-
1
-
-
84908019121
-
Big data opportunities and challenges: Discussions from data analytics perspectives
-
Zhou Z, Chawla N, Jin Y, et al. Big data opportunities and challenges: discussions from data analytics perspectives. IEEE Comput Intell Mag 2014;9(4):62–74.
-
(2014)
IEEE Comput Intell Mag
, vol.9
, Issue.4
, pp. 62-74
-
-
Zhou, Z.1
Chawla, N.2
Jin, Y.3
-
2
-
-
84877028141
-
Comprehensive molecular portraits of human breast tumors
-
The Cancer Genome Atlas Network
-
The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature 2012;490(7418):61–70.
-
(2012)
Nature
, vol.490
, Issue.7418
, pp. 61-70
-
-
-
3
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
The ENCODE Project Consortium
-
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57–74.
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
-
4
-
-
84923362619
-
Integrative analysis of 111 reference human epigenomes
-
Roadmap Epigenomics Consortium
-
Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–30.
-
(2015)
Nature
, vol.518
, pp. 317-330
-
-
Kundaje, A.1
Meuleman, W.2
-
5
-
-
84878682420
-
The genotype-tissue expression (GTEx) project
-
The GTEx Consortium
-
The GTEx Consortium. The genotype-tissue expression (GTEx) project. Nature Genetics 2013;45(6):580–5.
-
(2013)
Nature Genetics
, vol.45
, Issue.6
, pp. 580-585
-
-
-
6
-
-
42249087308
-
The complete genome of an individual by massively parallel DNA sequencing
-
Wheeler D, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008;452:872–6.
-
(2008)
Nature
, vol.452
, pp. 872-876
-
-
Wheeler, D.1
Srinivasan, M.2
Egholm, M.3
-
7
-
-
34250159524
-
Genome-wide mapping of in vivo protein-DNA interactions
-
Johnson D, Mortazavi A, Myers R, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007;316(5830):447–55.
-
(2007)
Science
, vol.316
, Issue.5830
, pp. 447-455
-
-
Johnson, D.1
Mortazavi, A.2
Myers, R.3
-
8
-
-
38649099445
-
High-resolution mapping and characterization of open chromatin across the genome
-
Boyle A, Davis S, Shulha H, et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 2008;132:311–22.
-
(2008)
Cell
, vol.132
, pp. 311-322
-
-
Boyle, A.1
Davis, S.2
Shulha, H.3
-
9
-
-
70450217879
-
Human DNA methylomes at base resolution show widespread epigenomic differences
-
Lister R, Pelizzola M, Dowen R, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315–22.
-
(2009)
Nature
, vol.462
, pp. 315-322
-
-
Lister, R.1
Pelizzola, M.2
Dowen, R.3
-
10
-
-
45549088326
-
The transcriptional landscape of the yeast genome defined by RNA sequencing
-
Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008;320(5881):1344–9.
-
(2008)
Science
, vol.320
, Issue.5881
, pp. 1344-1349
-
-
Nagalakshmi, U.1
Wang, Z.2
Waern, K.3
-
11
-
-
69249147045
-
Expression profiling of microRNAs by deep sequencing
-
Creighton C, Reid J, Gunaratne P. Expression profiling of microRNAs by deep sequencing. Brief Bioinform 2009;10(5):490–7.
-
(2009)
Brief Bioinform
, vol.10
, Issue.5
, pp. 490-497
-
-
Creighton, C.1
Reid, J.2
Gunaratne, P.3
-
12
-
-
58749095653
-
Reverse-phase protein lysate microarrays for cell signaling analysis
-
Spurrier B, Ramalingam S, Nishizuka S. Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 2008;3(11):1796–808.
-
(2008)
Nat Protoc
, vol.3
, Issue.11
, pp. 1796-1808
-
-
Spurrier, B.1
Ramalingam, S.2
Nishizuka, S.3
-
13
-
-
33645813378
-
Mass spectrometry and protein analysis
-
Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006;321(5771):212–7.
-
(2006)
Science
, vol.321
, Issue.5771
, pp. 212-217
-
-
Domon, B.1
Aebersold, R.2
-
14
-
-
84874345577
-
Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics
-
Dunn W, Erban A, Weber R, et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013;9:S44–66.
-
(2013)
Metabolomics
, vol.9
, pp. S44-S66
-
-
Dunn, W.1
Erban, A.2
Weber, R.3
-
15
-
-
67949110882
-
-
New Jersey: Wiley-IEEE Press
-
Xu R, Wunsch D. Clustering. New Jersey: Wiley-IEEE Press, 2008.
-
(2008)
Clustering
-
-
Xu, R.1
Wunsch, D.2
-
16
-
-
84925031191
-
Methods of integrating data to uncover genotype-phenotype interactions
-
Ritchie M, Holzinger E, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 2015;15:85–97.
-
(2015)
Nat Rev Genet
, vol.15
, pp. 85-97
-
-
Ritchie, M.1
Holzinger, E.2
Li, R.3
-
17
-
-
84899530032
-
Principles and methods of integrative genomic analyses in cancer
-
Kristensen V, Lingjarde O, Russnes H, et al. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer 2014;14:299–313.
-
(2014)
Nat Rev Cancer
, vol.14
, pp. 299-313
-
-
Kristensen, V.1
Lingjarde, O.2
Russnes, H.3
-
18
-
-
84906549588
-
A community effort to assess and improve drug sensitivity prediction algorithms
-
Costello J, Heiser L, Georgii E, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014;32:1202–12.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1202-1212
-
-
Costello, J.1
Heiser, L.2
Georgii, E.3
-
19
-
-
84959350566
-
The identification of cis-regulatory elements: A review from a machine learning perspective
-
Li Y, Chen C, Kaye A, et al. The identification of cis-regulatory elements: a review from a machine learning perspective. Biosystems 2015;138:6–17.
-
(2015)
Biosystems
, vol.138
, pp. 6-17
-
-
Li, Y.1
Chen, C.2
Kaye, A.3
-
20
-
-
1542559402
-
Support vector machine applications in computational biology
-
B Scholkopf, K Tsuda, JP Vert eds, Chap. 3. Cambridge, MA: MIT Press
-
Nobel W, Support vector machine applications in computational biology. In: B Scholkopf, K Tsuda, JP Vert (eds), Kernel Methods in Computational Biology, Chap. 3. Cambridge, MA: MIT Press, 2004, 71–92.
-
(2004)
Kernel Methods in Computational Biology
, pp. 71-92
-
-
Nobel, W.1
-
21
-
-
84962476203
-
Data integration in machine learning
-
IEEE, IEEE Press, Piscataway, NJ
-
Li Y, Ngom A. Data integration in machine learning. In: IEEE International Conference on Bioinformatics and Biomedicine, IEEE, IEEE Press, Piscataway, NJ, 2015, p. 1665–71.
-
(2015)
IEEE International Conference on Bioinformatics and Biomedicine
, pp. 1665-1671
-
-
Li, Y.1
Ngom, A.2
-
22
-
-
84948703087
-
Methods for biological data integration: Perspectives and challenges
-
Gligorijevic V, Przulj N. Methods for biological data integration: perspectives and challenges. J R Soc Interface 2015;12(112):20150571.
-
(2015)
J R Soc Interface
, vol.12
, Issue.112
, pp. 20150571
-
-
Gligorijevic, V.1
Przulj, N.2
-
23
-
-
79951662909
-
SVM-RFE based feature selection for tandem mass spectrum quality assessment
-
Ding J, Shi J, Wu F. SVM-RFE based feature selection for tandem mass spectrum quality assessment. Int J Data Min Bioinform 2011;5(1):73–88.
-
(2011)
Int J Data Min Bioinform
, vol.5
, Issue.1
, pp. 73-88
-
-
Ding, J.1
Shi, J.2
Wu, F.3
-
24
-
-
34249753618
-
Support vector networks
-
Cortes C, Vapnik V. Support vector networks. Mach Learn 1995;20:273–97.
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
25
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 1996;58(1):267–88.
-
(1996)
J R Stat Soc Ser B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
26
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B 2005;67(2):301–20.
-
(2005)
J R Stat Soc Ser B
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
27
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 2006;68(1):49–67.
-
(2006)
J R Stat Soc Ser B
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
28
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008;9(3):432–41.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
30
-
-
71149113559
-
Group Lasso with overlap and graph Lasso
-
ACM Press, New York, NY
-
Jacob L, Obozinski G, Vert JP. Group Lasso with overlap and graph Lasso. In: International Conference on Machine Learning, ACM Press, New York, NY, 2009, p. 433–40.
-
(2009)
International Conference on Machine Learning
, pp. 433-440
-
-
Jacob, L.1
Obozinski, G.2
Vert, J.P.3
-
31
-
-
84879900677
-
Efficient network-guided multi-locus association mapping with graph cuts
-
ISMB/ECCB2013
-
Azencott CA, Grimm D, Sugiyama M, et al. Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics 2012;29(ISMB/ECCB2013):i171–9.
-
(2012)
Bioinformatics
, vol.29
, pp. i171-i179
-
-
Azencott, C.A.1
Grimm, D.2
Sugiyama, M.3
-
32
-
-
33845263263
-
On model selection consistency of lasso
-
Zhao P, Yu B. On model selection consistency of lasso. J Mach Learn Res 2006;7:2541–63.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
33
-
-
33846114377
-
The adaptive LASSO and its oracle property
-
Zou H. The adaptive LASSO and its oracle property. J Am Stat Assoc 2006;101:1418–29.
-
(2006)
J Am Stat Assoc
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
35
-
-
84941756268
-
A selective review of robust variable selection with applications in bioinformatics
-
Wu C, Ma S. A selective review of robust variable selection with applications in bioinformatics. Brief Bioinform 2015;16(5):873–83.
-
(2015)
Brief Bioinform
, vol.16
, Issue.5
, pp. 873-883
-
-
Wu, C.1
Ma, S.2
-
36
-
-
79952266465
-
Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
-
Pique-Regi R, Degner J, Pai A, et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res 2011;21:447–55.
-
(2011)
Genome Res
, vol.21
, pp. 447-455
-
-
Pique-Regi, R.1
Degner, J.2
Pai, A.3
-
38
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
D Frisher, HJ Lenz eds Chap. Springer-Verlag New York, Inc, Secaucus, NJ
-
Chickering D, Learning Bayesian networks is NP-complete. In: D Frisher, HJ Lenz (eds.) Learning from Data: AI and Statistics V, Lecture Notes in Statistics, Chap. 12, Springer-Verlag New York, Inc, Secaucus, NJ, 1996, 121–30.
-
(1996)
Learning from Data: AI and Statistics V, Lecture Notes in Statistics
, vol.12
, pp. 121-130
-
-
Chickering, D.1
-
39
-
-
34548183010
-
Ideal Parent” structure learning for continuous variable Bayesian networks
-
Elidan G, Nachman I, Friedman N. “Ideal Parent” structure learning for continuous variable Bayesian networks. J Mach Learn Res 2007;8:1799–833.
-
(2007)
J Mach Learn Res
, vol.8
, pp. 1799-1833
-
-
Elidan, G.1
Nachman, I.2
Friedman, N.3
-
40
-
-
33847259436
-
Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables
-
Morgan Kaufmann Publishers Inc, San Francisco, CA
-
Davies S, Moore A. Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables. In: Proceedings of The Sixteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc, San Francisco, CA, 2000, p. 168–75.
-
(2000)
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence
, pp. 168-175
-
-
Davies, S.1
Moore, A.2
-
41
-
-
0042614837
-
Comparing Bayesian network classifiers
-
Morgan Kaufmann Publishers Inc, San Francisco, CA
-
Cheng J, Greiner R. Comparing Bayesian network classifiers. In: The Fifteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc, San Francisco, CA, 1999, p. 101–8.
-
(1999)
The Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 101-108
-
-
Cheng, J.1
Greiner, R.2
-
42
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 1995;20:197–243.
-
(1995)
Mach Learn
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
43
-
-
0026992322
-
An analysis of Bayesian classifiers
-
AAAI Press, Menlo Park, CA
-
Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers. In: The Tenth National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1992, p. 223–8.
-
(1992)
The Tenth National Conference on Artificial Intelligence
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
45
-
-
0038517651
-
Finding optimal Bayesian networks
-
Morgan Kaufmann Publishers Inc., San Francisco, CA
-
Chickering D, Meek C. Finding optimal Bayesian networks. In: The Eighteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, 2002, p. 94–102.
-
(2002)
The Eighteenth Conference on Uncertainty in Artificial Intelligence
, pp. 94-102
-
-
Chickering, D.1
Meek, C.2
-
46
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
M Jordan ed Chap. 11. Cambridge, MA: MIT
-
Heckerman D, A tutorial on learning with Bayesian networks. In: M Jordan (ed.) Learning in Graphical Models, Adaptive Computation and Machine Learning series, Chap. 11. Cambridge, MA: MIT, 1998, 301–54.
-
(1998)
Learning in Graphical Models, Adaptive Computation and Machine Learning Series
, pp. 301-354
-
-
Heckerman, D.1
-
47
-
-
0003802343
-
-
Chapman and Hall/CRC, Boca Raton, FL
-
Breiman L, Friedman J, Stone C, et al. Classification and Regression Trees. Chapman and Hall/CRC, Boca Raton, FL, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Stone, C.3
-
48
-
-
0003684449
-
-
2nd edn. Springer-Verlag New York, Inc., Secaucus, NJ
-
Friedman J, Tibshirani R, Hastie T, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer-Verlag New York, Inc., Secaucus, NJ, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Friedman, J.1
Tibshirani, R.2
Hastie, T.3
-
49
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
Opitz D, Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res 1999;11:169–98.
-
(1999)
J Artif Intell Res
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
50
-
-
80455125337
-
-
Technical report, Department of Computer Science, University College London
-
Sewell M. Ensemble Learning, Technical report, Department of Computer Science, University College London, 2011.
-
(2011)
Ensemble Learning
-
-
Sewell, M.1
-
51
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 1996;24:(3):123–140.
-
(1996)
Machine Learning
, vol.24
, Issue.3
, pp. 123-140
-
-
Breiman, L.1
-
53
-
-
0346786584
-
Arcing classifiers
-
Breiman L. Arcing classifiers. The Ann Stat 1998;26(3):801–49.
-
(1998)
The Ann Stat
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
55
-
-
54249099241
-
Consistency of random forests and other averaging classifiers
-
Biau G, Devroye L, Lugosi G. Consistency of random forests and other averaging classifiers. J Mach Learn Res 2008;9:2015–33.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2015-2033
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
56
-
-
84933565370
-
Consistency of random forests
-
Scornet E, Biau G, Vert JP. Consistency of random forests. Ann Stat 2015;43(4):1716–41.
-
(2015)
Ann Stat
, vol.43
, Issue.4
, pp. 1716-1741
-
-
Scornet, E.1
Biau, G.2
Vert, J.P.3
-
57
-
-
33748611921
-
Ensemble based systems in decision making
-
Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag 2006;6(3):21–45.
-
(2006)
IEEE Circuits Syst Mag
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
58
-
-
85032751446
-
Bootstrap inspired techniques in computational intelligence: Ensemble of classifiers, incremental learning, data fusion and missing features
-
Polikar R. Bootstrap inspired techniques in computational intelligence: Ensemble of classifiers, incremental learning, data fusion and missing features. IEEE Signal Proc Mag 2007;24(4):59–72.
-
(2007)
IEEE Signal Proc Mag
, vol.24
, Issue.4
, pp. 59-72
-
-
Polikar, R.1
-
59
-
-
84887090067
-
A survey of multiple classifier systems as hybrid systems
-
Wozniak M, Grana M, Corchado E. A survey of multiple classifier systems as hybrid systems. Inf Fusion 2014;16:3–17.
-
(2014)
Inf Fusion
, vol.16
, pp. 3-17
-
-
Wozniak, M.1
Grana, M.2
Corchado, E.3
-
60
-
-
20444392475
-
-
Technical report, Department of Statistics, University of California, Berkeley
-
Chen C, Liaw A, Breiman L. Using Random Forest to Learn Imbalanced Data. Technical report, Department of Statistics, University of California, Berkeley, 2004.
-
(2004)
Using Random Forest to Learn Imbalanced Data
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
61
-
-
84977474367
-
Problems with the nested granularity of feature domains in bioinformatics: The eXtasy case
-
Popovic D, Sifrim A, Davis J, et al. Problems with the nested granularity of feature domains in bioinformatics: the eXtasy case. BMC Bioinformatics 2015;16(Supp. 4):S2.
-
(2015)
BMC Bioinformatics
, vol.16
, pp. S2
-
-
Popovic, D.1
Sifrim, A.2
Davis, J.3
-
62
-
-
2942534096
-
Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
-
Pittman J, Huang E, Dressman H, et al. Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc Natl Acad Sci 2004;101(22):8431–6.
-
(2004)
Proc Natl Acad Sci
, vol.101
, Issue.22
, pp. 8431-8436
-
-
Pittman, J.1
Huang, E.2
Dressman, H.3
-
63
-
-
84899013173
-
Support vector regression machines
-
MIT Press, Cambridge, MA
-
Drucker H, Burges C, Kaufman L, et al. Support vector regression machines. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, 1996, 155–61.
-
(1996)
Advances in Neural Information Processing Systems
, pp. 155-161
-
-
Drucker, H.1
Burges, C.2
Kaufman, L.3
-
64
-
-
34548583274
-
A tutorial on spectral clustering
-
von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):395–416.
-
(2007)
Stat Comput
, vol.17
, Issue.4
, pp. 395-416
-
-
von Luxburg, U.1
-
65
-
-
84880712800
-
Sparse representation approaches for the classification of high-dimensional biological data
-
Li Y, Ngom A. Sparse representation approaches for the classification of high-dimensional biological data. BMC Syst Biol 2013;7(Suppl 4):S6.
-
(2013)
BMC Syst Biol
, vol.7
, pp. S6
-
-
Li, Y.1
Ngom, A.2
-
66
-
-
80052213499
-
Multiple kernel learning algorithms
-
Gonen M, Alpaydin E. Multiple kernel learning algorithms. J Mach Learn Research 2011;12:2211–68.
-
(2011)
J Mach Learn Research
, vol.12
, pp. 2211-2268
-
-
Gonen, M.1
Alpaydin, E.2
-
68
-
-
85162550129
-
Metric learning with multiple kernels
-
J Shawe-Taylor, R Zemel, Bartlett, et al. eds Curran Associates, Inc., Red Hook, NY
-
Wang J, Do HT, Woznica A, et al. Metric learning with multiple kernels. In: J Shawe-Taylor, R Zemel, P Bartlett, et al. (eds.) Advances in Neural Information Processing Systems 24. Curran Associates, Inc., Red Hook, NY, 2011, 1170–78.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 1170-1178
-
-
Wang, J.1
Do, H.T.2
Woznica, A.3
-
69
-
-
84879571292
-
Distance metric learning with application to clustering with side-information
-
S Becker, S Thrun, K Obermayer eds MIT Press, Cambridge, MA
-
Xing E, Jordan M, Russell S, et al. Distance metric learning with application to clustering with side-information. In: S Becker, S Thrun, K Obermayer (eds.) Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, MA, 2003, 521–28.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 521-528
-
-
Xing, E.1
Jordan, M.2
Russell, S.3
-
71
-
-
84887890691
-
Metric learning: A survey
-
Kulis B. Metric learning: a survey. Found Trends Mach Learn 2012;5(4):287–364.
-
(2012)
Found Trends Mach Learn
, vol.5
, Issue.4
, pp. 287-364
-
-
Kulis, B.1
-
72
-
-
84908474112
-
A decomposition method for large-scale sparse coding in representation learning
-
IEEE, IEEE Press, Piscataway, NJ
-
Li Y, Caron R, Ngom A. A decomposition method for large-scale sparse coding in representation learning. In: International Joint Conference on Neural Networks (IJCNN/WCCI), IEEE, IEEE Press, Piscataway, NJ, 2014, p. 3732–38.
-
(2014)
International Joint Conference on Neural Networks (IJCNN/WCCI)
, pp. 3732-3738
-
-
Li, Y.1
Caron, R.2
Ngom, A.3
-
73
-
-
34250721662
-
Optimal kernel selection in kernel Fisher discriminant analysis
-
ACM Press, New York, NY
-
Kim SJ, Magnani A, Boyd S. Optimal kernel selection in kernel Fisher discriminant analysis. In: International Conference on Machine Learning, ACM Press, New York, NY, 2006, p. 465–72.
-
(2006)
International Conference on Machine Learning
, pp. 465-472
-
-
Kim, S.J.1
Magnani, A.2
Boyd, S.3
-
75
-
-
84994501850
-
Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning
-
Zhang Y, Li A, Peng C, et al. Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning. IEEE/ACM Trans Comput Biol Bioinform 2016;DOI:10.1109/TCBB.2016.2551745.
-
(2016)
IEEE/ACM Trans Comput Biol Bioinform
-
-
Zhang, Y.1
Li, A.2
Peng, C.3
-
76
-
-
84895516704
-
Similarity network fusion for aggregating data types on a genomic scale
-
Wang B, Mezlini A, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11(3):333–7.
-
(2014)
Nat Methods
, vol.11
, Issue.3
, pp. 333-337
-
-
Wang, B.1
Mezlini, A.2
Demir, F.3
-
77
-
-
70449331456
-
Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
-
Shen R, Olshen A, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009;25(22):2906–12.
-
(2009)
Bioinformatics
, vol.25
, Issue.22
, pp. 2906-2912
-
-
Shen, R.1
Olshen, A.2
Ladanyi, M.3
-
78
-
-
84870305264
-
Wisdom of crowds for robust gene network inference
-
Marbach D, Costello J, Kuffner R, et al. Wisdom of crowds for robust gene network inference. Nat Methods 2012;9(8):796–804.
-
(2012)
Nat Methods
, vol.9
, Issue.8
, pp. 796-804
-
-
Marbach, D.1
Costello, J.2
Kuffner, R.3
-
79
-
-
85010938432
-
KeypathwayMinerWeb: Online multi-omics network enrichment
-
Web Server
-
List M, Alcaraz N, Dissing-Hansen M, et al. KeyPathwayMinerWeb: online multi-omics network enrichment. Nucleic Acids Res 2016;44:W98–104. (Web Server):
-
(2016)
Nucleic Acids Res
, vol.44
, pp. W98-W104
-
-
List, M.1
Alcaraz, N.2
Dissing-Hansen, M.3
-
80
-
-
84931037666
-
Gene network inference by fusing data from diverse distributions
-
Zitnik M, Zupan B. Gene network inference by fusing data from diverse distributions. Bioinformatics 2015;31:i230–9.
-
(2015)
Bioinformatics
, vol.31
, pp. i230-i239
-
-
Zitnik, M.1
Zupan, B.2
-
81
-
-
84922095357
-
Identifying disease genes by integrating multiple data sources
-
Chen B, Wang J, Li M, et al. Identifying disease genes by integrating multiple data sources. BMC Med Genomics 2014;7(Supp 2):S2.
-
(2014)
BMC Med Genomics
, vol.7
, pp. S2
-
-
Chen, B.1
Wang, J.2
Li, M.3
-
82
-
-
84883337795
-
Identifying protein complexes based on multiple topological structures in PPI networks
-
Chen B, Wu F. Identifying protein complexes based on multiple topological structures in PPI networks. IEEE Trans Nanobiosci 2013;12(3):165–72.
-
(2013)
IEEE Trans Nanobiosci
, vol.12
, Issue.3
, pp. 165-172
-
-
Chen, B.1
Wu, F.2
-
83
-
-
84982298202
-
Identifying individual-cancer-related genes by re-balancing the training samples
-
Chen B, Wang J, Shang X, et al. Identifying individual-cancer-related genes by re-balancing the training samples. IEEE Trans Nanobiosci 2016;DOI:10.1109/ TNB.2016.2553119.
-
(2016)
IEEE Trans Nanobiosci
-
-
Chen, B.1
Wang, J.2
Shang, X.3
-
84
-
-
84962383376
-
A fast and high performance algorithm for identifying human disease genes
-
Chen B, Li M, Wang J, et al. A fast and high performance algorithm for identifying human disease genes. BMC Med Genomics 2015;8(Suppl 3):S2.
-
(2015)
BMC Med Genomics
, vol.8
, pp. S2
-
-
Chen, B.1
Li, M.2
Wang, J.3
-
85
-
-
84922094426
-
Disease gene identification by using graph kernels and Markov random fields
-
Chen B, Li M, Wang J, et al. Disease gene identification by using graph kernels and Markov random fields. Sci China Life Sci 2014;57(11):1052–63.
-
(2014)
Sci China Life Sci
, vol.57
, Issue.11
, pp. 1052-1063
-
-
Chen, B.1
Li, M.2
Wang, J.3
-
86
-
-
84906539673
-
Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization
-
Ammad-ud-din M, Georgii E, Gonen M, et al. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization. J Chem Inf Model 2014;54(8):2347–59.
-
(2014)
J Chem Inf Model
, vol.54
, Issue.8
, pp. 2347-2359
-
-
Ammad-Ud-din, M.1
Georgii, E.2
Gonen, M.3
-
87
-
-
85041238374
-
Predicting microRNA-disease associations based on microRNA and disease similarity
-
Lan W, Wang J, Li M, et al. Predicting microRNA-disease associations based on microRNA and disease similarity. IEEE/ ACM Trans Comput Biol Bioinform 2016. DOI:10.1109/ TCBB.2016.2586190.
-
(2016)
IEEE/ ACM Trans Comput Biol Bioinform
-
-
Lan, W.1
Wang, J.2
Li, M.3
-
88
-
-
77952808324
-
Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network
-
Li Y, Patra J. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics 2010;26(9):1219–24.
-
(2010)
Bioinformatics
, vol.26
, Issue.9
, pp. 1219-1224
-
-
Li, Y.1
Patra, J.2
-
89
-
-
84862215494
-
Drug-target interaction prediction by random walk on the heterogeneous network
-
Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst 2012;8(7):1970–8.
-
(2012)
Mol Biosyst
, vol.8
, Issue.7
, pp. 1970-1978
-
-
Chen, X.1
Liu, M.X.2
Yan, G.Y.3
-
90
-
-
84934957115
-
Prediction of potential disease-associated microRNAs based on random walk
-
Xuan P, Han K, Guo Y, et al. Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics 2015;31(11):1805–15.
-
(2015)
Bioinformatics
, vol.31
, Issue.11
, pp. 1805-1815
-
-
Xuan, P.1
Han, K.2
Guo, Y.3
-
91
-
-
85029604507
-
Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
-
Liu Y, Zeng X, He Z, et al. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. IEEE/ACM Trans Comput Biol Bioinform 2016;DOI:10.1109/TCBB.2016.2550432.
-
(2016)
IEEE/ACM Trans Comput Biol Bioinform
-
-
Liu, Y.1
Zeng, X.2
He, Z.3
-
92
-
-
84887924060
-
Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation
-
Huang YF, Yeh HY, Soo VW. Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation. BMC Med Genomics 2013;6(Supp 3):S4.
-
(2013)
BMC Med Genomics
, vol.6
, pp. S4
-
-
Huang, Y.F.1
Yeh, H.Y.2
Soo, V.W.3
-
94
-
-
84976484958
-
Jumping across biomedical contexts using compressive data fusion
-
Zitnik M, Zupan B. Jumping across biomedical contexts using compressive data fusion. Bioinformatics 2016;32:i90–100.
-
(2016)
Bioinformatics
, vol.32
, pp. i90-i100
-
-
Zitnik, M.1
Zupan, B.2
-
96
-
-
2542430932
-
Singular value decomposition and principal component analysis
-
D Berrar, W Dubitzky, M Granzow eds Norwell, MA: Kluwer
-
Wall M, Rechtsteiner A, Rocha L, Singular value decomposition and principal component analysis. In: D Berrar, W Dubitzky, M Granzow (eds.) A Practical Approach to Microarray Data Analysis. Norwell, MA: Kluwer, 2003, 91–109.
-
(2003)
A Practical Approach to Microarray Data Analysis
, pp. 91-109
-
-
Wall, M.1
Rechtsteiner, A.2
Rocha, L.3
-
97
-
-
0003130097
-
The estimation of factor loadings by the method of maximum likelihood
-
Lawley D. The estimation of factor loadings by the method of maximum likelihood. Proc R Soc Edinb 1940;60:64–82.
-
(1940)
Proc R Soc Edinb
, vol.60
, pp. 64-82
-
-
Lawley, D.1
-
98
-
-
0242295767
-
Bayesian factor regression models in the “large p, small n” paradigm
-
West M. Bayesian factor regression models in the “large p, small n” paradigm. Bayesian Stat 2003;7:723–32.
-
(2003)
Bayesian Stat
, vol.7
, pp. 723-732
-
-
West, M.1
-
99
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
Lee D, Seung S. Learning the parts of objects by nonnegative matrix factorization. Nature 1999;401:788–91.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.1
Seung, S.2
-
100
-
-
77958479692
-
Cogaps: An R/C þþ package to identify patterns and biological process activity in transcriptomic data
-
Fertig E, Ding J, Favorov A, et al. CoGAPS: an R/C þþ package to identify patterns and biological process activity in transcriptomic data. Bioinformatics 2010;26(21):2792–3.
-
(2010)
Bioinformatics
, vol.26
, Issue.21
, pp. 2792-2793
-
-
Fertig, E.1
Ding, J.2
Favorov, A.3
-
101
-
-
84876097941
-
The non-negative matrix factorization toolbox for biological data mining
-
Li Y, Ngom A. The non-negative matrix factorization toolbox for biological data mining. BMC Source Code Biol Med 2013;8(1):10.
-
(2013)
BMC Source Code Biol Med
, vol.8
, Issue.1
, pp. 10
-
-
Li, Y.1
Ngom, A.2
-
102
-
-
84907819416
-
A fast multiplicative update algorithm for nonnegative matrix factorization and its convergence
-
Li L, Wu L, Zhang H, et al. A fast multiplicative update algorithm for nonnegative matrix factorization and its convergence. IEEE Trans Neural Netw Learn Syst 2014;25(10):1855–63.
-
(2014)
IEEE Trans Neural Netw Learn Syst
, vol.25
, Issue.10
, pp. 1855-1863
-
-
Li, L.1
Wu, L.2
Zhang, H.3
-
103
-
-
68649096448
-
Tensor decompositions and applications
-
Kolda T, Bader B. Tensor decompositions and applications. SIAM Rev 2009;51(3):455–500.
-
(2009)
SIAM Rev
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.1
Bader, B.2
-
104
-
-
79952383578
-
Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data
-
IEEE, IEEE Press, Piscataway, NJ
-
Li Y, Ngom A. Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data. In: IEEE International Conference on Bioinformatics and Biomedicine. IEEE, IEEE Press, Piscataway, NJ, 2010, p. 438–43.
-
(2010)
IEEE International Conference on Bioinformatics and Biomedicine
, pp. 438-443
-
-
Li, Y.1
Ngom, A.2
-
105
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006;313:504–7.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
106
-
-
84861125212
-
-
Technical report., Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
-
Hinton G. A practical guide to training restricted Boltzmann machines. Technical report., Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 2010.
-
(2010)
A Practical Guide to Training Restricted Boltzmann Machines
-
-
Hinton, G.1
-
107
-
-
84906938126
-
Versatile sparse matrix factorization: Theory and applications
-
Li Y, Ngom A. Versatile sparse matrix factorization: theory and applications. Neurocomputing 2014;145:23–9.
-
(2014)
Neurocomputing
, vol.145
, pp. 23-29
-
-
Li, Y.1
Ngom, A.2
-
108
-
-
84877727222
-
Bayesian group factor analysis
-
La Palma, Canary Islands
-
Virtanen S, Klami A, Khan S, et al. Bayesian group factor analysis. In: Artificial Intelligence and Statistics Conference, La Palma, Canary Islands, 2012, p. 1269–77.
-
(2012)
Artificial Intelligence and Statistics Conference
, pp. 1269-1277
-
-
Virtanen, S.1
Klami, A.2
Khan, S.3
-
111
-
-
84983268556
-
Sparse group factor analysis for biclustering of multiple data sources
-
Bunte K, Leppaaho E, Saarinen I, et al. Sparse group factor analysis for biclustering of multiple data sources. Bioinformatics 2016;32(16):2457–63.
-
(2016)
Bioinformatics
, vol.32
, Issue.16
, pp. 2457-2463
-
-
Bunte, K.1
Leppaaho, E.2
Saarinen, I.3
-
112
-
-
77954206273
-
Fabia: Factor analysis for bicluster acquisition
-
Hochreiter S, Bodenhofer U, Heusel M, et al. FABIA: Factor analysis for bicluster acquisition. Bioinformatics 2010;26(12):1520–7.
-
(2010)
Bioinformatics
, vol.26
, Issue.12
, pp. 1520-1527
-
-
Hochreiter, S.1
Bodenhofer, U.2
Heusel, M.3
-
113
-
-
84886433522
-
Multi-view clustering via joint nonnegative matrix factorization
-
Austin, USA
-
Liu J, Wang C, Gao J, et al. Multi-view clustering via joint nonnegative matrix factorization. In: SIAM International Conference on Data Mining, Austin, USA, 2013, p. 252–60.
-
(2013)
SIAM International Conference on Data Mining
, pp. 252-260
-
-
Liu, J.1
Wang, C.2
Gao, J.3
-
115
-
-
84868152524
-
Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
-
Zhang S, Liu C, Li W, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012;40(19):9379–91.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.19
, pp. 9379-9391
-
-
Zhang, S.1
Liu, C.2
Li, W.3
-
116
-
-
84959866210
-
A non-negative matrix factorization methods for detecting modules in heterogeneous omics multi-modal data
-
Yang Z, Michailidis G. A non-negative matrix factorization methods for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 2016;32(1):1–8.
-
(2016)
Bioinformatics
, vol.32
, Issue.1
, pp. 1-8
-
-
Yang, Z.1
Michailidis, G.2
-
117
-
-
84977070946
-
Integrative clustering of high-dimensional data with joint and individual clusters
-
Hellton K, Thoresen M. Integrative clustering of high-dimensional data with joint and individual clusters. Biostatistics 2016;17(3):537–48.
-
(2016)
Biostatistics
, vol.17
, Issue.3
, pp. 537-548
-
-
Hellton, K.1
Thoresen, M.2
-
118
-
-
84876058478
-
Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
-
JS
-
Lock E, Hoadley K, JS, et al. Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann Appl Stat 2013;7:1:523–42.
-
(2013)
Ann Appl Stat
, vol.7
, Issue.1
, pp. 523-542
-
-
Lock, E.1
Hoadley, K.2
-
119
-
-
0003000612
-
Nonlinear estimation by iterative least square procedures
-
F David ed New York: John Wiley and Sons Inc
-
Wold H, Nonlinear estimation by iterative least square procedures. In: F David (ed.) Research Papers in Statistics. New York: John Wiley and Sons Inc., 1966, 411–44.
-
(1966)
Research Papers in Statistics
, pp. 411-444
-
-
Wold, H.1
-
121
-
-
0036083139
-
Orthogonal projections to latent structures (O-PLS)
-
Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometr 2002;16:119–28.
-
(2002)
J Chemometr
, vol.16
, pp. 119-128
-
-
Trygg, J.1
Wold, S.2
-
122
-
-
0036085968
-
O2-PLS for qualitative and quantitative analysis in multivariate calibration
-
Trygg J. O2-PLS for qualitative and quantitative analysis in multivariate calibration. J Chemometr 2002;16:283–93.
-
(2002)
J Chemometr
, vol.16
, pp. 283-293
-
-
Trygg, J.1
-
123
-
-
0037282744
-
O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter
-
Trygg J, Wold S. O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. J Chemometr 2003;17:53–64.
-
(2003)
J Chemometr
, vol.17
, pp. 53-64
-
-
Trygg, J.1
Wold, S.2
-
124
-
-
36949021555
-
Data integration in plant biology: The O2PLS method for combined modeling of transcript and metabolite data
-
Bylesjo M, Eriksson D, Kusano M, et al. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J 2007;52:1181–91.
-
(2007)
Plant J
, vol.52
, pp. 1181-1191
-
-
Bylesjo, M.1
Eriksson, D.2
Kusano, M.3
-
125
-
-
80051934386
-
OnPLS- A novel multiblock method for the modelling of predictive and orthogonal variation
-
Lofstedt T, Trygg J. OnPLS- A novel multiblock method for the modelling of predictive and orthogonal variation. J Chemometr 2011;25:441–55.
-
(2011)
J Chemometr
, vol.25
, pp. 441-455
-
-
Lofstedt, T.1
Trygg, J.2
-
127
-
-
84890282232
-
OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- Superoxide dismutase Populus plants
-
Srivastava V, Obudulu O, Bygdell J, et al. OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants. BMC Genomics 2013;14:893.
-
(2013)
BMC Genomics
, vol.14
, pp. 893
-
-
Srivastava, V.1
Obudulu, O.2
Bygdell, J.3
-
128
-
-
35648954755
-
Kernel-based orthogonal projections to latent structures (K-OPLS)
-
Rantalainen M, Bylesjo M, Cloarec O, et al. Kernel-based orthogonal projections to latent structures (K-OPLS). J Chemometr 2007;21:376–85.
-
(2007)
J Chemometr
, vol.21
, pp. 376-385
-
-
Rantalainen, M.1
Bylesjo, M.2
Cloarec, O.3
-
129
-
-
36749028922
-
A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies
-
Omberg L, Golub G, Alter O. A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. Proc Natl Acad Sci USA 2007;104(47):18371–6.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.47
, pp. 18371-18376
-
-
Omberg, L.1
Golub, G.2
Alter, O.3
-
132
-
-
84943406525
-
Sparse multi-view matrix factorization: A multivariate approach to multiple tissue comparisons
-
Wang Z, Yuan W, Montana G. Sparse multi-view matrix factorization: a multivariate approach to multiple tissue comparisons. Bioinformatics 2015;31(19):3163–71.
-
(2015)
Bioinformatics
, vol.31
, Issue.19
, pp. 3163-3171
-
-
Wang, Z.1
Yuan, W.2
Montana, G.3
-
133
-
-
0344982260
-
Robust methods for partial least squares regression
-
Hubert M, Branden K. Robust methods for partial least squares regression. J Cheometr 2003;17:537–49.
-
(2003)
J Cheometr
, vol.17
, pp. 537-549
-
-
Hubert, M.1
Branden, K.2
-
134
-
-
84903737038
-
Robust manifold nonnegative matrix factorization
-
Article
-
Huang J, Nie F, Huang H, et al. Robust manifold nonnegative matrix factorization. ACM Trans Knowl Discov Data 2014;8(3):Article No. 11.
-
(2014)
ACM Trans Knowl Discov Data
, vol.8
, Issue.3
-
-
Huang, J.1
Nie, F.2
Huang, H.3
-
135
-
-
52249113125
-
Robust tensor factorization using R1 norm
-
IEEE Press, Piscataway, NJ
-
Huang H, Ding C. Robust tensor factorization using R1 norm. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE Press, Piscataway, NJ, 2008, p. 1–8.
-
(2008)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Huang, H.1
Ding, C.2
-
136
-
-
77649235651
-
Transformations in variational Bayesian factor analysis to speed up learning
-
Luttinen J, Ilin A. Transformations in variational Bayesian factor analysis to speed up learning. Neurocomputing 2010;73:1093–102.
-
(2010)
Neurocomputing
, vol.73
, pp. 1093-1102
-
-
Luttinen, J.1
Ilin, A.2
-
137
-
-
67650927380
-
Bayesian inference for nonnegative matrix factorization models
-
Cemgil A. Bayesian inference for nonnegative matrix factorization models. Computat Intell Neurosci 2009;2009:785152.
-
(2009)
Computat Intell Neurosci
, vol.2009
, pp. 785152
-
-
Cemgil, A.1
-
139
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput 2006;18:1527–54.
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.3
-
140
-
-
84862286946
-
Deep Boltzmann machine
-
of JMLR: W&CP, Microtome Publishing, Brookline, MA
-
Salakhutdinov R, Hinton G. Deep Boltzmann machine. In: International Conference on Artificial Intelligence and Statistics, Volume 5 of JMLR: W&CP, Microtome Publishing, Brookline, MA, 2009, p. 448–455.
-
(2009)
International Conference on Artificial Intelligence and Statistics
, vol.5
, pp. 448-455
-
-
Salakhutdinov, R.1
Hinton, G.2
-
141
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
M Arbib ed Cambridge, MA: MIT Press
-
LeCun Y, Bengio Y, Convolutional networks for images, speech, and time series. In: M Arbib (ed.) The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, 1995, 255–8.
-
(1995)
The Handbook of Brain Theory and Neural Networks
, pp. 255-258
-
-
LeCun, Y.1
Bengio, Y.2
-
142
-
-
84936143793
-
Towards end-to-end speech recognition with recurrent neural networks
-
JMLR: W&CP Curran Associates, Inc., Red Hook, NY
-
Graves A, Jaitly N. Towards end-to-end speech recognition with recurrent neural networks. In: International Conference on Machine Learning (ICML), JMLR: W&CP volume 32, Curran Associates, Inc., Red Hook, NY, 2014, p. 1764–72.
-
(2014)
International Conference on Machine Learning (ICML)
, vol.32
, pp. 1764-1772
-
-
Graves, A.1
Jaitly, N.2
-
143
-
-
84969134763
-
Deep feature selection: Theory and application to identify enhancers and promoters
-
Li Y, Chen C, Wasserman W. Deep feature selection: theory and application to identify enhancers and promoters. J Comput Biol 2016;23(5):322–36.
-
(2016)
J Comput Biol
, vol.23
, Issue.5
, pp. 322-336
-
-
Li, Y.1
Chen, C.2
Wasserman, W.3
-
144
-
-
84916911784
-
Multimodal learning with deep Boltzmann machines
-
Srivastava N, Salakhutdinov R. Multimodal learning with deep Boltzmann machines. J Mach Learn Res 2014;15:2949–80.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 2949-2980
-
-
Srivastava, N.1
Salakhutdinov, R.2
-
145
-
-
84939178155
-
Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach
-
Liang M, Li Z, Chen T, et al. Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. IEEE/ACM Trans Comput Biol Bioinform 2015;12(4):928–37.
-
(2015)
IEEE/ACM Trans Comput Biol Bioinform
, vol.12
, Issue.4
, pp. 928-937
-
-
Liang, M.1
Li, Z.2
Chen, T.3
-
146
-
-
84944735469
-
-
Book in preparation for MIT Press, Cambridge, MA
-
Bengio IGY, Courville A. Deep Learning, 2016. Book in preparation for MIT Press, Cambridge, MA. http://www.deeplearningbook.org
-
(2016)
Deep Learning
-
-
Bengio, I.G.Y.1
Courville, A.2
-
147
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw 1991;4(2):251–7.
-
(1991)
Neural Netw
, vol.4
, Issue.2
, pp. 251-257
-
-
Hornik, K.1
-
148
-
-
0027632576
-
Strong universal consistency of neural network classifiers
-
Farago A, Lugosi G. Strong universal consistency of neural network classifiers. IEEE Trans Inf Theory 1993;39(4):1146–51.
-
(1993)
IEEE Trans Inf Theory
, vol.39
, Issue.4
, pp. 1146-1151
-
-
Farago, A.1
Lugosi, G.2
-
149
-
-
0029777584
-
Robust error measure for supervised neural network learning with outliers
-
Liano K. Robust error measure for supervised neural network learning with outliers. IEEE Trans Neural Netw 1996;7(1):246–50.
-
(1996)
IEEE Trans Neural Netw
, vol.7
, Issue.1
, pp. 246-250
-
-
Liano, K.1
-
150
-
-
84890492030
-
An investigation of deep neural networks for noise robust speech recognition
-
Seltzer M, Yu D, Wang Y. An investigation of deep neural networks for noise robust speech recognition. In: International Conference on Acoustics, Speech, and Signal Processing, 2013, p. 7398–492.
-
(2013)
International Conference on Acoustics, Speech, and Signal Processing
, pp. 7398-7492
-
-
Seltzer, M.1
Yu, D.2
Wang, Y.3
-
151
-
-
85081699852
-
Deep maxout networks applied to noise-robust speech recognition, chap
-
Springer-Verlag, Berlin Heidelberg
-
de-la Calle-Silos F, Gallardo-Antoln A, Pelaez-Moreno C. Deep maxout networks applied to noise-robust speech recognition, chap. In: Advances in Speech and Language Technologies for Iberian Languages. Springer-Verlag, Berlin Heidelberg, 2014, 109–18.
-
(2014)
Advances in Speech and Language Technologies for Iberian Languages
, pp. 109-118
-
-
de-La Calle-Silos, F.1
Gallardo-Antoln, A.2
Pelaez-Moreno, C.3
-
152
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929–58.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
-
154
-
-
84922774692
-
Autism spectrum disorder: An omics perspective
-
Woods A, Wormwood K, Wetie A, et al. Autism spectrum disorder: An omics perspective. Proteomics 2015;9(1-2):159–68.
-
(2015)
Proteomics
, vol.9
, Issue.1-2
, pp. 159-168
-
-
Woods, A.1
Wormwood, K.2
Wetie, A.3
-
155
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1–22.
-
(2010)
J Stat Softw
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
159
-
-
77955124773
-
Learning Bayesian networks with the bnlearn R package
-
Scutari M. Learning Bayesian networks with the bnlearn R package. J Stat Softw 2010;35(3):1–22.
-
(2010)
J Stat Softw
, vol.35
, Issue.3
, pp. 1-22
-
-
Scutari, M.1
-
160
-
-
0345040873
-
Classification and regression by randomForest
-
Liaw A, Wiener M. Classification and regression by randomForest. R News 2002;2(3):18–22.
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
164
-
-
33846829987
-
The pls package: Principal component and partial least squares regression in R
-
Mevik BH, Wehrens R. The pls package: Principal component and partial least squares regression in R. J Stat Softw 2007;18(2):1–23.
-
(2007)
J Stat Softw
, vol.18
, Issue.2
, pp. 1-23
-
-
Mevik, B.H.1
Wehrens, R.2
-
165
-
-
77950530973
-
Sparse partial least squares classification for high dimensional data
-
Chung D, Keles S. Sparse partial least squares classification for high dimensional data. Stat Appl Genet Mol Bioinform 2010;9(1):17.
-
(2010)
Stat Appl Genet Mol Bioinform
, vol.9
, Issue.1
, pp. 17
-
-
Chung, D.1
Keles, S.2
-
167
-
-
42149172522
-
K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
-
Bylesjo M, Rantalainen M, Nicholson J, et al. K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space. BMC Bioinformatics 2008;9:106.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 106
-
-
Bylesjo, M.1
Rantalainen, M.2
Nicholson, J.3
-
170
-
-
84868499444
-
Tutorial on the LASSO approach to sparse modelling
-
Rasmussen M, Bro RA. tutorial on the LASSO approach to sparse modelling. Chemometr Intell Lab Syst 2012;119:21–31.
-
(2012)
Chemometr Intell Lab Syst
, vol.119
, pp. 21-31
-
-
Rasmussen, M.1
Bro, R.A.2
|