메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; FRUCTOSE; FUMARIC ACID; GALACTOSE; GLUCOSE; GLYCEROL; MANNOSE; PROTEOME; PYRUVIC ACID; SUCCINIC ACID; XYLOSE; ESCHERICHIA COLI PROTEIN;

EID: 85058107207     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-07652-6     Document Type: Article
Times cited : (156)

References (73)
  • 1
    • 84885773167 scopus 로고    scopus 로고
    • Molecular crowding limits translation and cell growth
    • COI: 1:CAS:528:DC%2BC3sXhslejsbzL
    • Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013)
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 16754-16759
    • Klumpp, S.1    Scott, M.2    Pedersen, S.3    Hwa, T.4
  • 2
    • 85032175673 scopus 로고    scopus 로고
    • Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation
    • COI: 1:CAS:528:DC%2BC2sXhs1egtL7M
    • Chen, K. et al. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc. Natl Acad. Sci. USA 114, 11548–11553 (2017)
    • (2017) Proc. Natl Acad. Sci. USA , vol.114 , pp. 11548-11553
    • Chen, K.1
  • 3
    • 84947583295 scopus 로고    scopus 로고
    • Overflow metabolism in Escherichia coli results from efficient proteome allocation
    • COI: 1:CAS:528:DC%2BC2MXhvFKht7vI
    • Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015)
    • (2015) Nature , vol.528 , pp. 99-104
    • Basan, M.1
  • 4
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • COI: 1:CAS:528:DC%2BC3cXivV2rtL4%3D
    • Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010)
    • (2010) Nat. Biotechnol. , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 5
    • 84864584520 scopus 로고    scopus 로고
    • Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters
    • COI: 1:CAS:528:DC%2BC38XhtVars7%2FE
    • Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput. Biol. 8, e1002575–e1002575 (2012)
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002575
    • Adadi, R.1    Volkmer, B.2    Milo, R.3    Heinemann, M.4    Shlomi, T.5
  • 7
    • 34547887655 scopus 로고    scopus 로고
    • Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity
    • COI: 1:CAS:528:DC%2BD2sXptVaqsLs%3D
    • Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl Acad. Sci. USA 104, 12663–12668 (2007)
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 12663-12668
    • Beg, Q.K.1
  • 8
    • 84864843180 scopus 로고    scopus 로고
    • In silico method for modelling metabolism and gene product expression at genome scale
    • Lerman, J. A. et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat. Commun. 3, 929–929 (2012)
    • (2012) Nat. Commun. , vol.3 , pp. 929
    • Lerman, J.A.1
  • 9
    • 84885367114 scopus 로고    scopus 로고
    • Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction
    • O'Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. Ø. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9, 693 (2013)
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 693
    • O'brien, E.J.1    Lerman, J.A.2    Chang, R.L.3    Hyduke, D.R.4    Palsson, B.Ø.5
  • 10
    • 85042934006 scopus 로고    scopus 로고
    • Modeling the multi-scale mechanisms of macromolecular resource allocation
    • COI: 1:CAS:528:DC%2BC1cXhsVGgtbY%3D
    • Yang, L., Yurkovich, J. T., King, Z. A. & Palsson, B. O. Modeling the multi-scale mechanisms of macromolecular resource allocation. Curr. Opin. Microbiol. 45, 8–15 (2018)
    • (2018) Curr. Opin. Microbiol. , vol.45 , pp. 8-15
    • Yang, L.1    Yurkovich, J.T.2    King, Z.A.3    Palsson, B.O.4
  • 11
    • 84866975246 scopus 로고    scopus 로고
    • Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage
    • COI: 1:CAS:528:DC%2BC38XhsFWgs7jE
    • Thiele, I. et al. Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage. PLoS ONE 7, e45635 (2012)
    • (2012) PLoS ONE , vol.7
    • Thiele, I.1
  • 12
    • 84992648219 scopus 로고    scopus 로고
    • Multi-omic data integration enables discovery of hidden biological regularities
    • COI: 1:CAS:528:DC%2BC28XhslKntrzP
    • Ebrahim, A. et al. Multi-omic data integration enables discovery of hidden biological regularities. Nat. Commun. 7, 13091 (2016)
    • (2016) Nat. Commun. , vol.7
    • Ebrahim, A.1
  • 13
    • 85007015976 scopus 로고    scopus 로고
    • A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains
    • COI: 1:CAS:528:DC%2BC28XitFGjtbbM
    • Khodayari, A. & Maranas, C. D. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun. 7, 13806–13806 (2016)
    • (2016) Nat. Commun. , vol.7 , pp. 13806
    • Khodayari, A.1    Maranas, C.D.2
  • 14
    • 84962212496 scopus 로고    scopus 로고
    • cat measurements
    • COI: 1:CAS:528:DC%2BC28Xjslylt7o%3D
    • cat measurements. Proc. Natl Acad. Sci. USA 113, 3401–3406 (2016)
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 3401-3406
    • Davidi, D.1
  • 15
    • 79958097953 scopus 로고    scopus 로고
    • The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters
    • COI: 1:CAS:528:DC%2BC3MXlsFWnur8%3D
    • Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011)
    • (2011) Biochemistry , vol.50 , pp. 4402-4410
    • Bar-Even, A.1
  • 16
    • 85042407052 scopus 로고    scopus 로고
    • Metabolic models of protein allocation call for the kinetome
    • COI: 1:CAS:528:DC%2BC1cXhs1Olsg%3D%3D
    • Nilsson, A., Nielsen, J. & Palsson, B. O. Metabolic models of protein allocation call for the kinetome. Cell Syst. 5, 538–541 (2017)
    • (2017) Cell Syst. , vol.5 , pp. 538-541
    • Nilsson, A.1    Nielsen, J.2    Palsson, B.O.3
  • 18
    • 84964774521 scopus 로고    scopus 로고
    • Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming
    • Wu, S. G. et al. Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming. PLoS Comput. Biol. 12, e1004838 (2016)
    • (2016) PLoS Comput. Biol. , vol.12
    • Wu, S.G.1
  • 19
    • 84990177186 scopus 로고    scopus 로고
    • Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
    • Kim, M., Rai, N., Zorraquino, V. & Tagkopoulos, I. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat. Commun. 7, 13090 (2016)
    • (2016) Nat. Commun. , vol.7 , pp. 13090
    • Kim, M.1    Rai, N.2    Zorraquino, V.3    Tagkopoulos, I.4
  • 20
    • 85044948558 scopus 로고    scopus 로고
    • Using deep learning to model the hierarchical structure and function of a cell
    • COI: 1:CAS:528:DC%2BC1cXjvVOlurc%3D
    • Ma, J. et al. Using deep learning to model the hierarchical structure and function of a cell. Nat. Methods 15, 290–298 (2018)
    • (2018) Nat. Methods , vol.15 , pp. 290-298
    • Ma, J.1
  • 21
    • 84975246102 scopus 로고    scopus 로고
    • Semisupervised Gaussian process for automated enzyme search
    • COI: 1:CAS:528:DC%2BC28Xks1ehsLo%3D
    • Mellor, J., Grigoras, I., Carbonell, P. & Faulon, J.-L. Semisupervised Gaussian process for automated enzyme search. ACS Synth. Biol. 5, 518–528 (2016)
    • (2016) ACS Synth. Biol. , vol.5 , pp. 518-528
    • Mellor, J.1    Grigoras, I.2    Carbonell, P.3    Faulon, J.L.4
  • 22
    • 77955353890 scopus 로고    scopus 로고
    • Molecular signatures-based prediction of enzyme promiscuity
    • COI: 1:CAS:528:DC%2BC3cXpvFSlsb0%3D
    • Carbonell, P. & Faulon, J.-L. Molecular signatures-based prediction of enzyme promiscuity. Bioinformatics 26, 2012–2019 (2010)
    • (2010) Bioinformatics , vol.26 , pp. 2012-2019
    • Carbonell, P.1    Faulon, J.L.2
  • 23
    • 34249915403 scopus 로고    scopus 로고
    • Prediction of enzyme kinetic parameters based on statistical learning
    • COI: 1:CAS:528:DC%2BD2sXht1Sit7g%3D
    • Borger, S., Liebermeister, W. & Klipp, E. Prediction of enzyme kinetic parameters based on statistical learning. Genome Inform. 17, 80–87 (2006)
    • (2006) Genome Inform. , vol.17 , pp. 80-87
    • Borger, S.1    Liebermeister, W.2    Klipp, E.3
  • 24
    • 85041912553 scopus 로고    scopus 로고
    • Facilitate collaborations among synthetic biology, metabolic engineering and machine learning
    • COI: 1:CAS:528:DC%2BC28XmsFOms7c%3D
    • Wu, S. G., Shimizu, K., Tang, J. K.-H. & Tang, Y. J. Facilitate collaborations among synthetic biology, metabolic engineering and machine learning. ChemBioEng Rev. 3, 45–54 (2016)
    • (2016) ChemBioEng Rev. , vol.3 , pp. 45-54
    • Wu, S.G.1    Shimizu, K.2    Tang, J.K.H.3    Tang, Y.J.4
  • 25
    • 79952604817 scopus 로고    scopus 로고
    • Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables
    • COI: 1:CAS:528:DC%2BC3MXjtFSqtr8%3D
    • Colletti, P. F. et al. Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables. Biotechnol. Bioeng. 108, 893–901 (2011)
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 893-901
    • Colletti, P.F.1
  • 26
    • 85031310018 scopus 로고    scopus 로고
    • iML1515, a knowledgebase that computes Escherichia coli traits
    • COI: 1:CAS:528:DC%2BC2sXhs1egtbfI
    • Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35, 904–908 (2017)
    • (2017) Nat. Biotechnol. , vol.35 , pp. 904-908
    • Monk, J.M.1
  • 27
    • 3242795003 scopus 로고    scopus 로고
    • The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks
    • Holzhütter, H.-G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922 (2004)
    • (2004) Eur. J. Biochem. , vol.271 , pp. 2905-2922
    • Holzhütter, H.G.1
  • 28
    • 84865571240 scopus 로고    scopus 로고
    • Network context and selection in the evolution to enzyme specificity
    • COI: 1:CAS:528:DC%2BC38Xht1Grtr7O
    • Nam, H. et al. Network context and selection in the evolution to enzyme specificity. Science 337, 1101–1104 (2012)
    • (2012) Science , vol.337 , pp. 1101-1104
    • Nam, H.1
  • 29
    • 0033954256 scopus 로고    scopus 로고
    • The Protein Data Bank
    • COI: 1:CAS:528:DC%2BD3cXhvVKjt7w%3D
    • Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)
    • (2000) Nucleic Acids Res. , vol.28 , pp. 235-242
    • Berman, H.M.1
  • 31
    • 84902905303 scopus 로고    scopus 로고
    • Ab initio structure prediction for Escherichia coli: Towards genome-wide protein structure modeling and fold assignment
    • Xu, D. & Zhang, Y. Ab initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment. Sci. Rep. 3, 1895 (2013)
    • (2013) Sci. Rep. , vol.3 , pp. 1895
    • Xu, D.1    Zhang, Y.2
  • 32
    • 0345864027 scopus 로고    scopus 로고
    • The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data
    • COI: 1:CAS:528:DC%2BD3sXhtVSrur%2FL
    • Porter, C. T., Bartlett, G. J. & Thornton, J. M. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32, D129–D133 (2004)
    • (2004) Nucleic Acids Res. , vol.32 , pp. D129-D133
    • Porter, C.T.1    Bartlett, G.J.2    Thornton, J.M.3
  • 33
    • 85016103479 scopus 로고    scopus 로고
    • BRENDA in 2017: new perspectives and new tools in BRENDA
    • COI: 1:CAS:528:DC%2BC1cXhslWhtrs%3D
    • Placzek, S. et al. BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic Acids Res. 45, D380–D388 (2017)
    • (2017) Nucleic Acids Res. , vol.45 , pp. D380-D388
    • Placzek, S.1
  • 34
    • 84862214722 scopus 로고    scopus 로고
    • SABIO-RK—database for biochemical reaction kinetics
    • COI: 1:CAS:528:DC%2BC3MXhs12htb3O
    • Wittig, U. et al. SABIO-RK—database for biochemical reaction kinetics. Nucleic Acids Res. 40, D790–D796 (2012)
    • (2012) Nucleic Acids Res. , vol.40 , pp. D790-D796
    • Wittig, U.1
  • 35
    • 84976877782 scopus 로고    scopus 로고
    • The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
    • COI: 1:CAS:528:DC%2BC2sXhtV2nsrnJ
    • Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44, D471–D480 (2016)
    • (2016) Nucleic Acids Res. , vol.44 , pp. D471-D480
    • Caspi, R.1
  • 37
    • 84953737483 scopus 로고    scopus 로고
    • The quantitative and condition-dependent Escherichia coli proteome
    • COI: 1:CAS:528:DC%2BC2MXhvFKktbnJ
    • Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016)
    • (2016) Nat. Biotechnol. , vol.34 , pp. 104-110
    • Schmidt, A.1
  • 38
    • 0000107082 scopus 로고
    • Diffusion‐controlled reaction rate to a buried active site
    • COI: 1:CAS:528:DyaE1cXhtFWisL0%3D
    • Samson, R. & Deutch, J. M. Diffusion‐controlled reaction rate to a buried active site. J. Chem. Phys. 68, 285–290 (1978)
    • (1978) J. Chem. Phys. , vol.68 , pp. 285-290
    • Samson, R.1    Deutch, J.M.2
  • 39
    • 84883875173 scopus 로고    scopus 로고
    • Gates of enzymes
    • COI: 1:CAS:528:DC%2BC3sXms1Wjur0%3D
    • Gora, A., Brezovsky, J. & Damborsky, J. Gates of enzymes. Chem. Rev. 113, 5871–5923 (2013)
    • (2013) Chem. Rev. , vol.113 , pp. 5871-5923
    • Gora, A.1    Brezovsky, J.2    Damborsky, J.3
  • 40
    • 84871755504 scopus 로고    scopus 로고
    • Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme
    • Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 3, 1257–1257 (2012)
    • (2012) Nat. Commun. , vol.3 , pp. 1257
    • Tokuriki, N.1
  • 41
    • 85052907934 scopus 로고    scopus 로고
    • A Bird’s-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations
    • COI: 1:CAS:528:DC%2BC1cXhsFGisLnN
    • Davidi, D., Longo, L. M., Jabłońska, J., Milo, R. & Tawfik, D. S. A bird’s-eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem. Rev. 118, 8786–8797 (2018)
    • (2018) Chemical Reviews , vol.118 , Issue.18 , pp. 8786-8797
    • Davidi, D.1    Longo, L.M.2    Jabłońska, J.3    Milo, R.4    Tawfik, D.S.5
  • 42
    • 0021801376 scopus 로고
    • Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition
    • COI: 1:CAS:528:DyaL2MXks1yju7k%3D
    • Walsh, K. & Koshland, D. E. Jr. Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition. J. Biol. Chem. 260, 8430–8437 (1985)
    • (1985) J. Biol. Chem. , vol.260 , pp. 8430-8437
    • Walsh, K.1    Koshland, D.E.2
  • 43
    • 0023855559 scopus 로고
    • Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli
    • COI: 1:CAS:528:DyaL1cXhsVKhs70%3D
    • Robertson, E. F., Hoyt, J. C. & Reeves, H. C. Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli. J. Biol. Chem. 263, 2477–2482 (1988)
    • (1988) J. Biol. Chem. , vol.263 , pp. 2477-2482
    • Robertson, E.F.1    Hoyt, J.C.2    Reeves, H.C.3
  • 44
    • 84865542140 scopus 로고    scopus 로고
    • Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli
    • COI: 1:CAS:528:DC%2BC38XhtVyktLvJ
    • Arike, L. et al. Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli. J. Proteom. 75, 5437–5448 (2012)
    • (2012) J. Proteom. , vol.75 , pp. 5437-5448
    • Arike, L.1
  • 48
    • 84951061481 scopus 로고    scopus 로고
    • Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data
    • COI: 1:CAS:528:DC%2BC2sXhtFalurk%3D
    • Gerosa, L. et al. Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data. Cell Syst. 1, 270–282 (2015)
    • (2015) Cell Syst. , vol.1 , pp. 270-282
    • Gerosa, L.1
  • 49
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007)
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 50
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. Coli are consistent with computed optimal growth from genome-scale models
    • Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010)
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 390
    • Lewis, N.E.1
  • 51
    • 85047568107 scopus 로고    scopus 로고
    • ssbio: a Python framework for structural systems biology
    • Mih, N. et al. ssbio: a Python framework for structural systems biology. Bioinformatics 34, 2155–2157 (2018)
    • (2018) Bioinformatics , vol.34 , pp. 2155-2157
    • Mih, N.1
  • 52
    • 85016153986 scopus 로고    scopus 로고
    • UniProt: the universal protein knowledgebase
    • The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017)
    • (2017) Nucleic Acids Res. , vol.45 , pp. D158-D169
  • 53
    • 84960384531 scopus 로고    scopus 로고
    • Systems biology of the structural proteome
    • Brunk, E. et al. Systems biology of the structural proteome. BMC Syst. Biol. 10, 26 (2016)
    • (2016) BMC Syst. Biol. , vol.10
    • Brunk, E.1
  • 54
    • 0034201441 scopus 로고    scopus 로고
    • EMBOSS: the European Molecular Biology Open Software Suite
    • COI: 1:CAS:528:DC%2BD3cXjvVygsbs%3D
    • Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000)
    • (2000) Trends Genet. , vol.16 , pp. 276-277
    • Rice, P.1    Longden, I.2    Bleasby, A.3
  • 55
    • 65649092976 scopus 로고    scopus 로고
    • Biopython: freely available Python tools for computational molecular biology and bioinformatics
    • COI: 1:CAS:528:DC%2BD1MXmtFeqt74%3D
    • Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009)
    • (2009) Bioinformatics , vol.25 , pp. 1422-1423
    • Cock, P.J.A.1
  • 56
    • 23144465987 scopus 로고    scopus 로고
    • SCRATCH: a protein structure and structural feature prediction server
    • COI: 1:CAS:528:DC%2BD2MXlslyrurc%3D
    • Cheng, J., Randall, A. Z., Sweredoski, M. J. & Baldi, P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res. 33, W72–W76 (2005)
    • (2005) Nucleic Acids Res. , vol.33 , pp. W72-W76
    • Cheng, J.1    Randall, A.Z.2    Sweredoski, M.J.3    Baldi, P.4
  • 57
    • 0020997912 scopus 로고
    • DSSP: definition of secondary structure of proteins given a set of 3D coordinates
    • COI: 1:CAS:528:DyaL2cXkslegtQ%3D%3D
    • Kabsch, W. & Sander, C. DSSP: definition of secondary structure of proteins given a set of 3D coordinates. Biopolymers 22, 2577–2637 (1983)
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 58
    • 0030040323 scopus 로고    scopus 로고
    • Reduced surface: an efficient way to compute molecular surfaces
    • COI: 1:CAS:528:DyaK28XhtlOisro%3D
    • Sanner, M. F., Olson, A. J. & Spehner, J.-C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)
    • (1996) Biopolymers , vol.38 , pp. 305-320
    • Sanner, M.F.1    Olson, A.J.2    Spehner, J.C.3
  • 59
    • 0020475449 scopus 로고
    • A simple method for displaying the hydropathic character of a protein
    • COI: 1:CAS:528:DyaL38Xks1yjtro%3D
    • Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)
    • (1982) J. Mol. Biol. , vol.157 , pp. 105-132
    • Kyte, J.1    Doolittle, R.F.2
  • 60
    • 84976877544 scopus 로고    scopus 로고
    • BiGG Models: a platform for integrating, standardizing and sharing genome-scale models
    • COI: 1:CAS:528:DC%2BC2sXhtV2nsrbI
    • King, Z. A. et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016)
    • (2016) Nucleic Acids Res. , vol.44 , pp. D515-D522
    • King, Z.A.1
  • 61
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • COI: 1:CAS:528:DC%2BD3cXhvVGqu74%3D
    • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)
    • (2000) Nucleic Acids Res. , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 62
    • 84875144546 scopus 로고    scopus 로고
    • MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks
    • COI: 1:CAS:528:DC%2BC3sXktFKqtbY%3D
    • Ganter, M., Bernard, T., Moretti, S., Stelling, J. & Pagni, M. MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 29, 815–816 (2013)
    • (2013) Bioinformatics , vol.29 , pp. 815-816
    • Ganter, M.1    Bernard, T.2    Moretti, S.3    Stelling, J.4    Pagni, M.5
  • 63
    • 85047791977 scopus 로고    scopus 로고
    • Temperature-dependent estimation of gibbs energies using an updated group-contribution method
    • COI: 1:CAS:528:DC%2BC1cXptVGns7c%3D
    • Du, B. et al. Temperature-dependent estimation of gibbs energies using an updated group-contribution method. Biophys. J. 114, 2691–2702 (2018)
    • (2018) Biophys. J. , vol.114 , pp. 2691-2702
    • Du, B.1
  • 64
    • 33847797256 scopus 로고    scopus 로고
    • Thermodynamics-based metabolic flux analysis
    • COI: 1:CAS:528:DC%2BD2sXit1alsrk%3D
    • Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Thermodynamics-based metabolic flux analysis. Biophys. J. 92, 1792–1805 (2007)
    • (2007) Biophys. J. , vol.92 , pp. 1792-1805
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 65
    • 84999808819 scopus 로고    scopus 로고
    • The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization
    • Noor, E. et al. The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization. PLoS Comput. Biol. 12, 1–29 (2016)
    • (2016) PLoS Comput. Biol. , vol.12 , pp. 1-29
    • Noor, E.1
  • 66
    • 79953732420 scopus 로고    scopus 로고
    • Mice: multivariate imputation by chained equations in R
    • van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1 – 68 (2010)
    • (2010) J. Stat. Softw. , vol.45 , pp. 1-68
    • van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 67
    • 84855499408 scopus 로고    scopus 로고
    • MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases
    • Kumar, A., Suthers, P. F. & Maranas, C. D. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinforma. 13, 6–6 (2012)
    • (2012) BMC Bioinforma. , vol.13 , pp. 6
    • Kumar, A.1    Suthers, P.F.2    Maranas, C.D.3
  • 68
    • 56249113343 scopus 로고    scopus 로고
    • Caret package
    • & Others
    • Kuhn, M. Caret package. J. Stat. Softw. 28, 1–26 (2008)
    • (2008) J. Stat. Softw. , vol.28 , pp. 1-26
    • Kuhn, M.1
  • 70
    • 85050988747 scopus 로고    scopus 로고
    • COBRAme: a computational framework for genome-scale models of metabolism and gene expression
    • Lloyd, C. J. et al. COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput. Biol. 14, e1006302 (2018)
    • (2018) PLoS Comput. Biol. , vol.14
    • Lloyd, C.J.1
  • 71
    • 84995608089 scopus 로고    scopus 로고
    • solveME: fast and reliable solution of nonlinear ME models
    • Yang, L. et al. solveME: fast and reliable solution of nonlinear ME models. BMC Bioinforma. 17, 391 (2016)
    • (2016) BMC Bioinforma. , vol.17
    • Yang, L.1
  • 72
    • 85010036575 scopus 로고    scopus 로고
    • Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression
    • COI: 1:CAS:528:DC%2BC2sXhtlalur4%3D
    • Ma, D. et al. Reliable and efficient solution of genome-scale models of metabolism and macromolecular expression. Sci. Rep. 7, 40863 (2017)
    • (2017) Sci. Rep. , vol.7
    • Ma, D.1
  • 73
    • 0042005465 scopus 로고
    • Algorithm AS 89: The Upper Tail Probabilities of Spearman’s Rho
    • Best, D. J. & Roberts, D. E. Algorithm AS 89: the upper tail probabilities of Spearman’s Rho. J. R. Stat. Soc. Ser. C. Appl. Stat. 24, 377–379 (1975)
    • (1975) J. R. Stat. Soc. Ser. C. Appl. Stat. , vol.24 , pp. 377-379
    • Best, D.J.1    Roberts, D.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.