메뉴 건너뛰기




Volumn 14, Issue 1, 2019, Pages

Machine learning framework for assessment of microbial factory performance

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOPROCESS; CORRELATION COEFFICIENT; CORRESPONDENCE ANALYSIS; DNA MODIFICATION; ESCHERICHIA COLI; GENOME; HUMAN; MACHINE LEARNING; NONHUMAN; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; RUNNING; SIMULATION; SUPPORT VECTOR MACHINE; VALIDATION PROCESS; ALGORITHM; BIOLOGICAL MODEL; COMPUTER SIMULATION; FACTUAL DATABASE; GENETICS; METABOLIC ENGINEERING; METABOLISM; PROCEDURES; REPRODUCIBILITY;

EID: 85060049392     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0210558     Document Type: Article
Times cited : (50)

References (26)
  • 1
    • 85038611077 scopus 로고    scopus 로고
    • The experiment data depot: A web-based software tool for biological experimental data storage, sharing, and visualization
    • PMID: 28826210
    • Morrell W, Birkel G, Forrer M, Lopez T, Backman T, Dussault M, et al. The Experiment Data Depot: a web-based software tool for biological experimental data storage, sharing, and visualization. ACS Synth Biol. 2017; 6 (12), 2248–2259. https://doi.org/10.1021/acssynbio.7b00204 PMID: 28826210
    • (2017) ACS Synth Biol , vol.6 , Issue.12 , pp. 2248-2259
    • Morrell, W.1    Birkel, G.2    Forrer, M.3    Lopez, T.4    Backman, T.5    Dussault, M.6
  • 2
    • 84920937371 scopus 로고    scopus 로고
    • Computational methods in metabolic engineering for strain design
    • PMID: 25576846
    • Long MR, Ong WK, Reed JL. Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol. 2015; 34:135–41. https://doi.org/10.1016/j.copbio.2014.12.019 PMID: 25576846
    • (2015) Curr Opin Biotechnol , vol.34 , pp. 135-141
    • Long, M.R.1    Ong, W.K.2    Reed, J.L.3
  • 3
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado D, Herrgård M. Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism. PLoS Comput Biol. 2014; 10(4). e1003989.
    • (2014) PLoS Comput Biol , vol.10 , Issue.4
    • Machado, D.1    Herrgård, M.2
  • 4
    • 84961223765 scopus 로고    scopus 로고
    • Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications
    • PMID: 26996613
    • Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends in Biotechnology. 2016; 34 (8), 652–664. https://doi.org/10.1016/j.tibtech.2016.02.010 PMID: 26996613
    • (2016) Trends in Biotechnology , vol.34 , Issue.8 , pp. 652-664
    • Wu, G.1    Yan, Q.2    Jones, J.A.3    Tang, Y.J.4    Fong, S.S.5    Koffas, M.A.G.6
  • 5
    • 84928315635 scopus 로고    scopus 로고
    • An ancient Chinese wisdom for metabolic engineering: Yin-yang
    • Wu G, He L, Wang Q, Tang YJ. An ancient Chinese wisdom for metabolic engineering: Yin-Yang. Microb Cell Fact. 2015; 14(1):39.
    • (2015) Microb Cell Fact , vol.14 , Issue.1 , pp. 39
    • Wu, G.1    He, L.2    Wang, Q.3    Tang, Y.J.4
  • 6
    • 84980022857 scopus 로고    scopus 로고
    • Deep learning for computational biology
    • PMID: 27474269
    • Angermueller C, Pärnamaa T, Parts L, Oliver S. Deep Learning for Computational Biology. Mol Syst Biol. 2016;(12):878. https://doi.org/10.15252/msb.20156651 PMID: 27474269
    • (2016) Mol Syst Biol , vol.12 , pp. 878
    • Angermueller, C.1    Pärnamaa, T.2    Parts, L.3    Oliver, S.4
  • 7
    • 84960460639 scopus 로고    scopus 로고
    • Engineering cellular metabolism
    • PMID: 26967285
    • Nielsen J, Keasling JD. Engineering Cellular Metabolism. Cell. 2016; 164(6):1185–97. https://doi.org/10.1016/j.cell.2016.02.004 PMID: 26967285
    • (2016) Cell , vol.164 , Issue.6 , pp. 1185-1197
    • Nielsen, J.1    Keasling, J.D.2
  • 8
    • 84934927409 scopus 로고    scopus 로고
    • The LASER database: Formalizing design rules for metabolic engineering
    • Winkler JD, Halweg-Edwards AL, Gill RT. The LASER database: Formalizing design rules for metabolic engineering. Metab Eng Commun. 2015; 2:30–8.
    • (2015) Metab Eng Commun , vol.2 , pp. 30-38
    • Winkler, J.D.1    Halweg-Edwards, A.L.2    Gill, R.T.3
  • 9
    • 84964774521 scopus 로고    scopus 로고
    • Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming
    • PMID: 27092947
    • Wu G, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, et al. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming. PLoS Comput Biol. 2016; 12(4), e1004838. https://doi.org/10.1371/journal.pcbi.1004838 PMID: 27092947
    • (2016) PLoS Comput Biol , vol.12 , Issue.4
    • Wu, G.1    Wang, Y.2    Jiang, W.3    Oyetunde, T.4    Yao, R.5    Zhang, X.6
  • 10
    • 85049776867 scopus 로고    scopus 로고
    • KBaSe: The United States department of energy systems biology knowledgebase
    • PMID: 29979655
    • Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. 2018; 36: 566–569. https://doi.org/10.1038/nbt.4163 PMID: 29979655
    • (2018) Nature Biotechnology , vol.36 , pp. 566-569
    • Arkin, A.P.1    Cottingham, R.W.2    Henry, C.S.3    Harris, N.L.4    Stevens, R.L.5    Maslov, S.6
  • 11
    • 84897668947 scopus 로고    scopus 로고
    • A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803
    • Maarleveld TR, Boele J, Bruggeman FJ, Teusink B. A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803. Plant Physiol. 2014;pp-113.
    • (2014) Plant Physiol , pp. 113
    • Maarleveld, T.R.1    Boele, J.2    Bruggeman, F.J.3    Teusink, B.4
  • 12
    • 84941279254 scopus 로고    scopus 로고
    • CecAFDB: A curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics
    • Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, et al. CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics. Nucleic Acids Res. 2014; 43(D1):D549–57.
    • (2014) Nucleic Acids Res , vol.43 , Issue.D1 , pp. D549-D557
    • Zhang, Z.1    Shen, T.2    Rui, B.3    Zhou, W.4    Zhou, X.5    Shang, C.6
  • 13
    • 84863393849 scopus 로고    scopus 로고
    • OMero: Flexible, model-driven data management for experimental biology
    • PMID: 22373911
    • Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S, et al. OMERO: flexible, model-driven data management for experimental biology. Nat Methods. 2012; 9(3):245–53. https://doi.org/10.1038/nmeth.1896 PMID: 22373911
    • (2012) Nat Methods , vol.9 , Issue.3 , pp. 245-253
    • Allan, C.1    Burel, J.M.2    Moore, J.3    Blackburn, C.4    Linkert, M.5    Loynton, S.6
  • 14
    • 85056608533 scopus 로고    scopus 로고
    • Comment on “Predicting reaction performance in C–N cross-coupling using machine learning
    • Nov 16
    • Chuang KV, Keiser MJ. Comment on “Predicting reaction performance in C–N cross-coupling using machine learning.” Science. 2018 Nov 16; 362(6416).
    • (2018) Science , vol.362 , Issue.6416
    • Chuang, K.V.1    Keiser, M.J.2
  • 15
    • 85041912553 scopus 로고    scopus 로고
    • Facilitate collaborations among synthetic biology, metabolic engineering and machine learning
    • Wu SG, Shimizu K, Tang JKH, Tang YJ. Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. ChemBioEng Rev. 2016; 3(2):45–54.
    • (2016) ChemBioEng Rev , vol.3 , Issue.2 , pp. 45-54
    • Wu, S.G.1    Shimizu, K.2    Tang, J.K.H.3    Tang, Y.J.4
  • 16
    • 79952604817 scopus 로고    scopus 로고
    • Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables
    • PMID: 21404262
    • Colletti PF, Goyal Y, Varman AM, Feng X, Wu B, Tang YJ. Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables. Biotechnol Bioeng. 2011; 108 (4):893–901. https://doi.org/10.1002/bit.22996 PMID: 21404262
    • (2011) Biotechnol Bioeng , vol.108 , Issue.4 , pp. 893-901
    • Colletti, P.F.1    Goyal, Y.2    Varman, A.M.3    Feng, X.4    Wu, B.5    Tang, Y.J.6
  • 17
    • 46249120116 scopus 로고    scopus 로고
    • Multiple correspondence analysis
    • Abdi H, Valentin D. Multiple correspondence analysis. Encycl Meas Stat. 2007;651–7.
    • (2007) Encycl Meas Stat , pp. 651-657
    • Abdi, H.1    Valentin, D.2
  • 18
    • 67650510587 scopus 로고    scopus 로고
    • A tutorial on Principal Components Analysis Introduction
    • Smith LI. A tutorial on Principal Components Analysis Introduction. Statistics. www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf, 2002; 51:52.
    • (2002) Statistics , vol.51 , pp. 52
    • Smith, L.I.1
  • 19
    • 79961084093 scopus 로고    scopus 로고
    • Redesigning Escherichia coli metabolism for anaerobic production of isobutanol
    • 21642415
    • Trinh CT, Li J, Blanch HW, Clark DS. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol. 2011; 77(14):4894–904. https://doi.org/10.1128/AEM.00382-11PMID: 21642415
    • (2011) Appl Environ Microbiol , vol.77 , Issue.14 , pp. 4894-4904
    • Trinh, C.T.1    Li, J.2    Blanch, H.W.3    Clark, D.S.4
  • 20
    • 85031310018 scopus 로고    scopus 로고
    • IML1515, a knowledgebase that computes Escherichia coli traits
    • PMID: 29020004
    • Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017; 35(10):904. https://doi.org/10.1038/nbt.3956 PMID: 29020004
    • (2017) Nat Biotechnol , vol.35 , Issue.10 , pp. 904
    • Monk, J.M.1    Lloyd, C.J.2    Brunk, E.3    Mih, N.4    Sastry, A.5    King, Z.6
  • 24
    • 84978978745 scopus 로고    scopus 로고
    • Keras: Deep learning library for python. Convnets, recurrent neural networks, and more. Runs on theano and tensorflow
    • Chollet F. Keras: Deep learning library for python. convnets, recurrent neural networks, and more. runs on theano and tensorflow. GitHub Repos. https://github.com/keras-team/keras. 2015.
    • (2015) GitHub Repos
    • Chollet, F.1
  • 25
  • 26
    • 34247493236 scopus 로고    scopus 로고
    • Matplotlib: A 2D graphics environment
    • Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007; 9(3):90–5.
    • (2007) Comput Sci Eng , vol.9 , Issue.3 , pp. 90-95
    • Hunter, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.