메뉴 건너뛰기




Volumn 12, Issue 112, 2015, Pages

Methods for biological data integration: Perspectives and challenges

Author keywords

Biological networks; Data fusion; Heterogeneous data integration; Non negative matrix factorization; Omics data; Systems biology

Indexed keywords

COMPLEX NETWORKS; DATA FUSION; FACTORIZATION; MATRIX ALGEBRA;

EID: 84948703087     PISSN: 17425689     EISSN: 17425662     Source Type: Journal    
DOI: 10.1098/rsif.2015.0571     Document Type: Review
Times cited : (208)

References (195)
  • 1
    • 0033974688 scopus 로고    scopus 로고
    • Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins
    • Ito T et al. 2000 Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl Acad. Sci. USA 97, 1143-1147. (doi:10.1073/pnas.97.3.1143)
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 1143-1147
    • Ito, T.1
  • 2
    • 0034628508 scopus 로고    scopus 로고
    • A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
    • Uetz P et al. 2000 A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627. (doi:10.1038/35001009)
    • (2000) Nature , vol.403 , pp. 623-627
    • Uetz, P.1
  • 3
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of Drosophila melanogaster
    • Giot L et al. 2003 A protein interaction map of Drosophila melanogaster. Science 302, 1727-1736. (doi:10.1126/science.1090289)
    • (2003) Science , vol.302 , pp. 1727-1736
    • Giot, L.1
  • 4
    • 9144264169 scopus 로고    scopus 로고
    • A map of the interactome network of the metazoan C. Elegans
    • Li S et al. 2004 A map of the interactome network of the metazoan C. elegans. Science 303, 540-543. (doi:10.1126/science.1091403)
    • (2004) Science , vol.303 , pp. 540-543
    • Li, S.1
  • 5
    • 25144498379 scopus 로고    scopus 로고
    • A human protein-protein interaction network: A resource for annotating the proteome
    • Stelzl U et al. 2005 A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957-968. (doi:10.1016/j.cell. 2005.08.029)
    • (2005) Cell , vol.122 , pp. 957-968
    • Stelzl, U.1
  • 6
    • 58149218155 scopus 로고    scopus 로고
    • Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network
    • Simonis N et al. 2009 Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat. Methods 6, 47-54. (doi:10.1038/nmeth.1279)
    • (2009) Nat. Methods , vol.6 , pp. 47-54
    • Simonis, N.1
  • 7
    • 84857780876 scopus 로고    scopus 로고
    • Evidence for network evolution in an Arabidopsis interactome map
    • Consortium AIM. 2011 Evidence for network evolution in an Arabidopsis interactome map. Science 333, 601-607. (doi:10.1126/science.1203877)
    • (2011) Science , vol.333 , pp. 601-607
    • Consortium AIM1
  • 8
    • 33644555054 scopus 로고    scopus 로고
    • Proteome survey reveals modularity of the yeast cell machinery
    • Gavin A et al. 2006 Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631-636. (doi:10.1038/nature04532)
    • (2006) Nature , vol.440 , pp. 631-636
    • Gavin, A.1
  • 9
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
    • Krogan N et al. 2006 Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637-643. (doi:10.1038/nature04670)
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.1
  • 10
    • 77953808473 scopus 로고    scopus 로고
    • Next-generation genomics: An integrative approach
    • Hawkins RD, Hon GC, Ren B. 2010 Next-generation genomics: an integrative approach. Nat. Rev. Genet. 11, 476-486. (doi:10.1038/nrg2795)
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 476-486
    • Hawkins, R.D.1    Hon, G.C.2    Ren, B.3
  • 11
    • 79956314887 scopus 로고    scopus 로고
    • Genotype and SNP calling from next-generation sequencing data
    • Nielsen R, Paul JS, Albrechtsen A, Song YS. 2011 Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443-451. (doi:10.1038/nrg2986)
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 443-451
    • Nielsen, R.1    Paul, J.S.2    Albrechtsen, A.3    Song, Y.S.4
  • 12
    • 13144306071 scopus 로고    scopus 로고
    • Genome-wide association studies for common diseases and complex traits
    • Hirschhorn JN, Daly MJ. 2005 Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95-108. (doi:10. 1038/nrg1521)
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 95-108
    • Hirschhorn, J.N.1    Daly, M.J.2
  • 13
    • 33845340501 scopus 로고    scopus 로고
    • A genome-wide association study identifies IL23R as an inflammatory bowel disease gene
    • Duerr RH et al. 2006 A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461-1463. (doi:10. 1126/science.1135245)
    • (2006) Science , vol.314 , pp. 1461-1463
    • Duerr, R.H.1
  • 14
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush J. 2001 Computational analysis of microarray data. Nat. Rev. Genet. 2, 418-427. (doi:10.1038/35076576)
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 15
    • 0036578644 scopus 로고    scopus 로고
    • GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways
    • Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. 2002 GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31, 19-20. (doi:10.1038/ng0502-19)
    • (2002) Nat. Genet. , vol.31 , pp. 19-20
    • Dahlquist, K.D.1    Salomonis, N.2    Vranizan, K.3    Lawlor, S.C.4    Conklin, B.R.5
  • 16
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008 RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509-1517. (doi:10.1101/gr.079558.108)
    • (2008) Genome Res. , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 17
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-seq
    • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008 Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621-628. (doi:10.1038/nmeth.1226)
    • (2008) Nat. Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3    Schaeffer, L.4    Wold, B.5
  • 18
    • 57749195712 scopus 로고    scopus 로고
    • RNA-seq: A revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. 2009 RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57-63. (doi:10.1038/nrg2484)
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 19
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: Integrating omics data sets
    • Joyce AR, Palsson BO. 2006 The model organism as a system: integrating omics data sets. Nat. Rev. Mol. Cell Biol. 7, 198-210. (doi:10.1038/nrm1857)
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 198-210
    • Joyce, A.R.1    Palsson, B.O.2
  • 20
    • 85005877161 scopus 로고    scopus 로고
    • Data integration in the era of omics: Current and future challenges
    • Gomez-Cabrero D et al. 2014 Data integration in the era of omics: current and future challenges. BMC Syst. Biol. 8, I1. (doi:10.1186/1752-0509-8-S2-I1)
    • (2014) BMC Syst. Biol. , vol.8 , pp. 11
    • Gomez-Cabrero, D.1
  • 21
    • 79952674000 scopus 로고    scopus 로고
    • Interactome networks and human disease
    • Vidal M, Cusick ME, Barabási A-L. 2011 Interactome networks and human disease. Cell 144, 986-998. (doi:10.1016/j.cell.2011.02.016)
    • (2011) Cell , vol.144 , pp. 986-998
    • Vidal, M.1    Cusick, M.E.2    Barabási, A.-L.3
  • 22
    • 33748798478 scopus 로고    scopus 로고
    • Graph-based methods for analysing networks in cell biology
    • Aittokallio T, Schwikowski B. 2006 Graph-based methods for analysing networks in cell biology. Brief Bioinformatics 7, 243-255. (doi:10.1093/bib/bbl022)
    • (2006) Brief Bioinformatics , vol.7 , pp. 243-255
    • Aittokallio, T.1    Schwikowski, B.2
  • 23
    • 78651455332 scopus 로고    scopus 로고
    • Protein-protein interactions: Making sense of networks via graph-theoretic modeling
    • Przulj N. 2011 Protein-protein interactions: making sense of networks via graph-theoretic modeling. BioEssays 33, 115-123. (doi:10.1002/bies. 201000044)
    • (2011) BioEssays , vol.33 , pp. 115-123
    • Przulj, N.1
  • 24
    • 38049079362 scopus 로고    scopus 로고
    • Protein-protein interaction networks and biology-what's the connection?
    • Hakes L, Pinney JW, Robertson DL, Lovell SC. 2008 Protein-protein interaction networks and biology-what's the connection? Nat. Biotechnol. 26, 69-72. (doi:10.1038/nbt0108-69)
    • (2008) Nat. Biotechnol. , vol.26 , pp. 69-72
    • Hakes, L.1    Pinney, J.W.2    Robertson, D.L.3    Lovell, S.C.4
  • 25
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong AHY et al. 2004 Global mapping of the yeast genetic interaction network. Science 303, 808-813. (doi:10.1126/science.1091317)
    • (2004) Science , vol.303 , pp. 808-813
    • Tong, A.H.Y.1
  • 27
    • 75649111192 scopus 로고    scopus 로고
    • The genetic landscape of a cell
    • Costanzo M et al. 2010 The genetic landscape of a cell. Science 327, 425-431. (doi:10.1126/science. 1180823)
    • (2010) Science , vol.327 , pp. 425-431
    • Costanzo, M.1
  • 28
    • 18144413962 scopus 로고    scopus 로고
    • Scale-rich metabolic networks
    • Tanaka R. 2005 Scale-rich metabolic networks. Phys. Rev. Lett. 94, 168101. (doi:10.1103/PhysRevLett.94.168101)
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 168101
    • Tanaka, R.1
  • 29
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L. 2002 Hierarchical organization of modularity in metabolic networks. Science 297, 1551-1555. (doi:10.1126/science.1073374)
    • (2002) Science , vol.297 , pp. 1551-1555
    • Ravasz, E.1    Somera, A.L.2    Mongru, D.A.3    Oltvai, Z.N.4    Barabási, A.-L.5
  • 30
    • 0037316239 scopus 로고    scopus 로고
    • Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms
    • Ma H, Zeng A-P. 2003 Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19, 270-277. (doi:10.1093/bioinformatics/19.2.270)
    • (2003) Bioinformatics , vol.19 , pp. 270-277
    • Ma, H.1    Zeng, A.-P.2
  • 31
    • 0035823264 scopus 로고    scopus 로고
    • The small world inside large metabolic networks
    • Wagner A, Fell DA. 2001 The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268, 1803-1810. (doi:10.1098/rspb.2001.1711)
    • (2001) Proc. R. Soc. Lond. B , vol.268 , pp. 1803-1810
    • Wagner, A.1    Fell, D.A.2
  • 32
    • 58049198442 scopus 로고    scopus 로고
    • Human gene coexpression landscape: Confident network derived from tissue transcriptomic profiles
    • Prieto C, Risueo A, Fontanillo C, De Las Rivas J. 2008 Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS ONE 3, e3911. (doi:10. 1371/journal.pone.0003911)
    • (2008) PLoS ONE , vol.3 , pp. e3911
    • Prieto, C.1    Risueo, A.2    Fontanillo, C.3    De Las Rivas, J.4
  • 33
    • 0141993704 scopus 로고    scopus 로고
    • A genecoexpression network for global discovery of conserved genetic modules
    • Stuart JM, Segal E, Koller D, Kim SK. 2003 A genecoexpression network for global discovery of conserved genetic modules. Science 302, 249-255. (doi:10.1126/science.1087447)
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 34
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. 2008 GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9, S4. (doi:10.1186/gb-2008-9-s1-s4)
    • (2008) Genome Biol. , vol.9 , pp. S4
    • Mostafavi, S.1    Ray, D.2    Warde-Farley, D.3    Grouios, C.4    Morris, Q.5
  • 35
    • 76249105279 scopus 로고    scopus 로고
    • Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network
    • Linghu B, Snitkin E, Hu Z, Xia Y, DeLisi C. 2009 Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91. (doi:10.1186/gb-2009-10-9-r91)
    • (2009) Genome Biol. , vol.10 , pp. R91
    • Linghu, B.1    Snitkin, E.2    Hu, Z.3    Xia, Y.4    DeLisi, C.5
  • 36
    • 84859436530 scopus 로고    scopus 로고
    • NCBI reference sequences (RefSeq): Current status, new features and genome annotation policy
    • Pruitt KD, Tatusova T, Brown GR, Maglott DR. 2012 NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130-D135. (doi:10.1093/nar/gkr1079)
    • (2012) Nucleic Acids Res. , vol.40 , pp. D130-D135
    • Pruitt, K.D.1    Tatusova, T.2    Brown, G.R.3    Maglott, D.R.4
  • 37
    • 33847176604 scopus 로고    scopus 로고
    • A genome-wide association study identifies novel risk loci for type 2 diabetes
    • Sladek R et al. 2007 A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881-885. (doi:10.1038/nature05616)
    • (2007) Nature , vol.445 , pp. 881-885
    • Sladek, R.1
  • 38
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    • The Wellcome Trust Case Control Consortium. 2007 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678. (doi:10.1038/nature05911)
    • (2007) Nature , vol.447 , pp. 661-678
    • The Wellcome Trust Case Control Consortium1
  • 39
    • 84884994218 scopus 로고    scopus 로고
    • The cancer genome atlas pan-cancer analysis project
    • Weinstein JN et al. 2013 The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113-1120. (doi:10.1038/ng.2764)
    • (2013) Nat. Genet. , vol.45 , pp. 1113-1120
    • Weinstein, J.N.1
  • 40
    • 84923642484 scopus 로고    scopus 로고
    • A copy number variation map of the human genome
    • Zarrei M, Merico D, Scherer SW. 2015 A copy number variation map of the human genome. Nat. Rev. Genet. 16, 172-183. (doi:10.1038/nrg3871)
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 172-183
    • Zarrei, M.1    Merico, D.2    Scherer, S.W.3
  • 41
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner M et al. 2000 Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25-29. (doi:10.1038/75556)
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 45
    • 84876467333 scopus 로고    scopus 로고
    • The comparative toxicogenomics database: Update 2013
    • Davis AP et al. 2013 The comparative toxicogenomics database: update 2013. Nucleic Acids Res. 41, D1104-D1114. (doi:10.1093/nar/gks994)
    • (2013) Nucleic Acids Res. , vol.41 , pp. D1104-D1114
    • Davis, A.P.1
  • 46
    • 54949108677 scopus 로고    scopus 로고
    • PubChem: Integrated platform of small molecules and biological activities
    • Bolton EE, Wang Y, Thiessen PA, Bryant SH. 2008 PubChem: integrated platform of small molecules and biological activities. Annu. Rep. Comput. Chem. 4, 217-241. (doi:10.1016/S1574-1400(08)00012-1)
    • (2008) Annu. Rep. Comput. Chem. , vol.4 , pp. 217-241
    • Bolton, E.E.1    Wang, Y.2    Thiessen, P.A.3    Bryant, S.H.4
  • 47
    • 37849020261 scopus 로고    scopus 로고
    • Network inference, analysis, and modeling in systems biology
    • Albert R. 2007 Network inference, analysis, and modeling in systems biology. Plant Cell 19, 3327-3338. (doi:10.1105/tpc.107.054700)
    • (2007) Plant Cell , vol.19 , pp. 3327-3338
    • Albert, R.1
  • 48
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • Lee TI et al. 2002 Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799-804. (doi:10.1126/science.1075090)
    • (2002) Science , vol.298 , pp. 799-804
    • Lee, T.I.1
  • 49
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models - A review
    • Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R. 2009 Gene regulatory network inference: data integration in dynamic models- A review. Biosystems 96, 86-103. (doi:10.1016/j.biosystems. 2008.12.004)
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    Van Someren, E.4    Guthke, R.5
  • 50
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee I, Date SV, Adai AT, Marcotte EM. 2004 A probabilistic functional network of yeast genes. Science 306, 1555-1558. (doi:10.1126/science. 1099511)
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 53
    • 84922097337 scopus 로고    scopus 로고
    • Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks
    • Ma X, Chen T, Sun F. 2013 Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks. Brief. Bioinformatics 15, 685-698. (doi:10.1093/bib/bbt041)
    • (2013) Brief. Bioinformatics , vol.15 , pp. 685-698
    • Ma, X.1    Chen, T.2    Sun, F.3
  • 54
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D. 2003 A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl Acad. Sci. USA 100, 8348-8353. (doi:10. 1073/pnas.0832373100)
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 8348-8353
    • Troyanskaya, O.G.1    Dolinski, K.2    Owen, A.B.3    Altman, R.B.4    Botstein, D.5
  • 55
    • 84907027309 scopus 로고    scopus 로고
    • Integration of molecular network data reconstruct gene ontology
    • Gligorijević V, Janjić V, Przulj N. 2014 Integration of molecular network data reconstruct gene ontology. Bioinformatics 30, i594-i600. (doi:10.1093/bioinformatics/btu470)
    • (2014) Bioinformatics , vol.30 , pp. i594-i600
    • Gligorijević, V.1    Janjić, V.2    Przulj, N.3
  • 56
    • 55449131589 scopus 로고    scopus 로고
    • Probabilistic protein function prediction from heterogeneous genome-wide data
    • Nariai N, Kolaczyk ED, Kasif S. 2007 Probabilistic protein function prediction from heterogeneous genome-wide data. PLoS ONE 2, e337. (doi:10. 1371/journal.pone.0000337)
    • (2007) PLoS ONE , vol.2 , pp. e337
    • Nariai, N.1    Kolaczyk, E.D.2    Kasif, S.3
  • 57
    • 84876235880 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix trifactorization
    • Wang H, Huang H, Ding C, Nie F. 2013 Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix trifactorization. J. Comput. Biol. 20, 344-358. (doi:10. 1089/cmb.2012.0273)
    • (2013) J. Comput. Biol. , vol.20 , pp. 344-358
    • Wang, H.1    Huang, H.2    Ding, C.3    Nie, F.4
  • 58
    • 41549139527 scopus 로고    scopus 로고
    • Walking the interactome for prioritization of candidate disease genes
    • Köhler S, Bauer S, Horn D, Robinson PN. 2008 Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82, 949-958. (doi:10.1016/j.ajhg.2008.02.013)
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 949-958
    • Köhler, S.1    Bauer, S.2    Horn, D.3    Robinson, P.N.4
  • 59
    • 84876917161 scopus 로고    scopus 로고
    • Chapter 15: Disease gene prioritization
    • Bromberg Y. 2013 Chapter 15: disease gene prioritization. PLoS Comput. Biol. 9, e1002902. (doi:10.1371/journal.pcbi.1002902)
    • (2013) PLoS Comput. Biol. , vol.9
    • Bromberg, Y.1
  • 60
    • 84867652286 scopus 로고    scopus 로고
    • Co-clustering phenomegenome for phenotype classification and disease gene discovery
    • Hwang T, Atluri G, Xie M, Dey S, Hong C, Kumar V, Kuang R. 2012 Co-clustering phenomegenome for phenotype classification and disease gene discovery. Nucleic Acids Res. 40, e146. (doi:10.1093/nar/gks615)
    • (2012) Nucleic Acids Res. , vol.40 , pp. e146
    • Hwang, T.1    Atluri, G.2    Xie, M.3    Dey, S.4    Hong, C.5    Kumar, V.6    Kuang, R.7
  • 61
    • 84889679014 scopus 로고    scopus 로고
    • Discovering disease-disease associations by fusing systemslevel molecular data
    • Zitnik M, Janjić V, Chris L et al. 2013 Discovering disease-disease associations by fusing systemslevel molecular data. Sci. Rep. 3, 3202. (doi:10. 1038/srep03202)
    • (2013) Sci. Rep. , vol.3 , pp. 3202
    • Zitnik, M.1    Janjić, V.2    Chris, L.3
  • 62
    • 4344668661 scopus 로고    scopus 로고
    • Drug repositioning: Identifying and developing new uses for existing drugs
    • Ashburn TT, Thor KB. 2004 Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673-683. (doi:10. 1038/nrd1468)
    • (2004) Nat. Rev. Drug Discov. , vol.3 , pp. 673-683
    • Ashburn, T.T.1    Thor, K.B.2
  • 64
    • 77954827460 scopus 로고    scopus 로고
    • The path to personalized medicine
    • Hamburg MA, Collins FS. 2010 The path to personalized medicine. N. Engl. J. Med. 363, 301-304. (doi:10.1056/NEJMp1006304)
    • (2010) N. Engl. J. Med. , vol.363 , pp. 301-304
    • Hamburg, M.A.1    Collins, F.S.2
  • 65
    • 84927563823 scopus 로고    scopus 로고
    • The foundation of precision medicine: Integration of electronic health records with genomics through basic, clinical, and translational research
    • Ritchie MD, de Andrade M, Kuivaniemi H. 2015 The foundation of precision medicine: integration of electronic health records with genomics through basic, clinical, and translational research. Front. Genet. 6, 1-4. (doi:10.3389/fgene.2015.00104)
    • (2015) Front. Genet. , vol.6 , pp. 1-4
    • Ritchie, M.D.1    De Andrade, M.2    Kuivaniemi, H.3
  • 68
    • 79960914062 scopus 로고    scopus 로고
    • Exploring and exploiting disease interactions from multirelational gene and phenotype networks
    • Davis DA, Chawla NV. 2011 Exploring and exploiting disease interactions from multirelational gene and phenotype networks. PLoS ONE 6, e22670. (doi:10. 1371/journal.pone.0022670)
    • (2011) PLoS ONE , vol.6
    • Davis, D.A.1    Chawla, N.V.2
  • 69
    • 80052420110 scopus 로고    scopus 로고
    • A computational method based on the integration of heterogeneous networks for predicting disease-gene associations
    • Guo X, Gao L, Wei C, Yang X, Zhao Y, Dong A. 2011 A computational method based on the integration of heterogeneous networks for predicting disease-gene associations. PLoS ONE 6, e24171. (doi:10. 1371/journal.pone.0024171)
    • (2011) PLoS ONE , vol.6
    • Guo, X.1    Gao, L.2    Wei, C.3    Yang, X.4    Zhao, Y.5    Dong, A.6
  • 70
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via networkbased inference
    • Cheng F et al. 2012 Prediction of drug-target interactions and drug repositioning via networkbased inference. PLoS Comput. Biol. 8, e1002503. (doi:10.1371/journal.pcbi.1002503)
    • (2012) PLoS Comput. Biol. , vol.8
    • Cheng, F.1
  • 72
    • 76749134818 scopus 로고    scopus 로고
    • Associating genes and protein complexes with disease via network propagation
    • Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. 2010 Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6, e1000641. (doi:10.1371/journal.pcbi.1000641)
    • (2010) PLoS Comput. Biol. , vol.6
    • Vanunu, O.1    Magger, O.2    Ruppin, E.3    Shlomi, T.4    Sharan, R.5
  • 73
    • 84887924060 scopus 로고    scopus 로고
    • Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation
    • Huang Y-F, Yeh H-Y, Soo V-W. 2013 Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation. BMC Med. Genomics 6, 1-14. (doi:10.1186/1755-8794-6-S3-S4)
    • (2013) BMC Med. Genomics , vol.6 , pp. 1-14
    • Huang, Y.-F.1    Yeh, H.-Y.2    Soo, V.-W.3
  • 75
    • 77950621240 scopus 로고    scopus 로고
    • Data integration and analysis of biological networks
    • Kim TY, Kim HU, Lee SY. 2010 Data integration and analysis of biological networks. Curr. Opin. Biotechnol. 21, 78-84. (doi:10.1016/j.copbio.2010. 01.003)
    • (2010) Curr. Opin. Biotechnol. , vol.21 , pp. 78-84
    • Kim, T.Y.1    Kim, H.U.2    Lee, S.Y.3
  • 76
    • 84865077624 scopus 로고    scopus 로고
    • Network biology methods integrating biological data for translational science
    • Bebek G, Koyutuerk M, Price ND, Chance MR. 2012 Network biology methods integrating biological data for translational science. Brief. Bioinformatics 13, 446-459. (doi:10.1093/bib/bbr075)
    • (2012) Brief. Bioinformatics , vol.13 , pp. 446-459
    • Bebek, G.1    Koyutuerk, M.2    Price, N.D.3    Chance, M.R.4
  • 79
    • 84872972701 scopus 로고    scopus 로고
    • Kernel methods in bioinformatics
    • (eds HH-S Lu, B Schlkopf, H Zhao), Springer Handbooks of Computational Statistics, Berlin, Germany: Springer
    • Borgwardt K. 2011 Kernel methods in bioinformatics. In Handbook of statistical bioinformatics (eds HH-S Lu, B Schlkopf, H Zhao), Springer Handbooks of Computational Statistics, pp. 317-334. Berlin, Germany: Springer.
    • (2011) Handbook of Statistical Bioinformatics , pp. 317-334
    • Borgwardt, K.1
  • 80
    • 34548459831 scopus 로고    scopus 로고
    • A primer on learning in Bayesian networks for computational biology
    • Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. 2007 A primer on learning in Bayesian networks for computational biology. PLoS Comput. Biol. 3, e129. (doi:10.1371/journal.pcbi.0030129)
    • (2007) PLoS Comput. Biol. , vol.3 , pp. e129
    • Needham, C.J.1    Bradford, J.R.2    Bulpitt, A.J.3    Westhead, D.R.4
  • 81
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • Devarajan K. 2008 Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol. 4, e1000029. (doi:10. 1371/journal.pcbi.1000029)
    • (2008) PLoS Comput. Biol. , vol.4
    • Devarajan, K.1
  • 82
    • 84948694494 scopus 로고    scopus 로고
    • Computational methods for integration of biological data
    • (eds N Bodiroga-Vukobrat, K Pavelic, D Rukavina, GG Sander). Berlin, Germany: Springer
    • Gligorijević V, Przulj N. 2015 Computational methods for integration of biological data. In Personalised medicine: a new medical and social challenge (eds N Bodiroga-Vukobrat, K Pavelic, D Rukavina, GG Sander). Berlin, Germany: Springer.
    • (2015) Personalised Medicine: A New Medical and Social Challenge
    • Gligorijević, V.1    Przulj, N.2
  • 84
    • 84884397652 scopus 로고    scopus 로고
    • Integrative approaches for finding modular structure in biological networks
    • Mitra K, Carvunis A-R, Ramesh SK, Ideker T. 2013 Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14, 719-732. (doi:10.1038/nrg3552)
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 719-732
    • Mitra, K.1    Carvunis, A.-R.2    Ramesh, S.K.3    Ideker, T.4
  • 85
    • 84924935721 scopus 로고    scopus 로고
    • Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
    • Jha A et al. 2015 Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419-430. (doi:10.1016/j.immuni. 2015.02.005)
    • (2015) Immunity , vol.42 , pp. 419-430
    • Jha, A.1
  • 86
    • 28444498336 scopus 로고    scopus 로고
    • A data integration methodology for systems biology
    • Hwang D et al. 2005 A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA 102, 17 296-17 301. (doi:10.1073/pnas. 0508647102)
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 17296-17301
    • Hwang, D.1
  • 88
    • 77954826067 scopus 로고    scopus 로고
    • New York, NY: Oxford University Press, Inc
    • Newman M. 2010 Networks: an introduction. New York, NY: Oxford University Press, Inc.
    • (2010) Networks: An Introduction
    • Newman, M.1
  • 89
    • 14744269887 scopus 로고    scopus 로고
    • The Laplacian spectrum of a graph
    • Das K. 2004 The Laplacian spectrum of a graph. Comput. Math. Appl. 48, 715-724. (doi:10.1016/j. camwa.2004.05.005)
    • (2004) Comput. Math. Appl. , vol.48 , pp. 715-724
    • Das, K.1
  • 90
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin M, Niyogi P, Sindhwani V. 2006 Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 91
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • Albert R. 2005 Scale-free networks in cell biology. J. Cell Sci. 118, 4947-4957. (doi:10.1242/jcs.02714)
    • (2005) J. Cell Sci. , vol.118 , pp. 4947-4957
    • Albert, R.1
  • 92
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • Barabasi A-L, Oltvai ZN. 2004 Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101-113. (doi:10.1038/nrg1272)
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 101-113
    • Barabasi, A.-L.1    Oltvai, Z.N.2
  • 93
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: Scale-free or geometric?
    • Przulj N, Corneil DG, Jurisica I. 2004 Modeling interactome: scale-free or geometric? Bioinformatics 20, 3508-3515. (doi:10.1093/bioinformatics/bth436)
    • (2004) Bioinformatics , vol.20 , pp. 3508-3515
    • Przulj, N.1    Corneil, D.G.2    Jurisica, I.3
  • 94
    • 41949139082 scopus 로고    scopus 로고
    • Fitting a geometric graph to a protein-protein interaction network
    • Higham DJ, Rasajski M, Przulj N. 2008 Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 24, 1093-1099. (doi:10. 1093/bioinformatics/btn079)
    • (2008) Bioinformatics , vol.24 , pp. 1093-1099
    • Higham, D.J.1    Rasajski, M.2    Przulj, N.3
  • 96
    • 84874947727 scopus 로고    scopus 로고
    • The BioGRID interaction database
    • Chatr-Aryamontri A et al. 2013 The BioGRID interaction database. Nucleic Acids Res. 41, D816-D823. (doi:10.1093/nar/gks1158)
    • (2013) Nucleic Acids Res. , vol.41 , pp. D816-D823
    • Chatr-Aryamontri, A.1
  • 97
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012 KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109-D114. (doi:10.1093/nar/gkr988)
    • (2012) Nucleic Acids Res. , vol.40 , pp. D109-D114
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Furumichi, M.4    Tanabe, M.5
  • 98
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3.0: A comprehensive resource for 'omics' research on drugs
    • Knox C et al. 2011 DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 39(Suppl. 1), D1035-D1041. (doi:10.1093/nar/gkq1126)
    • (2011) Nucleic Acids Res. , vol.39 , pp. D1035-D1041
    • Knox, C.1
  • 99
    • 84861023442 scopus 로고    scopus 로고
    • GWASdb: A database for human genetic variants identified by genome-wide association studies
    • Li MJ et al. 2012 GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 40, D1047-D1054. (doi:10.1093/nar/gkr1182)
    • (2012) Nucleic Acids Res. , vol.40 , pp. D1047-D1054
    • Li, M.J.1
  • 100
    • 84890107642 scopus 로고    scopus 로고
    • Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data
    • Denny JC et al. 2013 Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102-1111. (doi:10.1038/nbt.2749)
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1102-1111
    • Denny, J.C.1
  • 101
    • 33846064113 scopus 로고    scopus 로고
    • NCBI GEO: Mining tens of millions of expression profiles database and tools update
    • Barrett T et al. 2007 NCBI GEO: mining tens of millions of expression profiles database and tools update. Nucleic Acids Res. 35(Suppl. 1), D760-D765. (doi:10.1093/nar/gkl887)
    • (2007) Nucleic Acids Res. , vol.35 , pp. D760-D765
    • Barrett, T.1
  • 102
    • 13444249955 scopus 로고    scopus 로고
    • ArrayExpress - A public repository for microarray gene expression data at the EBI
    • Parkinson H et al. 2005 ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 33(Suppl. 1), D553-D555. (doi:10.1093/nar/gki056)
    • (2005) Nucleic Acids Res. , vol.33 , pp. D553-D555
    • Parkinson, H.1
  • 103
    • 58149199563 scopus 로고    scopus 로고
    • Implementation of GenePattern within the Stanford microarray database
    • Hubble J et al. 2009 Implementation of GenePattern within the Stanford microarray database. Nucleic Acids Res. 37, D898-D901. (doi:10.1093/nar/gkn786)
    • (2009) Nucleic Acids Res. , vol.37 , pp. D898-D901
    • Hubble, J.1
  • 104
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs
    • Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. 2010 A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6, 343. (doi:10. 1038/msb.2009.98)
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 343
    • Kuhn, M.1    Campillos, M.2    Letunic, I.3    Jensen, L.J.4    Bork, P.5
  • 105
    • 0028926048 scopus 로고
    • Protein-protein interactions: Methods for detection and analysis
    • Phizicky EM, Fields S. 1995 Protein-protein interactions: methods for detection and analysis. Microbiol. Rev. 59, 94-123.
    • (1995) Microbiol. Rev. , vol.59 , pp. 94-123
    • Phizicky, E.M.1    Fields, S.2
  • 106
    • 0034609791 scopus 로고    scopus 로고
    • The large-scale organization of metabolic networks
    • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. 2000 The large-scale organization of metabolic networks. Nature 407, 651-654. (doi:10.1038/35036627)
    • (2000) Nature , vol.407 , pp. 651-654
    • Jeong, H.1    Tombor, B.2    Albert, R.3    Oltvai, Z.N.4    Barabási, A.L.5
  • 107
    • 84870565377 scopus 로고    scopus 로고
    • Computational reconstruction of metabolic networks from Kegg
    • (eds B Reisfeld, AN Mayeno), New York, NY: Humana Press
    • Zhou T. 2013 Computational reconstruction of metabolic networks from Kegg. In Computational toxicology, vol. 930 (eds B Reisfeld, AN Mayeno), pp. 235-249. New York, NY: Humana Press.
    • (2013) Computational Toxicology , vol.930 , pp. 235-249
    • Zhou, T.1
  • 109
    • 10744226222 scopus 로고    scopus 로고
    • Computational discovery of gene modules and regulatory networks
    • Ziv ZB et al. 2003 Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21, 1337-1342. (doi:10.1038/nbt890)
    • (2003) Nat. Biotechnol. , vol.21 , pp. 1337-1342
    • Ziv, Z.B.1
  • 110
    • 0036080361 scopus 로고    scopus 로고
    • Adaptive quality-based clustering of gene expression profiles
    • De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau Y. 2002 Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18, 735-746. (doi:10.1093/bioinformatics/18.5.735)
    • (2002) Bioinformatics , vol.18 , pp. 735-746
    • De Smet, F.1    Mathys, J.2    Marchal, K.3    Thijs, G.4    De Moor, B.5    Moreau, Y.6
  • 111
    • 38549168494 scopus 로고    scopus 로고
    • Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory
    • Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson D, Zhou J. 2007 Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics 8, 299. (doi:10.1186/1471-2105-8-299)
    • (2007) BMC Bioinformatics , vol.8 , pp. 299
    • Luo, F.1    Yang, Y.2    Zhong, J.3    Gao, H.4    Khan, L.5    Thompson, D.6    Zhou, J.7
  • 112
    • 54949156075 scopus 로고    scopus 로고
    • Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks
    • Reverter A, Chan EK. 2008 Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24, 2491-2497. (doi:10. 1093/bioinformatics/btn482)
    • (2008) Bioinformatics , vol.24 , pp. 2491-2497
    • Reverter, A.1    Chan, E.K.2
  • 113
    • 11844293410 scopus 로고    scopus 로고
    • Partial correlation and conditional correlation as measures of conditional independence
    • Baba K, Shibata R, Sibuya M. 2004 Partial correlation and conditional correlation as measures of conditional independence. Aust. N.Z. J. Stat. 46, 657-664. (doi:10.1111/j.1467-842X.2004.00360.x)
    • (2004) Aust. N.Z. J. Stat. , vol.46 , pp. 657-664
    • Baba, K.1    Shibata, R.2    Sibuya, M.3
  • 116
    • 1042265247 scopus 로고    scopus 로고
    • Approaches to measure chemical similarity- A review
    • Nikolova N, Jaworska J. 2003 Approaches to measure chemical similarity- A review. QSAR Combin. Sci. 22, 1006-1026. (doi:10.1002/qsar. 200330831)
    • (2003) QSAR Combin. Sci. , vol.22 , pp. 1006-1026
    • Nikolova, N.1    Jaworska, J.2
  • 118
    • 84864278347 scopus 로고    scopus 로고
    • Using sequence similarity networks for visualization of relationships across diverse protein superfamilies
    • Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. 2009 Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE 4, e4345. (doi:10.1371/journal.pone. 0004345)
    • (2009) PLoS ONE , vol.4 , pp. e4345
    • Atkinson, H.J.1    Morris, J.H.2    Ferrin, T.E.3    Babbitt, P.C.4
  • 119
    • 77949270793 scopus 로고    scopus 로고
    • A similarity network approach for the analysis and comparison of protein sequence/structure sets
    • Valavanis I, Spyrou G, Nikita K. 2010 A similarity network approach for the analysis and comparison of protein sequence/structure sets. J. Biomed. Inform. 43, 257-267. (doi:10.1016/j.jbi. 2010.01.005)
    • (2010) J. Biomed. Inform. , vol.43 , pp. 257-267
    • Valavanis, I.1    Spyrou, G.2    Nikita, K.3
  • 121
    • 0033824470 scopus 로고    scopus 로고
    • DaliLite workbench for protein structure comparison
    • Holm L, Park J. 2000 DaliLite workbench for protein structure comparison. Bioinformatics 16, 566-567. (doi:10.1093/bioinformatics/16.6.566)
    • (2000) Bioinformatics , vol.16 , pp. 566-567
    • Holm, L.1    Park, J.2
  • 122
    • 0141561891 scopus 로고    scopus 로고
    • Integrating omic information: A bridge between genomics and systems biology
    • Ge H, Walhout AJ, Vidal M. 2003 Integrating omic information: a bridge between genomics and systems biology. Trends Genet. 19, 551-560. (doi:10.1016/j.tig.2003.08.009)
    • (2003) Trends Genet. , vol.19 , pp. 551-560
    • Ge, H.1    Walhout, A.J.2    Vidal, M.3
  • 124
    • 84862653461 scopus 로고    scopus 로고
    • Combining many interaction networks to predict gene function and analyze gene lists
    • Mostafavi S, Morris Q. 2012 Combining many interaction networks to predict gene function and analyze gene lists. Proteomics 12, 1687-1696. (doi:10.1002/pmic.201100607)
    • (2012) Proteomics , vol.12 , pp. 1687-1696
    • Mostafavi, S.1    Morris, Q.2
  • 125
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J et al. 2008 Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet. 40, 854-861. (doi:10.1038/ng.167)
    • (2008) Nat. Genet. , vol.40 , pp. 854-861
    • Zhu, J.1
  • 126
    • 84876907931 scopus 로고    scopus 로고
    • Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimers disease
    • Zhang B et al. 2013 Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimers disease. Cell 153, 707-720. (doi:10. 1016/j.cell.2013.03.030)
    • (2013) Cell , vol.153 , pp. 707-720
    • Zhang, B.1
  • 127
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen R et al. 2003 A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449-453. (doi:10.1126/science.1087361)
    • (2003) Science , vol.302 , pp. 449-453
    • Jansen, R.1
  • 128
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD. 2006 Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22, e184-e190. (doi:10.1093/bioinformatics/btl230)
    • (2006) Bioinformatics , vol.22 , pp. e184-e190
    • Gevaert, O.1    Smet, F.D.2    Timmerman, D.3    Moreau, Y.4    Moor, B.D.5
  • 129
    • 84863840685 scopus 로고    scopus 로고
    • Integration of clinical and gene expression data has a synergetic effect on predicting breast cancer outcome
    • van Vliet MH, Horlings HM, van de Vijver MJ, Reinders MJ, Wessels LF. 2012 Integration of clinical and gene expression data has a synergetic effect on predicting breast cancer outcome. PLoS ONE 7, e40358. (doi:10.1371/journal.pone.0040358)
    • (2012) PLoS ONE , vol.7
    • Van Vliet, M.H.1    Horlings, H.M.2    Van De Vijver, M.J.3    Reinders, M.J.4    Wessels, L.F.5
  • 130
    • 80055083654 scopus 로고    scopus 로고
    • Patientspecific data fusion defines prognostic cancer subtypes
    • Yuan Y, Savage RS, Markowetz F. 2011 Patientspecific data fusion defines prognostic cancer subtypes. PLoS Comput. Biol. 7, e1002227. (doi:10. 1371/journal.pcbi.1002227)
    • (2011) PLoS Comput. Biol. , vol.7
    • Yuan, Y.1    Savage, R.S.2    Markowetz, F.3
  • 131
    • 84892907298 scopus 로고    scopus 로고
    • Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data
    • Wang Y, Chen S, Deng N, Wang Y. 2013 Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS ONE 8, e78518. (doi:10.1371/journal.pone.0078518)
    • (2013) PLoS ONE , vol.8
    • Wang, Y.1    Chen, S.2    Deng, N.3    Wang, Y.4
  • 132
    • 19544364324 scopus 로고    scopus 로고
    • Selective integration of multiple biological data for supervised network inference
    • Kato T, Tsuda K, Asai K. 2005 Selective integration of multiple biological data for supervised network inference. Bioinformatics 21, 2488-2495. (doi:10. 1093/bioinformatics/bti339)
    • (2005) Bioinformatics , vol.21 , pp. 2488-2495
    • Kato, T.1    Tsuda, K.2    Asai, K.3
  • 133
    • 19544389868 scopus 로고    scopus 로고
    • Protein network inference from multiple genomic data: A supervised approach
    • Yamanishi Y, Vert J-P, Kanehisa M. 2004 Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 20(Suppl. 1), i363-i370. (doi:10.1093/bioinformatics/bth910)
    • (2004) Bioinformatics , vol.20 , pp. i363-i370
    • Yamanishi, Y.1    Vert, J.-P.2    Kanehisa, M.3
  • 136
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • Pavlidis P, Cai J, Weston J, Noble WS. 2002 Learning gene functional classifications from multiple data types. J. Comput. Biol. 9, 401-411. (doi:10.1089/10665270252935539)
    • (2002) J. Comput. Biol. , vol.9 , pp. 401-411
    • Pavlidis, P.1    Cai, J.2    Weston, J.3    Noble, W.S.4
  • 137
    • 72449189217 scopus 로고    scopus 로고
    • Machine learning integration for predicting the effect of single amino acid substitutions on protein stability
    • Ozen A, Gonen M, Alpaydin E, Haliloglu T. 2009 Machine learning integration for predicting the effect of single amino acid substitutions on protein stability. BMC Struct. Biol. 9, 66. (doi:10.1186/1472-6807-9-66)
    • (2009) BMC Struct. Biol. , vol.9 , pp. 66
    • Ozen, A.1    Gonen, M.2    Alpaydin, E.3    Haliloglu, T.4
  • 138
    • 84897417260 scopus 로고    scopus 로고
    • Identifying potential cancer driver genes by genomic data integration
    • Chen Y, Hao J, Jiang W, He T, Zhang X, Jiang T, Jiang R. 2013 Identifying potential cancer driver genes by genomic data integration. Sci. Rep. 3, 66. (doi:10.1038/srep03538)
    • (2013) Sci. Rep. , vol.3 , pp. 66
    • Chen, Y.1    Hao, J.2    Jiang, W.3    He, T.4    Zhang, X.5    Jiang, T.6    Jiang, R.7
  • 140
    • 60849097509 scopus 로고    scopus 로고
    • New York, NY: John Wiley & Sons, Ltd
    • Ben-Gal I. 2008 Bayesian networks. New York, NY: John Wiley & Sons, Ltd.
    • (2008) Bayesian Networks
    • Ben-Gal, I.1
  • 141
    • 17644427718 scopus 로고    scopus 로고
    • Causal proteinsignaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. 2005 Causal proteinsignaling networks derived from multiparameter single-cell data. Science 308, 523-529. (doi:10.1126/science.1105809)
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'Er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 142
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. 2004 Inferring cellular networks using probabilistic graphical models. Science 303, 799-805. (doi:10.1126/science.1094068)
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 143
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Berlin, Germany: Springer
    • Chickering DM. 1996 Learning Bayesian networks is NP-complete. In Learning from data, pp. 121-130. Berlin, Germany: Springer.
    • (1996) Learning from Data , pp. 121-130
    • Chickering, D.M.1
  • 144
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper GF. 1990 The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42, 393-405. (doi:10.1016/0004-3702(90)90060-D)
    • (1990) Artif. Intell. , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 145
    • 64049085062 scopus 로고    scopus 로고
    • A network view of disease and compound screening
    • Schadt E, Friend S, Shaywitz D. 2009 A network view of disease and compound screening. Nat. Rev. Drug Discov. 8, 286-295. (doi:10.1038/nrd2826)
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 286-295
    • Schadt, E.1    Friend, S.2    Shaywitz, D.3
  • 146
    • 33750204290 scopus 로고    scopus 로고
    • Genetics of global gene expression
    • Rockman MV, Kruglyak L. 2006 Genetics of global gene expression. Nat. Rev. Genet. 7, 862-872. (doi:10.1038/nrg1964)
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 862-872
    • Rockman, M.V.1    Kruglyak, L.2
  • 147
    • 84876515907 scopus 로고    scopus 로고
    • STRING v9.1: Protein-protein interaction networks, with increased coverage and integration
    • Franceschini A et al. 2013 STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808-D815. (doi:10.1093/nar/gks1094)
    • (2013) Nucleic Acids Res. , vol.41 , pp. D808-D815
    • Franceschini, A.1
  • 150
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • 3-7 January
    • Leslie CS, Eskin E, Noble WS. 2002 The spectrum kernel: a string kernel for SVM protein classification. In Pacific Symp. on Biocomputing, 3-7 January, pp. 566-575.
    • (2002) Pacific Symp. on Biocomputing , pp. 566-575
    • Leslie, C.S.1    Eskin, E.2    Noble, W.S.3
  • 151
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • Leslie CS, Eskin E, Cohen A, Weston J, Noble WS. 2004 Mismatch string kernels for discriminative protein classification. Bioinformatics 20, 467-476. (doi:10.1093/bioinformatics/btg431)
    • (2004) Bioinformatics , vol.20 , pp. 467-476
    • Leslie, C.S.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.S.5
  • 152
    • 4944225083 scopus 로고    scopus 로고
    • Remote homology detection: A motif based approach
    • Ben-Hur A, Brutlag D. 2003 Remote homology detection: a motif based approach. Bioinformatics 19(Suppl. 1), 26-i33. (doi:10.1093/bioinformatics/btg1002)
    • (2003) Bioinformatics , vol.19 , pp. 26-i33
    • Ben-Hur, A.1    Brutlag, D.2
  • 153
    • 0142210290 scopus 로고    scopus 로고
    • Learning to predict protein-protein interactions from protein sequences
    • Gomez SM, Noble WS, Rzhetsky A. 2003 Learning to predict protein-protein interactions from protein sequences. Bioinformatics 19, 1875-1881. (doi:10. 1093/bioinformatics/btg352)
    • (2003) Bioinformatics , vol.19 , pp. 1875-1881
    • Gomez, S.M.1    Noble, W.S.2    Rzhetsky, A.3
  • 154
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete structures
    • 8-12 July
    • Kondor RI, Lafferty J. 2002 Diffusion kernels on graphs and other discrete structures. In Proc. The ICML, 8-12 July, pp. 315-322.
    • (2002) Proc. The ICML , pp. 315-322
    • Kondor, R.I.1    Lafferty, J.2
  • 157
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon D, Szedmak S, Shawe-Taylor J. 2004 Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16, 2639-2664. (doi:10.1162/0899766042321814)
    • (2004) Neural Comput , vol.16 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 161
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • (eds B Schoelkopf, K Tsuda, J-P Vert), Cambridge, MA: MIT Press
    • Noble WS et al. 2004 Support vector machine applications in computational biology. In Kernel methods in computational biology (eds B Schoelkopf, K Tsuda, J-P Vert), pp. 71-92. Cambridge, MA: MIT Press.
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Noble, W.S.1
  • 162
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen M, Alpaydin E. 2011 Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211-2268.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 163
    • 84925409378 scopus 로고    scopus 로고
    • Kernel methods for large-scale genomic data analysis
    • Wang X, Xing EP, Schaid DJ. 2014 Kernel methods for large-scale genomic data analysis. Brief. Bioinformatics 16, 183-192. (doi:10.1093/bib/bbu024)
    • (2014) Brief. Bioinformatics , vol.16 , pp. 183-192
    • Wang, X.1    Xing, E.P.2    Schaid, D.J.3
  • 165
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JA, Vandewalle J. 1999 Least squares support vector machine classifiers. Neural Process. Lett. 9, 293-300. (doi:10.1023/A:1018628609742)
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 166
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS. 1999 Learning the parts of objects by non-negative matrix factorization. Nature 401, 788-791. (doi:10.1038/44565)
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 169
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • 21-23 April
    • Ding C, He X, Simon HD. 2005 On the equivalence of nonnegative matrix factorization and spectral clustering. In Proc. The 2005 SIAM Int. Conf. on Data Mining, 21-23 April, pp. 606-610.
    • (2005) Proc. The 2005 SIAM Int. Conf. on Data Mining , pp. 606-610
    • Ding, C.1    He, X.2    Simon, H.D.3
  • 170
  • 171
    • 84894558143 scopus 로고    scopus 로고
    • Nonnegative matrix factorizations for clustering: A survey
    • New York, NY: Chapman & Hall/CRC
    • Li T, Ding CHQ. 2013 Nonnegative matrix factorizations for clustering: a survey. In Data clustering: algorithms and applications, pp. 149-176. New York, NY: Chapman & Hall/CRC.
    • (2013) Data Clustering: Algorithms and Applications , pp. 149-176
    • Li, T.1    Ding, C.H.Q.2
  • 172
    • 2442624378 scopus 로고    scopus 로고
    • Non-negative matrix factorization based methods for object recognition
    • Liu W, Zheng N. 2004 Non-negative matrix factorization based methods for object recognition. Pattern Recogn. Lett. 25, 893-897. (doi:10.1016/j. patrec.2004.02.002)
    • (2004) Pattern Recogn. Lett. , vol.25 , pp. 893-897
    • Liu, W.1    Zheng, N.2
  • 174
    • 25844488029 scopus 로고    scopus 로고
    • Document clustering using nonnegative matrix factorization
    • Shahnaz F, Berry MW, Pauca VP, Plemmons RJ. 2006 Document clustering using nonnegative matrix factorization. Inf. Process. Manage. 42, 373-386. (doi:10.1016/j.ipm.2004.11.005)
    • (2006) Inf. Process. Manage. , vol.42 , pp. 373-386
    • Shahnaz, F.1    Berry, M.W.2    Pauca, V.P.3    Plemmons, R.J.4
  • 176
    • 50249152311 scopus 로고    scopus 로고
    • Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria
    • Virtanen T. 2007 Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio, Speech Lang. Process. 15, 1066-1074. (doi:10. 1109/TASL.2006.885253)
    • (2007) IEEE Trans. Audio, Speech Lang. Process. , vol.15 , pp. 1066-1074
    • Virtanen, T.1
  • 177
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet J-P, Tamayo P, Golub TR et al. 2004 Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101, 4164-4169. (doi:10.1073/pnas. 0308531101)
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 4164-4169
    • Brunet, J.-P.1    Tamayo, P.2    Golub, T.R.3
  • 178
    • 56649100783 scopus 로고    scopus 로고
    • Position-dependent motif characterization using non-negative matrix factorization
    • Hutchins LN, Murphy SM, Singh P, Graber JH. 2008 Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics 24, 2684-2690. (doi:10.1093/bioinformatics/btn526)
    • (2008) Bioinformatics , vol.24 , pp. 2684-2690
    • Hutchins, L.N.1    Murphy, S.M.2    Singh, P.3    Graber, J.H.4
  • 179
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren Y, Bell R, Volinsky C. 2009 Matrix factorization techniques for recommender systems. Computer 42, 30-37. (doi:10.1109/MC.2009.263)
    • (2009) Computer , vol.42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 180
    • 33745478821 scopus 로고    scopus 로고
    • Learning from incomplete ratings using nonnegative matrix factorization
    • Bethesda, MD: SIAM
    • Zhang S, Wang W, Ford J, Makedon F. 2006 Learning from incomplete ratings using nonnegative matrix factorization. In SDM, pp. 549-553. Bethesda, MD: SIAM.
    • (2006) SDM , pp. 549-553
    • Zhang, S.1    Wang, W.2    Ford, J.3    Makedon, F.4
  • 181
    • 84868276527 scopus 로고    scopus 로고
    • Fused matrix factorization with geographical and social influence in location-based social networks
    • 22-26 July
    • Cheng C, Yang H, King I, Lyu MR. 2012 Fused matrix factorization with geographical and social influence in location-based social networks. In Aaai'12, 22-26 July, pp. 1-1.
    • (2012) Aaai'12 , pp. 1-1
    • Cheng, C.1    Yang, H.2    King, I.3    Lyu, M.R.4
  • 183
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix Tri-factorizations for clustering
    • KDD '06, 20-23 August, New York, NY: ACM
    • Ding C et al. 2006 Orthogonal nonnegative matrix Tri-factorizations for clustering. In Proc. The 12th ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining, KDD '06, 20-23 August, pp. 126-135. New York, NY: ACM.
    • (2006) Proc. The 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining , pp. 126-135
    • Ding, C.1
  • 185
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • Vavasis SA. 2009 On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20, 1364-1377. (doi:10.1137/070709967)
    • (2009) SIAM J. Optim. , vol.20 , pp. 1364-1377
    • Vavasis, S.A.1
  • 186
  • 193
    • 53849111925 scopus 로고    scopus 로고
    • Semi-supervised clustering via matrix factorization
    • Atlanta, GA: SIAM
    • Wang F, Li T, Zhang C. 2008 Semi-supervised clustering via matrix factorization. In SDM, pp. 1-12. Atlanta, GA: SIAM.
    • (2008) SDM , pp. 1-12
    • Wang, F.1    Li, T.2    Zhang, C.3
  • 194
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Cai D, He X, Han J, Huang TS. 2011 Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1548-1560. (doi:10.1109/TPAMI. 2010.231)
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 195
    • 84857050380 scopus 로고    scopus 로고
    • Graph dual regularization non-negative matrix factorization for co-clustering
    • Shang F, Jiao L, Wang F. 2012 Graph dual regularization non-negative matrix factorization for co-clustering. Pattern Recognit. 45, 2237-2250. (doi:10.1016/j.patcog.2011.12.015)
    • (2012) Pattern Recognit. , vol.45 , pp. 2237-2250
    • Shang, F.1    Jiao, L.2    Wang, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.