
-
-
Bordbar, A.1
Yurkovich, J.T.2
Paglia, G.3
Rolfsson, O.4
Sigurjónsson, O.E.5
Palsson, B.O.6
-
96
-
-
85058107207
-
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
-
pmid:30531987
-
Heckmann D, Lloyd CJ, Mih N, Ha Y, Zielinski DC, Haiman ZB, et al. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nature Communications. 2018;9(1):5252. doi: 10.1038/s41467-018-07652-6 pmid: 30531987
-
(2018)
Nature Communications
, vol.9
, Issue.1
, pp. 5252
-
-
Heckmann, D.1
Lloyd, C.J.2
Mih, N.3
Ha, Y.4
Zielinski, D.C.5
Haiman, Z.B.6
-
97
-
-
84988644290
-
Integrative analysis of human omics data using biomolecular networks
-
pmid:27510223
-
Robinson JL, Nielsen J, Integrative analysis of human omics data using biomolecular networks. Molecular BioSystems. 2016;12(10):2953–2964. doi: 10.1039/c6mb00476h pmid: 27510223
-
(2016)
Molecular BioSystems
, vol.12
, Issue.10
, pp. 2953-2964
-
-
Robinson, J.L.1
Nielsen, J.2
-
98
-
-
84940999709
-
Multiple sources of bias confound functional enrichment analysis of global-omics data
-
Timmons JA, Szkop KJ, Gallagher IJ, Multiple sources of bias confound functional enrichment analysis of global-omics data. Genome biology. 2015;16(1):186.
-
(2015)
Genome biology
, vol.16
, Issue.1
, pp. 186
-
-
Timmons, J.A.1
Szkop, K.J.2
Gallagher, I.J.3
-
99
-
-
84864843180
-
In silico method for modelling metabolism and gene product expression at genome scale
-
pmid:22760628
-
Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, et al. In silico method for modelling metabolism and gene product expression at genome scale. Nature communications. 2012;3:929. doi: 10.1038/ncomms1928 pmid: 22760628
-
(2012)
Nature communications
, vol.3
, pp. 929
-
-
Lerman, J.A.1
Hyduke, D.R.2
Latif, H.3
Portnoy, V.A.4
Lewis, N.E.5
Orth, J.D.6
-
100
-
-
85019116437
-
TRFBA: An algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data
-
Motamedian E, Mohammadi M, Shojaosadati SA, Heydari M, TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data. Bioinformatics. 2016;33(7):1057–1063.
-
(2016)
Bioinformatics
, vol.33
, Issue.7
, pp. 1057-1063
-
-
Motamedian, E.1
Mohammadi, M.2
Shojaosadati, S.A.3
Heydari, M.4
-
101
-
-
75149129569
-
A protocol for generating a high-quality genome-scale metabolic reconstruction
-
pmid:20057383
-
Thiele I, Palsson BØ, A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature protocols. 2010;5(1):93. doi: 10.1038/nprot.2009.203 pmid: 20057383
-
(2010)
Nature protocols
, vol.5
, Issue.1
, pp. 93
-
-
Thiele, I.1
Palsson, B.Ø.2
-
102
-
-
24144437385
-
The “omics” haystack: Defining sources of sample bias in expression profiling
-
pmid:16120944
-
Semmes OJ, The “omics” haystack: defining sources of sample bias in expression profiling. Clinical Chemistry. 2005;51(9):1571–1572. doi: 10.1373/clinchem.2005.053405 pmid: 16120944
-
(2005)
Clinical Chemistry
, vol.51
, Issue.9
, pp. 1571-1572
-
-
Semmes, O.J.1
-
103
-
-
85016060109
-
Why batch effects matter in omics data, and how to avoid them
-
pmid:28351613
-
Goh WWB, Wang W, Wong L, Why batch effects matter in omics data, and how to avoid them. Trends in biotechnology. 2017;35(6):498–507. doi: 10.1016/j.tibtech.2017.02.012 pmid: 28351613
-
(2017)
Trends in biotechnology
, vol.35
, Issue.6
, pp. 498-507
-
-
Goh, W.W.B.1
Wang, W.2
Wong, L.3
-
104
-
-
85045795883
-
The discrepancy between data for and expectations on metabolic models: How to match experiments and computational efforts to arrive at quantitative predictions?
-
Tummler K, Klipp E, The discrepancy between data for and expectations on metabolic models: How to match experiments and computational efforts to arrive at quantitative predictions?Current Opinion in Systems Biology. 2017;8:1–6.
-
(2017)
Current Opinion in Systems Biology
, vol.8
, pp. 1-6
-
-
Tummler, K.1
Klipp, E.2
-
105
-
-
0035125986
-
In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
-
pmid:11175725
-
Edwards JS, Ibarra RU, Palsson BO, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature biotechnology. 2001;19(2):125. doi: 10.1038/84379 pmid: 11175725
-
(2001)
Nature biotechnology
, vol.19
, Issue.2
, pp. 125
-
-
Edwards, J.S.1
Ibarra, R.U.2
Palsson, B.O.3
-
106
-
-
33751567092
-
Experimental and computational assessment of conditionally essential genes in Escherichia coli
-
pmid:17012394
-
Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, et al. Experimental and computational assessment of conditionally essential genes in Escherichia coli. Journal of bacteriology. 2006;188(23):8259–8271. doi: 10.1128/JB.00740-06 pmid: 17012394
-
(2006)
Journal of bacteriology
, vol.188
, Issue.23
, pp. 8259-8271
-
-
Joyce, A.R.1
Reed, J.L.2
White, A.3
Edwards, R.4
Osterman, A.5
Baba, T.6
-
107
-
-
77955141026
-
Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
-
Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Molecular systems biology. 2010;6(1):390.
-
(2010)
Molecular systems biology
, vol.6
, Issue.1
, pp. 390
-
-
Lewis, N.E.1
Hixson, K.K.2
Conrad, T.M.3
Lerman, J.A.4
Charusanti, P.5
Polpitiya, A.D.6
-
108
-
-
85007574032
-
Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion
-
pmid:27986597
-
King ZA, O'Brien EJ, Feist AM, Palsson BO, Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion. Metabolic engineering. 2017;39:220–227. doi: 10.1016/j.ymben.2016.12.004 pmid: 27986597
-
(2017)
Metabolic engineering
, vol.39
, pp. 220-227
-
-
King, Z.A.1
O'Brien, E.J.2
Feist, A.M.3
Palsson, B.O.4
-
109
-
-
84901306814
-
Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
-
pmid:24762745
-
Machado D, Herrgård M, Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol. 2014;10(4):e1003580. doi: 10.1371/journal.pcbi.1003580 pmid: 24762745
-
(2014)
PLoS Comput Biol
, vol.10
, Issue.4
-
-
Machado, D.1
Herrgård, M.2
-
110
-
-
45149111660
-
The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli
-
pmid:18536691
-
Feist AM, Palsson BØ, The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature biotechnology. 2008;26(6):659. doi: 10.1038/nbt1401 pmid: 18536691
-
(2008)
Nature biotechnology
, vol.26
, Issue.6
, pp. 659
-
-
Feist, A.M.1
Palsson, B.Ø.2
-
111
-
-
33751418710
-
Problems with the “omics
-
Lay JO, JrLiyanage R, Borgmann S, Wilkins CL, Problems with the “omics”. TrAC Trends in Analytical Chemistry. 2006;25(11):1046–1056.
-
(2006)
TrAC Trends in Analytical Chemistry
, vol.25
, Issue.11
, pp. 1046-1056
-
-
Lay, J.O.1
Liyanage, R.2
Borgmann, S.3
Wilkins, C.L.4
-
112
-
-
84864813894
-
Molecular signatures from omics data: From chaos to consensus
-
pmid:22528809
-
Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND, Molecular signatures from omics data: from chaos to consensus. Biotechnology journal. 2012;7(8):946–957. doi: 10.1002/biot.201100305 pmid: 22528809
-
(2012)
Biotechnology journal
, vol.7
, Issue.8
, pp. 946-957
-
-
Sung, J.1
Wang, Y.2
Chandrasekaran, S.3
Witten, D.M.4
Price, N.D.5
-
113
-
-
84920937371
-
Computational methods in metabolic engineering for strain design
-
pmid:25576846
-
Long MR, Ong WK, Reed JL, Computational methods in metabolic engineering for strain design. Current opinion in biotechnology. 2015;34:135–141. doi: 10.1016/j.copbio.2014.12.019 pmid: 25576846
-
(2015)
Current opinion in biotechnology
, vol.34
, pp. 135-141
-
-
Long, M.R.1
Ong, W.K.2
Reed, J.L.3
-
114
-
-
85030540936
-
The Impact of Systems Biology on Bioprocessing
-
pmid:28987922
-
Campbell K, Xia J, Nielsen J, The Impact of Systems Biology on Bioprocessing. Trends in Biotechnology. 2017;35(12):1156–1168. doi: 10.1016/j.tibtech.2017.08.011 pmid: 28987922
-
(2017)
Trends in Biotechnology
, vol.35
, Issue.12
, pp. 1156-1168
-
-
Campbell, K.1
Xia, J.2
Nielsen, J.3
-
115
-
-
80054969621
-
A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology
-
Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, Famili I, A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC systems biology. 2011;5(1):180.
-
(2011)
BMC systems biology
, vol.5
, Issue.1
, pp. 180
-
-
Bordbar, A.1
Feist, A.M.2
Usaite-Black, R.3
Woodcock, J.4
Palsson, B.O.5
Famili, I.6
-
116
-
-
85062825440
-
Integration of single-cell RNA-seq data into population models to characterize cancer metabolism
-
pmid:30818329
-
Damiani C, Maspero D, Di Filippo M, Colombo R, Pescini D, Graudenzi A, et al. Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLoS Comput Biol. 2019;15(2):e1006733. doi: 10.1371/journal.pcbi.1006733 pmid: 30818329
-
(2019)
PLoS Comput Biol
, vol.15
, Issue.2
-
-
Damiani, C.1
Maspero, D.2
Di Filippo, M.3
Colombo, R.4
Pescini, D.5
Graudenzi, A.6
-
117
-
-
85008156797
-
Disaggregating asthma: Big investigation versus big data
-
pmid:27871876
-
Belgrave D, Henderson J, Simpson A, Buchan I, Bishop C, Custovic A, Disaggregating asthma: Big investigation versus big data. Journal of Allergy and Clinical Immunology. 2017;139(2):400–407. doi: 10.1016/j.jaci.2016.11.003 pmid: 27871876
-
(2017)
Journal of Allergy and Clinical Immunology
, vol.139
, Issue.2
, pp. 400-407
-
-
Belgrave, D.1
Henderson, J.2
Simpson, A.3
Buchan, I.4
Bishop, C.5
Custovic, A.6
-
118
-
-
85051792338
-
The Mythos of Model Interpretability
-
Lipton ZC, The Mythos of Model Interpretability. Queue. 2018;16(3):30.
-
(2018)
Queue
, vol.16
, Issue.3
, pp. 30
-
-
Lipton, Z.C.1
|