메뉴 건너뛰기




Volumn 19, Issue 2, 2018, Pages 325-340

A review on machine learning principles for multi-view biological data integration

Author keywords

Data integration; Deep learning; Matrix factorization; Multi omics data; Multiple kernel learning; Network fusion; Random forest

Indexed keywords

DATA INTEGRATION; DEEP LEARNING; DEEP NEURAL NETWORK; KERNEL METHOD; MULTIOMICS; RANDOM FOREST; REVIEW; ANIMAL; BIOLOGICAL MODEL; GENE REGULATORY NETWORK; HUMAN; MACHINE LEARNING; PROCEDURES; SYSTEMS BIOLOGY;

EID: 85049474548     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbw113     Document Type: Review
Times cited : (356)

References (171)
  • 1
    • 84908019121 scopus 로고    scopus 로고
    • Big data opportunities and challenges: Discussions from data analytics perspectives
    • Zhou Z, Chawla N, Jin Y, et al. Big data opportunities and challenges: discussions from data analytics perspectives. IEEE Comput Intell Mag 2014;9(4):62–74.
    • (2014) IEEE Comput Intell Mag , vol.9 , Issue.4 , pp. 62-74
    • Zhou, Z.1    Chawla, N.2    Jin, Y.3
  • 2
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumors
    • The Cancer Genome Atlas Network
    • The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature 2012;490(7418):61–70.
    • (2012) Nature , vol.490 , Issue.7418 , pp. 61-70
  • 3
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • The ENCODE Project Consortium
    • The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57–74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 4
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium
    • Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–30.
    • (2015) Nature , vol.518 , pp. 317-330
    • Kundaje, A.1    Meuleman, W.2
  • 5
    • 84878682420 scopus 로고    scopus 로고
    • The genotype-tissue expression (GTEx) project
    • The GTEx Consortium
    • The GTEx Consortium. The genotype-tissue expression (GTEx) project. Nature Genetics 2013;45(6):580–5.
    • (2013) Nature Genetics , vol.45 , Issue.6 , pp. 580-585
  • 6
    • 42249087308 scopus 로고    scopus 로고
    • The complete genome of an individual by massively parallel DNA sequencing
    • Wheeler D, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008;452:872–6.
    • (2008) Nature , vol.452 , pp. 872-876
    • Wheeler, D.1    Srinivasan, M.2    Egholm, M.3
  • 7
    • 34250159524 scopus 로고    scopus 로고
    • Genome-wide mapping of in vivo protein-DNA interactions
    • Johnson D, Mortazavi A, Myers R, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007;316(5830):447–55.
    • (2007) Science , vol.316 , Issue.5830 , pp. 447-455
    • Johnson, D.1    Mortazavi, A.2    Myers, R.3
  • 8
    • 38649099445 scopus 로고    scopus 로고
    • High-resolution mapping and characterization of open chromatin across the genome
    • Boyle A, Davis S, Shulha H, et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 2008;132:311–22.
    • (2008) Cell , vol.132 , pp. 311-322
    • Boyle, A.1    Davis, S.2    Shulha, H.3
  • 9
    • 70450217879 scopus 로고    scopus 로고
    • Human DNA methylomes at base resolution show widespread epigenomic differences
    • Lister R, Pelizzola M, Dowen R, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315–22.
    • (2009) Nature , vol.462 , pp. 315-322
    • Lister, R.1    Pelizzola, M.2    Dowen, R.3
  • 10
    • 45549088326 scopus 로고    scopus 로고
    • The transcriptional landscape of the yeast genome defined by RNA sequencing
    • Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008;320(5881):1344–9.
    • (2008) Science , vol.320 , Issue.5881 , pp. 1344-1349
    • Nagalakshmi, U.1    Wang, Z.2    Waern, K.3
  • 11
    • 69249147045 scopus 로고    scopus 로고
    • Expression profiling of microRNAs by deep sequencing
    • Creighton C, Reid J, Gunaratne P. Expression profiling of microRNAs by deep sequencing. Brief Bioinform 2009;10(5):490–7.
    • (2009) Brief Bioinform , vol.10 , Issue.5 , pp. 490-497
    • Creighton, C.1    Reid, J.2    Gunaratne, P.3
  • 12
    • 58749095653 scopus 로고    scopus 로고
    • Reverse-phase protein lysate microarrays for cell signaling analysis
    • Spurrier B, Ramalingam S, Nishizuka S. Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 2008;3(11):1796–808.
    • (2008) Nat Protoc , vol.3 , Issue.11 , pp. 1796-1808
    • Spurrier, B.1    Ramalingam, S.2    Nishizuka, S.3
  • 13
    • 33645813378 scopus 로고    scopus 로고
    • Mass spectrometry and protein analysis
    • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006;321(5771):212–7.
    • (2006) Science , vol.321 , Issue.5771 , pp. 212-217
    • Domon, B.1    Aebersold, R.2
  • 14
    • 84874345577 scopus 로고    scopus 로고
    • Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics
    • Dunn W, Erban A, Weber R, et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013;9:S44–66.
    • (2013) Metabolomics , vol.9 , pp. S44-S66
    • Dunn, W.1    Erban, A.2    Weber, R.3
  • 15
    • 67949110882 scopus 로고    scopus 로고
    • New Jersey: Wiley-IEEE Press
    • Xu R, Wunsch D. Clustering. New Jersey: Wiley-IEEE Press, 2008.
    • (2008) Clustering
    • Xu, R.1    Wunsch, D.2
  • 16
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype-phenotype interactions
    • Ritchie M, Holzinger E, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 2015;15:85–97.
    • (2015) Nat Rev Genet , vol.15 , pp. 85-97
    • Ritchie, M.1    Holzinger, E.2    Li, R.3
  • 17
    • 84899530032 scopus 로고    scopus 로고
    • Principles and methods of integrative genomic analyses in cancer
    • Kristensen V, Lingjarde O, Russnes H, et al. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer 2014;14:299–313.
    • (2014) Nat Rev Cancer , vol.14 , pp. 299-313
    • Kristensen, V.1    Lingjarde, O.2    Russnes, H.3
  • 18
    • 84906549588 scopus 로고    scopus 로고
    • A community effort to assess and improve drug sensitivity prediction algorithms
    • Costello J, Heiser L, Georgii E, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014;32:1202–12.
    • (2014) Nat Biotechnol , vol.32 , pp. 1202-1212
    • Costello, J.1    Heiser, L.2    Georgii, E.3
  • 19
    • 84959350566 scopus 로고    scopus 로고
    • The identification of cis-regulatory elements: A review from a machine learning perspective
    • Li Y, Chen C, Kaye A, et al. The identification of cis-regulatory elements: a review from a machine learning perspective. Biosystems 2015;138:6–17.
    • (2015) Biosystems , vol.138 , pp. 6-17
    • Li, Y.1    Chen, C.2    Kaye, A.3
  • 20
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • B Scholkopf, K Tsuda, JP Vert eds, Chap. 3. Cambridge, MA: MIT Press
    • Nobel W, Support vector machine applications in computational biology. In: B Scholkopf, K Tsuda, JP Vert (eds), Kernel Methods in Computational Biology, Chap. 3. Cambridge, MA: MIT Press, 2004, 71–92.
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Nobel, W.1
  • 22
    • 84948703087 scopus 로고    scopus 로고
    • Methods for biological data integration: Perspectives and challenges
    • Gligorijevic V, Przulj N. Methods for biological data integration: perspectives and challenges. J R Soc Interface 2015;12(112):20150571.
    • (2015) J R Soc Interface , vol.12 , Issue.112 , pp. 20150571
    • Gligorijevic, V.1    Przulj, N.2
  • 23
    • 79951662909 scopus 로고    scopus 로고
    • SVM-RFE based feature selection for tandem mass spectrum quality assessment
    • Ding J, Shi J, Wu F. SVM-RFE based feature selection for tandem mass spectrum quality assessment. Int J Data Min Bioinform 2011;5(1):73–88.
    • (2011) Int J Data Min Bioinform , vol.5 , Issue.1 , pp. 73-88
    • Ding, J.1    Shi, J.2    Wu, F.3
  • 24
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V. Support vector networks. Mach Learn 1995;20:273–97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 25
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 1996;58(1):267–88.
    • (1996) J R Stat Soc Ser B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B 2005;67(2):301–20.
    • (2005) J R Stat Soc Ser B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 27
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 2006;68(1):49–67.
    • (2006) J R Stat Soc Ser B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 28
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008;9(3):432–41.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 31
    • 84879900677 scopus 로고    scopus 로고
    • Efficient network-guided multi-locus association mapping with graph cuts
    • ISMB/ECCB2013
    • Azencott CA, Grimm D, Sugiyama M, et al. Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics 2012;29(ISMB/ECCB2013):i171–9.
    • (2012) Bioinformatics , vol.29 , pp. i171-i179
    • Azencott, C.A.1    Grimm, D.2    Sugiyama, M.3
  • 32
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao P, Yu B. On model selection consistency of lasso. J Mach Learn Res 2006;7:2541–63.
    • (2006) J Mach Learn Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 33
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive LASSO and its oracle property
    • Zou H. The adaptive LASSO and its oracle property. J Am Stat Assoc 2006;101:1418–29.
    • (2006) J Am Stat Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 35
    • 84941756268 scopus 로고    scopus 로고
    • A selective review of robust variable selection with applications in bioinformatics
    • Wu C, Ma S. A selective review of robust variable selection with applications in bioinformatics. Brief Bioinform 2015;16(5):873–83.
    • (2015) Brief Bioinform , vol.16 , Issue.5 , pp. 873-883
    • Wu, C.1    Ma, S.2
  • 36
    • 79952266465 scopus 로고    scopus 로고
    • Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data
    • Pique-Regi R, Degner J, Pai A, et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res 2011;21:447–55.
    • (2011) Genome Res , vol.21 , pp. 447-455
    • Pique-Regi, R.1    Degner, J.2    Pai, A.3
  • 38
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • D Frisher, HJ Lenz eds Chap. Springer-Verlag New York, Inc, Secaucus, NJ
    • Chickering D, Learning Bayesian networks is NP-complete. In: D Frisher, HJ Lenz (eds.) Learning from Data: AI and Statistics V, Lecture Notes in Statistics, Chap. 12, Springer-Verlag New York, Inc, Secaucus, NJ, 1996, 121–30.
    • (1996) Learning from Data: AI and Statistics V, Lecture Notes in Statistics , vol.12 , pp. 121-130
    • Chickering, D.1
  • 39
    • 34548183010 scopus 로고    scopus 로고
    • Ideal Parent” structure learning for continuous variable Bayesian networks
    • Elidan G, Nachman I, Friedman N. “Ideal Parent” structure learning for continuous variable Bayesian networks. J Mach Learn Res 2007;8:1799–833.
    • (2007) J Mach Learn Res , vol.8 , pp. 1799-1833
    • Elidan, G.1    Nachman, I.2    Friedman, N.3
  • 40
    • 33847259436 scopus 로고    scopus 로고
    • Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables
    • Morgan Kaufmann Publishers Inc, San Francisco, CA
    • Davies S, Moore A. Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables. In: Proceedings of The Sixteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc, San Francisco, CA, 2000, p. 168–75.
    • (2000) Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence , pp. 168-175
    • Davies, S.1    Moore, A.2
  • 42
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 1995;20:197–243.
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 49
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz D, Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res 1999;11:169–98.
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 50
    • 80455125337 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science, University College London
    • Sewell M. Ensemble Learning, Technical report, Department of Computer Science, University College London, 2011.
    • (2011) Ensemble Learning
    • Sewell, M.1
  • 51
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996;24:(3):123–140.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 123-140
    • Breiman, L.1
  • 53
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. The Ann Stat 1998;26(3):801–49.
    • (1998) The Ann Stat , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 55
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • Biau G, Devroye L, Lugosi G. Consistency of random forests and other averaging classifiers. J Mach Learn Res 2008;9:2015–33.
    • (2008) J Mach Learn Res , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 56
    • 84933565370 scopus 로고    scopus 로고
    • Consistency of random forests
    • Scornet E, Biau G, Vert JP. Consistency of random forests. Ann Stat 2015;43(4):1716–41.
    • (2015) Ann Stat , vol.43 , Issue.4 , pp. 1716-1741
    • Scornet, E.1    Biau, G.2    Vert, J.P.3
  • 57
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag 2006;6(3):21–45.
    • (2006) IEEE Circuits Syst Mag , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 58
    • 85032751446 scopus 로고    scopus 로고
    • Bootstrap inspired techniques in computational intelligence: Ensemble of classifiers, incremental learning, data fusion and missing features
    • Polikar R. Bootstrap inspired techniques in computational intelligence: Ensemble of classifiers, incremental learning, data fusion and missing features. IEEE Signal Proc Mag 2007;24(4):59–72.
    • (2007) IEEE Signal Proc Mag , vol.24 , Issue.4 , pp. 59-72
    • Polikar, R.1
  • 59
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • Wozniak M, Grana M, Corchado E. A survey of multiple classifier systems as hybrid systems. Inf Fusion 2014;16:3–17.
    • (2014) Inf Fusion , vol.16 , pp. 3-17
    • Wozniak, M.1    Grana, M.2    Corchado, E.3
  • 61
    • 84977474367 scopus 로고    scopus 로고
    • Problems with the nested granularity of feature domains in bioinformatics: The eXtasy case
    • Popovic D, Sifrim A, Davis J, et al. Problems with the nested granularity of feature domains in bioinformatics: the eXtasy case. BMC Bioinformatics 2015;16(Supp. 4):S2.
    • (2015) BMC Bioinformatics , vol.16 , pp. S2
    • Popovic, D.1    Sifrim, A.2    Davis, J.3
  • 62
    • 2942534096 scopus 로고    scopus 로고
    • Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
    • Pittman J, Huang E, Dressman H, et al. Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc Natl Acad Sci 2004;101(22):8431–6.
    • (2004) Proc Natl Acad Sci , vol.101 , Issue.22 , pp. 8431-8436
    • Pittman, J.1    Huang, E.2    Dressman, H.3
  • 64
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):395–416.
    • (2007) Stat Comput , vol.17 , Issue.4 , pp. 395-416
    • von Luxburg, U.1
  • 65
    • 84880712800 scopus 로고    scopus 로고
    • Sparse representation approaches for the classification of high-dimensional biological data
    • Li Y, Ngom A. Sparse representation approaches for the classification of high-dimensional biological data. BMC Syst Biol 2013;7(Suppl 4):S6.
    • (2013) BMC Syst Biol , vol.7 , pp. S6
    • Li, Y.1    Ngom, A.2
  • 66
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gonen M, Alpaydin E. Multiple kernel learning algorithms. J Mach Learn Research 2011;12:2211–68.
    • (2011) J Mach Learn Research , vol.12 , pp. 2211-2268
    • Gonen, M.1    Alpaydin, E.2
  • 68
    • 85162550129 scopus 로고    scopus 로고
    • Metric learning with multiple kernels
    • J Shawe-Taylor, R Zemel, Bartlett, et al. eds Curran Associates, Inc., Red Hook, NY
    • Wang J, Do HT, Woznica A, et al. Metric learning with multiple kernels. In: J Shawe-Taylor, R Zemel, P Bartlett, et al. (eds.) Advances in Neural Information Processing Systems 24. Curran Associates, Inc., Red Hook, NY, 2011, 1170–78.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 1170-1178
    • Wang, J.1    Do, H.T.2    Woznica, A.3
  • 69
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • S Becker, S Thrun, K Obermayer eds MIT Press, Cambridge, MA
    • Xing E, Jordan M, Russell S, et al. Distance metric learning with application to clustering with side-information. In: S Becker, S Thrun, K Obermayer (eds.) Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, MA, 2003, 521–28.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 521-528
    • Xing, E.1    Jordan, M.2    Russell, S.3
  • 71
    • 84887890691 scopus 로고    scopus 로고
    • Metric learning: A survey
    • Kulis B. Metric learning: a survey. Found Trends Mach Learn 2012;5(4):287–364.
    • (2012) Found Trends Mach Learn , vol.5 , Issue.4 , pp. 287-364
    • Kulis, B.1
  • 72
    • 84908474112 scopus 로고    scopus 로고
    • A decomposition method for large-scale sparse coding in representation learning
    • IEEE, IEEE Press, Piscataway, NJ
    • Li Y, Caron R, Ngom A. A decomposition method for large-scale sparse coding in representation learning. In: International Joint Conference on Neural Networks (IJCNN/WCCI), IEEE, IEEE Press, Piscataway, NJ, 2014, p. 3732–38.
    • (2014) International Joint Conference on Neural Networks (IJCNN/WCCI) , pp. 3732-3738
    • Li, Y.1    Caron, R.2    Ngom, A.3
  • 73
    • 34250721662 scopus 로고    scopus 로고
    • Optimal kernel selection in kernel Fisher discriminant analysis
    • ACM Press, New York, NY
    • Kim SJ, Magnani A, Boyd S. Optimal kernel selection in kernel Fisher discriminant analysis. In: International Conference on Machine Learning, ACM Press, New York, NY, 2006, p. 465–72.
    • (2006) International Conference on Machine Learning , pp. 465-472
    • Kim, S.J.1    Magnani, A.2    Boyd, S.3
  • 75
    • 84994501850 scopus 로고    scopus 로고
    • Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning
    • Zhang Y, Li A, Peng C, et al. Improve glioblastoma multiforme prognosis prediction by using feature selection and multiple kernel learning. IEEE/ACM Trans Comput Biol Bioinform 2016;DOI:10.1109/TCBB.2016.2551745.
    • (2016) IEEE/ACM Trans Comput Biol Bioinform
    • Zhang, Y.1    Li, A.2    Peng, C.3
  • 76
    • 84895516704 scopus 로고    scopus 로고
    • Similarity network fusion for aggregating data types on a genomic scale
    • Wang B, Mezlini A, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11(3):333–7.
    • (2014) Nat Methods , vol.11 , Issue.3 , pp. 333-337
    • Wang, B.1    Mezlini, A.2    Demir, F.3
  • 77
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen R, Olshen A, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009;25(22):2906–12.
    • (2009) Bioinformatics , vol.25 , Issue.22 , pp. 2906-2912
    • Shen, R.1    Olshen, A.2    Ladanyi, M.3
  • 78
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach D, Costello J, Kuffner R, et al. Wisdom of crowds for robust gene network inference. Nat Methods 2012;9(8):796–804.
    • (2012) Nat Methods , vol.9 , Issue.8 , pp. 796-804
    • Marbach, D.1    Costello, J.2    Kuffner, R.3
  • 79
    • 85010938432 scopus 로고    scopus 로고
    • KeypathwayMinerWeb: Online multi-omics network enrichment
    • Web Server
    • List M, Alcaraz N, Dissing-Hansen M, et al. KeyPathwayMinerWeb: online multi-omics network enrichment. Nucleic Acids Res 2016;44:W98–104. (Web Server):
    • (2016) Nucleic Acids Res , vol.44 , pp. W98-W104
    • List, M.1    Alcaraz, N.2    Dissing-Hansen, M.3
  • 80
    • 84931037666 scopus 로고    scopus 로고
    • Gene network inference by fusing data from diverse distributions
    • Zitnik M, Zupan B. Gene network inference by fusing data from diverse distributions. Bioinformatics 2015;31:i230–9.
    • (2015) Bioinformatics , vol.31 , pp. i230-i239
    • Zitnik, M.1    Zupan, B.2
  • 81
    • 84922095357 scopus 로고    scopus 로고
    • Identifying disease genes by integrating multiple data sources
    • Chen B, Wang J, Li M, et al. Identifying disease genes by integrating multiple data sources. BMC Med Genomics 2014;7(Supp 2):S2.
    • (2014) BMC Med Genomics , vol.7 , pp. S2
    • Chen, B.1    Wang, J.2    Li, M.3
  • 82
    • 84883337795 scopus 로고    scopus 로고
    • Identifying protein complexes based on multiple topological structures in PPI networks
    • Chen B, Wu F. Identifying protein complexes based on multiple topological structures in PPI networks. IEEE Trans Nanobiosci 2013;12(3):165–72.
    • (2013) IEEE Trans Nanobiosci , vol.12 , Issue.3 , pp. 165-172
    • Chen, B.1    Wu, F.2
  • 83
    • 84982298202 scopus 로고    scopus 로고
    • Identifying individual-cancer-related genes by re-balancing the training samples
    • Chen B, Wang J, Shang X, et al. Identifying individual-cancer-related genes by re-balancing the training samples. IEEE Trans Nanobiosci 2016;DOI:10.1109/ TNB.2016.2553119.
    • (2016) IEEE Trans Nanobiosci
    • Chen, B.1    Wang, J.2    Shang, X.3
  • 84
    • 84962383376 scopus 로고    scopus 로고
    • A fast and high performance algorithm for identifying human disease genes
    • Chen B, Li M, Wang J, et al. A fast and high performance algorithm for identifying human disease genes. BMC Med Genomics 2015;8(Suppl 3):S2.
    • (2015) BMC Med Genomics , vol.8 , pp. S2
    • Chen, B.1    Li, M.2    Wang, J.3
  • 85
    • 84922094426 scopus 로고    scopus 로고
    • Disease gene identification by using graph kernels and Markov random fields
    • Chen B, Li M, Wang J, et al. Disease gene identification by using graph kernels and Markov random fields. Sci China Life Sci 2014;57(11):1052–63.
    • (2014) Sci China Life Sci , vol.57 , Issue.11 , pp. 1052-1063
    • Chen, B.1    Li, M.2    Wang, J.3
  • 86
    • 84906539673 scopus 로고    scopus 로고
    • Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization
    • Ammad-ud-din M, Georgii E, Gonen M, et al. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization. J Chem Inf Model 2014;54(8):2347–59.
    • (2014) J Chem Inf Model , vol.54 , Issue.8 , pp. 2347-2359
    • Ammad-Ud-din, M.1    Georgii, E.2    Gonen, M.3
  • 87
    • 85041238374 scopus 로고    scopus 로고
    • Predicting microRNA-disease associations based on microRNA and disease similarity
    • Lan W, Wang J, Li M, et al. Predicting microRNA-disease associations based on microRNA and disease similarity. IEEE/ ACM Trans Comput Biol Bioinform 2016. DOI:10.1109/ TCBB.2016.2586190.
    • (2016) IEEE/ ACM Trans Comput Biol Bioinform
    • Lan, W.1    Wang, J.2    Li, M.3
  • 88
    • 77952808324 scopus 로고    scopus 로고
    • Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network
    • Li Y, Patra J. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics 2010;26(9):1219–24.
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1219-1224
    • Li, Y.1    Patra, J.2
  • 89
    • 84862215494 scopus 로고    scopus 로고
    • Drug-target interaction prediction by random walk on the heterogeneous network
    • Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst 2012;8(7):1970–8.
    • (2012) Mol Biosyst , vol.8 , Issue.7 , pp. 1970-1978
    • Chen, X.1    Liu, M.X.2    Yan, G.Y.3
  • 90
    • 84934957115 scopus 로고    scopus 로고
    • Prediction of potential disease-associated microRNAs based on random walk
    • Xuan P, Han K, Guo Y, et al. Prediction of potential disease-associated microRNAs based on random walk. Bioinformatics 2015;31(11):1805–15.
    • (2015) Bioinformatics , vol.31 , Issue.11 , pp. 1805-1815
    • Xuan, P.1    Han, K.2    Guo, Y.3
  • 91
    • 85029604507 scopus 로고    scopus 로고
    • Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
    • Liu Y, Zeng X, He Z, et al. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. IEEE/ACM Trans Comput Biol Bioinform 2016;DOI:10.1109/TCBB.2016.2550432.
    • (2016) IEEE/ACM Trans Comput Biol Bioinform
    • Liu, Y.1    Zeng, X.2    He, Z.3
  • 92
    • 84887924060 scopus 로고    scopus 로고
    • Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation
    • Huang YF, Yeh HY, Soo VW. Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation. BMC Med Genomics 2013;6(Supp 3):S4.
    • (2013) BMC Med Genomics , vol.6 , pp. S4
    • Huang, Y.F.1    Yeh, H.Y.2    Soo, V.W.3
  • 94
    • 84976484958 scopus 로고    scopus 로고
    • Jumping across biomedical contexts using compressive data fusion
    • Zitnik M, Zupan B. Jumping across biomedical contexts using compressive data fusion. Bioinformatics 2016;32:i90–100.
    • (2016) Bioinformatics , vol.32 , pp. i90-i100
    • Zitnik, M.1    Zupan, B.2
  • 96
    • 2542430932 scopus 로고    scopus 로고
    • Singular value decomposition and principal component analysis
    • D Berrar, W Dubitzky, M Granzow eds Norwell, MA: Kluwer
    • Wall M, Rechtsteiner A, Rocha L, Singular value decomposition and principal component analysis. In: D Berrar, W Dubitzky, M Granzow (eds.) A Practical Approach to Microarray Data Analysis. Norwell, MA: Kluwer, 2003, 91–109.
    • (2003) A Practical Approach to Microarray Data Analysis , pp. 91-109
    • Wall, M.1    Rechtsteiner, A.2    Rocha, L.3
  • 97
    • 0003130097 scopus 로고
    • The estimation of factor loadings by the method of maximum likelihood
    • Lawley D. The estimation of factor loadings by the method of maximum likelihood. Proc R Soc Edinb 1940;60:64–82.
    • (1940) Proc R Soc Edinb , vol.60 , pp. 64-82
    • Lawley, D.1
  • 98
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the “large p, small n” paradigm
    • West M. Bayesian factor regression models in the “large p, small n” paradigm. Bayesian Stat 2003;7:723–32.
    • (2003) Bayesian Stat , vol.7 , pp. 723-732
    • West, M.1
  • 99
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee D, Seung S. Learning the parts of objects by nonnegative matrix factorization. Nature 1999;401:788–91.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, S.2
  • 100
    • 77958479692 scopus 로고    scopus 로고
    • Cogaps: An R/C þþ package to identify patterns and biological process activity in transcriptomic data
    • Fertig E, Ding J, Favorov A, et al. CoGAPS: an R/C þþ package to identify patterns and biological process activity in transcriptomic data. Bioinformatics 2010;26(21):2792–3.
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2792-2793
    • Fertig, E.1    Ding, J.2    Favorov, A.3
  • 101
    • 84876097941 scopus 로고    scopus 로고
    • The non-negative matrix factorization toolbox for biological data mining
    • Li Y, Ngom A. The non-negative matrix factorization toolbox for biological data mining. BMC Source Code Biol Med 2013;8(1):10.
    • (2013) BMC Source Code Biol Med , vol.8 , Issue.1 , pp. 10
    • Li, Y.1    Ngom, A.2
  • 102
    • 84907819416 scopus 로고    scopus 로고
    • A fast multiplicative update algorithm for nonnegative matrix factorization and its convergence
    • Li L, Wu L, Zhang H, et al. A fast multiplicative update algorithm for nonnegative matrix factorization and its convergence. IEEE Trans Neural Netw Learn Syst 2014;25(10):1855–63.
    • (2014) IEEE Trans Neural Netw Learn Syst , vol.25 , Issue.10 , pp. 1855-1863
    • Li, L.1    Wu, L.2    Zhang, H.3
  • 103
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda T, Bader B. Tensor decompositions and applications. SIAM Rev 2009;51(3):455–500.
    • (2009) SIAM Rev , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.1    Bader, B.2
  • 104
    • 79952383578 scopus 로고    scopus 로고
    • Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data
    • IEEE, IEEE Press, Piscataway, NJ
    • Li Y, Ngom A. Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data. In: IEEE International Conference on Bioinformatics and Biomedicine. IEEE, IEEE Press, Piscataway, NJ, 2010, p. 438–43.
    • (2010) IEEE International Conference on Bioinformatics and Biomedicine , pp. 438-443
    • Li, Y.1    Ngom, A.2
  • 105
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006;313:504–7.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 106
    • 84861125212 scopus 로고    scopus 로고
    • Technical report., Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
    • Hinton G. A practical guide to training restricted Boltzmann machines. Technical report., Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 2010.
    • (2010) A Practical Guide to Training Restricted Boltzmann Machines
    • Hinton, G.1
  • 107
    • 84906938126 scopus 로고    scopus 로고
    • Versatile sparse matrix factorization: Theory and applications
    • Li Y, Ngom A. Versatile sparse matrix factorization: theory and applications. Neurocomputing 2014;145:23–9.
    • (2014) Neurocomputing , vol.145 , pp. 23-29
    • Li, Y.1    Ngom, A.2
  • 110
    • 84877621868 scopus 로고    scopus 로고
    • Bayesian cononical correlation analysis
    • Klami A, Virtanen S, Kaski S. Bayesian cononical correlation analysis. J Mach Learn Res 2013;14:965–1003.
    • (2013) J Mach Learn Res , vol.14 , pp. 965-1003
    • Klami, A.1    Virtanen, S.2    Kaski, S.3
  • 111
    • 84983268556 scopus 로고    scopus 로고
    • Sparse group factor analysis for biclustering of multiple data sources
    • Bunte K, Leppaaho E, Saarinen I, et al. Sparse group factor analysis for biclustering of multiple data sources. Bioinformatics 2016;32(16):2457–63.
    • (2016) Bioinformatics , vol.32 , Issue.16 , pp. 2457-2463
    • Bunte, K.1    Leppaaho, E.2    Saarinen, I.3
  • 112
    • 77954206273 scopus 로고    scopus 로고
    • Fabia: Factor analysis for bicluster acquisition
    • Hochreiter S, Bodenhofer U, Heusel M, et al. FABIA: Factor analysis for bicluster acquisition. Bioinformatics 2010;26(12):1520–7.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. 1520-1527
    • Hochreiter, S.1    Bodenhofer, U.2    Heusel, M.3
  • 113
    • 84886433522 scopus 로고    scopus 로고
    • Multi-view clustering via joint nonnegative matrix factorization
    • Austin, USA
    • Liu J, Wang C, Gao J, et al. Multi-view clustering via joint nonnegative matrix factorization. In: SIAM International Conference on Data Mining, Austin, USA, 2013, p. 252–60.
    • (2013) SIAM International Conference on Data Mining , pp. 252-260
    • Liu, J.1    Wang, C.2    Gao, J.3
  • 115
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang S, Liu C, Li W, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012;40(19):9379–91.
    • (2012) Nucleic Acids Res , vol.40 , Issue.19 , pp. 9379-9391
    • Zhang, S.1    Liu, C.2    Li, W.3
  • 116
    • 84959866210 scopus 로고    scopus 로고
    • A non-negative matrix factorization methods for detecting modules in heterogeneous omics multi-modal data
    • Yang Z, Michailidis G. A non-negative matrix factorization methods for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 2016;32(1):1–8.
    • (2016) Bioinformatics , vol.32 , Issue.1 , pp. 1-8
    • Yang, Z.1    Michailidis, G.2
  • 117
    • 84977070946 scopus 로고    scopus 로고
    • Integrative clustering of high-dimensional data with joint and individual clusters
    • Hellton K, Thoresen M. Integrative clustering of high-dimensional data with joint and individual clusters. Biostatistics 2016;17(3):537–48.
    • (2016) Biostatistics , vol.17 , Issue.3 , pp. 537-548
    • Hellton, K.1    Thoresen, M.2
  • 118
    • 84876058478 scopus 로고    scopus 로고
    • Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
    • JS
    • Lock E, Hoadley K, JS, et al. Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann Appl Stat 2013;7:1:523–42.
    • (2013) Ann Appl Stat , vol.7 , Issue.1 , pp. 523-542
    • Lock, E.1    Hoadley, K.2
  • 119
    • 0003000612 scopus 로고
    • Nonlinear estimation by iterative least square procedures
    • F David ed New York: John Wiley and Sons Inc
    • Wold H, Nonlinear estimation by iterative least square procedures. In: F David (ed.) Research Papers in Statistics. New York: John Wiley and Sons Inc., 1966, 411–44.
    • (1966) Research Papers in Statistics , pp. 411-444
    • Wold, H.1
  • 121
    • 0036083139 scopus 로고    scopus 로고
    • Orthogonal projections to latent structures (O-PLS)
    • Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometr 2002;16:119–28.
    • (2002) J Chemometr , vol.16 , pp. 119-128
    • Trygg, J.1    Wold, S.2
  • 122
    • 0036085968 scopus 로고    scopus 로고
    • O2-PLS for qualitative and quantitative analysis in multivariate calibration
    • Trygg J. O2-PLS for qualitative and quantitative analysis in multivariate calibration. J Chemometr 2002;16:283–93.
    • (2002) J Chemometr , vol.16 , pp. 283-293
    • Trygg, J.1
  • 123
    • 0037282744 scopus 로고    scopus 로고
    • O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter
    • Trygg J, Wold S. O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. J Chemometr 2003;17:53–64.
    • (2003) J Chemometr , vol.17 , pp. 53-64
    • Trygg, J.1    Wold, S.2
  • 124
    • 36949021555 scopus 로고    scopus 로고
    • Data integration in plant biology: The O2PLS method for combined modeling of transcript and metabolite data
    • Bylesjo M, Eriksson D, Kusano M, et al. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J 2007;52:1181–91.
    • (2007) Plant J , vol.52 , pp. 1181-1191
    • Bylesjo, M.1    Eriksson, D.2    Kusano, M.3
  • 125
    • 80051934386 scopus 로고    scopus 로고
    • OnPLS- A novel multiblock method for the modelling of predictive and orthogonal variation
    • Lofstedt T, Trygg J. OnPLS- A novel multiblock method for the modelling of predictive and orthogonal variation. J Chemometr 2011;25:441–55.
    • (2011) J Chemometr , vol.25 , pp. 441-455
    • Lofstedt, T.1    Trygg, J.2
  • 127
    • 84890282232 scopus 로고    scopus 로고
    • OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- Superoxide dismutase Populus plants
    • Srivastava V, Obudulu O, Bygdell J, et al. OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants. BMC Genomics 2013;14:893.
    • (2013) BMC Genomics , vol.14 , pp. 893
    • Srivastava, V.1    Obudulu, O.2    Bygdell, J.3
  • 128
    • 35648954755 scopus 로고    scopus 로고
    • Kernel-based orthogonal projections to latent structures (K-OPLS)
    • Rantalainen M, Bylesjo M, Cloarec O, et al. Kernel-based orthogonal projections to latent structures (K-OPLS). J Chemometr 2007;21:376–85.
    • (2007) J Chemometr , vol.21 , pp. 376-385
    • Rantalainen, M.1    Bylesjo, M.2    Cloarec, O.3
  • 129
    • 36749028922 scopus 로고    scopus 로고
    • A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies
    • Omberg L, Golub G, Alter O. A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. Proc Natl Acad Sci USA 2007;104(47):18371–6.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.47 , pp. 18371-18376
    • Omberg, L.1    Golub, G.2    Alter, O.3
  • 132
    • 84943406525 scopus 로고    scopus 로고
    • Sparse multi-view matrix factorization: A multivariate approach to multiple tissue comparisons
    • Wang Z, Yuan W, Montana G. Sparse multi-view matrix factorization: a multivariate approach to multiple tissue comparisons. Bioinformatics 2015;31(19):3163–71.
    • (2015) Bioinformatics , vol.31 , Issue.19 , pp. 3163-3171
    • Wang, Z.1    Yuan, W.2    Montana, G.3
  • 133
    • 0344982260 scopus 로고    scopus 로고
    • Robust methods for partial least squares regression
    • Hubert M, Branden K. Robust methods for partial least squares regression. J Cheometr 2003;17:537–49.
    • (2003) J Cheometr , vol.17 , pp. 537-549
    • Hubert, M.1    Branden, K.2
  • 134
    • 84903737038 scopus 로고    scopus 로고
    • Robust manifold nonnegative matrix factorization
    • Article
    • Huang J, Nie F, Huang H, et al. Robust manifold nonnegative matrix factorization. ACM Trans Knowl Discov Data 2014;8(3):Article No. 11.
    • (2014) ACM Trans Knowl Discov Data , vol.8 , Issue.3
    • Huang, J.1    Nie, F.2    Huang, H.3
  • 136
    • 77649235651 scopus 로고    scopus 로고
    • Transformations in variational Bayesian factor analysis to speed up learning
    • Luttinen J, Ilin A. Transformations in variational Bayesian factor analysis to speed up learning. Neurocomputing 2010;73:1093–102.
    • (2010) Neurocomputing , vol.73 , pp. 1093-1102
    • Luttinen, J.1    Ilin, A.2
  • 137
    • 67650927380 scopus 로고    scopus 로고
    • Bayesian inference for nonnegative matrix factorization models
    • Cemgil A. Bayesian inference for nonnegative matrix factorization models. Computat Intell Neurosci 2009;2009:785152.
    • (2009) Computat Intell Neurosci , vol.2009 , pp. 785152
    • Cemgil, A.1
  • 139
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput 2006;18:1527–54.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 141
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • M Arbib ed Cambridge, MA: MIT Press
    • LeCun Y, Bengio Y, Convolutional networks for images, speech, and time series. In: M Arbib (ed.) The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, 1995, 255–8.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 255-258
    • LeCun, Y.1    Bengio, Y.2
  • 142
    • 84936143793 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • JMLR: W&CP Curran Associates, Inc., Red Hook, NY
    • Graves A, Jaitly N. Towards end-to-end speech recognition with recurrent neural networks. In: International Conference on Machine Learning (ICML), JMLR: W&CP volume 32, Curran Associates, Inc., Red Hook, NY, 2014, p. 1764–72.
    • (2014) International Conference on Machine Learning (ICML) , vol.32 , pp. 1764-1772
    • Graves, A.1    Jaitly, N.2
  • 143
    • 84969134763 scopus 로고    scopus 로고
    • Deep feature selection: Theory and application to identify enhancers and promoters
    • Li Y, Chen C, Wasserman W. Deep feature selection: theory and application to identify enhancers and promoters. J Comput Biol 2016;23(5):322–36.
    • (2016) J Comput Biol , vol.23 , Issue.5 , pp. 322-336
    • Li, Y.1    Chen, C.2    Wasserman, W.3
  • 144
    • 84916911784 scopus 로고    scopus 로고
    • Multimodal learning with deep Boltzmann machines
    • Srivastava N, Salakhutdinov R. Multimodal learning with deep Boltzmann machines. J Mach Learn Res 2014;15:2949–80.
    • (2014) J Mach Learn Res , vol.15 , pp. 2949-2980
    • Srivastava, N.1    Salakhutdinov, R.2
  • 145
    • 84939178155 scopus 로고    scopus 로고
    • Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach
    • Liang M, Li Z, Chen T, et al. Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. IEEE/ACM Trans Comput Biol Bioinform 2015;12(4):928–37.
    • (2015) IEEE/ACM Trans Comput Biol Bioinform , vol.12 , Issue.4 , pp. 928-937
    • Liang, M.1    Li, Z.2    Chen, T.3
  • 146
    • 84944735469 scopus 로고    scopus 로고
    • Book in preparation for MIT Press, Cambridge, MA
    • Bengio IGY, Courville A. Deep Learning, 2016. Book in preparation for MIT Press, Cambridge, MA. http://www.deeplearningbook.org
    • (2016) Deep Learning
    • Bengio, I.G.Y.1    Courville, A.2
  • 147
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw 1991;4(2):251–7.
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 148
    • 0027632576 scopus 로고
    • Strong universal consistency of neural network classifiers
    • Farago A, Lugosi G. Strong universal consistency of neural network classifiers. IEEE Trans Inf Theory 1993;39(4):1146–51.
    • (1993) IEEE Trans Inf Theory , vol.39 , Issue.4 , pp. 1146-1151
    • Farago, A.1    Lugosi, G.2
  • 149
    • 0029777584 scopus 로고    scopus 로고
    • Robust error measure for supervised neural network learning with outliers
    • Liano K. Robust error measure for supervised neural network learning with outliers. IEEE Trans Neural Netw 1996;7(1):246–50.
    • (1996) IEEE Trans Neural Netw , vol.7 , Issue.1 , pp. 246-250
    • Liano, K.1
  • 152
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929–58.
    • (2014) J Mach Learn Res , vol.15 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3
  • 154
    • 84922774692 scopus 로고    scopus 로고
    • Autism spectrum disorder: An omics perspective
    • Woods A, Wormwood K, Wetie A, et al. Autism spectrum disorder: An omics perspective. Proteomics 2015;9(1-2):159–68.
    • (2015) Proteomics , vol.9 , Issue.1-2 , pp. 159-168
    • Woods, A.1    Wormwood, K.2    Wetie, A.3
  • 155
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1–22.
    • (2010) J Stat Softw , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 159
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian networks with the bnlearn R package
    • Scutari M. Learning Bayesian networks with the bnlearn R package. J Stat Softw 2010;35(3):1–22.
    • (2010) J Stat Softw , vol.35 , Issue.3 , pp. 1-22
    • Scutari, M.1
  • 160
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A, Wiener M. Classification and regression by randomForest. R News 2002;2(3):18–22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 164
    • 33846829987 scopus 로고    scopus 로고
    • The pls package: Principal component and partial least squares regression in R
    • Mevik BH, Wehrens R. The pls package: Principal component and partial least squares regression in R. J Stat Softw 2007;18(2):1–23.
    • (2007) J Stat Softw , vol.18 , Issue.2 , pp. 1-23
    • Mevik, B.H.1    Wehrens, R.2
  • 165
    • 77950530973 scopus 로고    scopus 로고
    • Sparse partial least squares classification for high dimensional data
    • Chung D, Keles S. Sparse partial least squares classification for high dimensional data. Stat Appl Genet Mol Bioinform 2010;9(1):17.
    • (2010) Stat Appl Genet Mol Bioinform , vol.9 , Issue.1 , pp. 17
    • Chung, D.1    Keles, S.2
  • 167
    • 42149172522 scopus 로고    scopus 로고
    • K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
    • Bylesjo M, Rantalainen M, Nicholson J, et al. K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space. BMC Bioinformatics 2008;9:106.
    • (2008) BMC Bioinformatics , vol.9 , pp. 106
    • Bylesjo, M.1    Rantalainen, M.2    Nicholson, J.3
  • 170
    • 84868499444 scopus 로고    scopus 로고
    • Tutorial on the LASSO approach to sparse modelling
    • Rasmussen M, Bro RA. tutorial on the LASSO approach to sparse modelling. Chemometr Intell Lab Syst 2012;119:21–31.
    • (2012) Chemometr Intell Lab Syst , vol.119 , pp. 21-31
    • Rasmussen, M.1    Bro, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.