-
1
-
-
84962491989
-
Studying bacterial multispecies biofilms: where to start?
-
Røder HL, Sørensen SJ, Burmølle M. 2016. Studying bacterial multispecies biofilms: where to start? Trends Microbiol 24:503–513. https://doi.org/10.1016/j.tim.2016.02.019.
-
(2016)
Trends Microbiol
, vol.24
, pp. 503-513
-
-
Røder, HL1
Sørensen, SJ2
Burmølle, M.3
-
2
-
-
84946888006
-
Interspecies interactions are an integral determinant of microbial community dynamics
-
Aziz FAA, Suzuki K, Ohtaki A, Sagegami K, Hirai H, Seno J, Mizuno N, Inuzuka Y, Saito Y, Tashiro Y, Hiraishi A, Futamata H. 2015. Interspecies interactions are an integral determinant of microbial community dynamics. Front Microbiol 6:1148. https://doi.org/10.3389/fmicb.2015.01148.
-
(2015)
Front Microbiol
, vol.6
, pp. 1148
-
-
Aziz, FAA1
Suzuki, K2
Ohtaki, A3
Sagegami, K4
Hirai, H5
Seno, J6
Mizuno, N7
Inuzuka, Y8
Saito, Y9
Tashiro, Y10
Hiraishi, A11
Futamata, H.12
-
3
-
-
85045285050
-
Co-occurring soil bacteria exhibit a robust competitive hierarchy and lack of non-transitive interactions
-
Higgins LM, Friedman J, Shen H, Gore J. 2017. Co-occurring soil bacteria exhibit a robust competitive hierarchy and lack of non-transitive interactions. bioRxiv https://doi.org/10.1101/175737.
-
(2017)
bioRxiv
-
-
Higgins, LM1
Friedman, J2
Shen, H3
Gore, J.4
-
4
-
-
84982735422
-
High-order species interactions shape ecosystem diversity
-
Bairey E, Kelsic ED, Kishony R. 2016. High-order species interactions shape ecosystem diversity. Nat Commun 7:12285. https://doi.org/10.1038/ncomms12285.
-
(2016)
Nat Commun
, vol.7
, pp. 12285
-
-
Bairey, E1
Kelsic, ED2
Kishony, R.3
-
5
-
-
84901273253
-
Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics
-
Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, Bonilla G, Kar A, Leiby N, Mehta P, Marx CJ, Segrè D. 2014. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 7:1104–1115. https://doi.org/10.1016/j.celrep.2014.03.070.
-
(2014)
Cell Rep
, vol.7
, pp. 1104-1115
-
-
Harcombe, WR1
Riehl, WJ2
Dukovski, I3
Granger, BR4
Betts, A5
Lang, AH6
Bonilla, G7
Kar, A8
Leiby, N9
Mehta, P10
Marx, CJ11
Segrè, D.12
-
6
-
-
84947216877
-
The ecology of the microbiome: networks, competition, and stability
-
Coyte KZ, Schluter J, Foster KR. 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:663–666. https://doi.org/10.1126/science.aad2602.
-
(2015)
Science
, vol.350
, pp. 663-666
-
-
Coyte, KZ1
Schluter, J2
Foster, KR.3
-
7
-
-
0345060796
-
Chemical communication among bacteria
-
Taga ME, Bassler BL. 2003. Chemical communication among bacteria. Proc Natl Acad Sci U S A 100:14549–14554. https://doi.org/10.1073/pnas.1934514100.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 14549-14554
-
-
Taga, ME1
Bassler, BL.2
-
8
-
-
84975511062
-
Microbial interactions lead to rapid micro-scale successions on model marine particles
-
Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. 2016. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun 7:11965. https://doi.org/10.1038/ncomms11965.
-
(2016)
Nat Commun
, vol.7
, pp. 11965
-
-
Datta, MS1
Sliwerska, E2
Gore, J3
Polz, MF4
Cordero, OX.5
-
9
-
-
84962855606
-
Principles for designing synthetic microbial communities
-
Johns NI, Blazejewski T, Gomes ALC, Wang HH. 2016. Principles for designing synthetic microbial communities. Curr Opin Microbiol 31: 146–153. https://doi.org/10.1016/j.mib.2016.03.010.
-
(2016)
Curr Opin Microbiol
, vol.31
, pp. 146-153
-
-
Johns, NI1
Blazejewski, T2
Gomes, ALC3
Wang, HH.4
-
10
-
-
33846936445
-
Synthetic cooperation in engineered yeast populations
-
Shou W, Ram S, Vilar JMG. 2007. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882. https://doi .org/10.1073/pnas.0610575104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 1877-1882
-
-
Shou, W1
Ram, S2
Vilar, JMG.3
-
11
-
-
84960804622
-
Synthetic ecology of microbes: mathematical models and applications
-
Zomorrodi AR, Segrè D. 2016. Synthetic ecology of microbes: mathematical models and applications. J Mol Biol 428:837–861. https://doi.org/10.1016/j.jmb.2015.10.019.
-
(2016)
J Mol Biol
, vol.428
, pp. 837-861
-
-
Zomorrodi, AR1
Segrè, D.2
-
12
-
-
85049264694
-
Deciphering microbial interactions in synthetic human gut microbiome communities
-
Venturelli OS, Carr AC, Fisher G, Hsu RH, Lau R, Bowen BP, Hromada S, Northen T, Arkin AP. 2018. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14:e8157. https://doi.org/10.15252/msb.20178157.
-
(2018)
Mol Syst Biol
, vol.14
, pp. e8157
-
-
Venturelli, OS1
Carr, AC2
Fisher, G3
Hsu, RH4
Lau, R5
Bowen, BP6
Hromada, S7
Northen, T8
Arkin, AP.9
-
13
-
-
85020218190
-
Community structure follows simple assembly rules in microbial microcosms
-
Friedman J, Higgins LM, Gore J. 2017. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol 1:109. https://doi.org/10.1038/s41559-017-0109.
-
(2017)
Nat Ecol Evol
, vol.1
, pp. 109
-
-
Friedman, J1
Higgins, LM2
Gore, J.3
-
14
-
-
84922394953
-
Co-culture systems and technologies: taking synthetic biology to the next level
-
Goers L, Freemont P, Polizzi KM. 2014. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11:20140065. https://doi.org/10.1098/rsif.2014.0065.
-
(2014)
J R Soc Interface
, vol.11
, pp. 20140065
-
-
Goers, L1
Freemont, P2
Polizzi, KM.3
-
15
-
-
84906317195
-
Recent advances in genomic DNA sequencing of microbial species from single cells
-
Lasken RS, McLean JS. 2014. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 15:577–584. https://doi.org/10.1038/nrg3785.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 577-584
-
-
Lasken, RS1
McLean, JS.2
-
16
-
-
84958606331
-
Single-cell genome sequencing: current state of the science
-
Gawad C, Koh W, Quake SR. 2016. Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188. https://doi.org/10.1038/nrg.2015.16.
-
(2016)
Nat Rev Genet
, vol.17
, pp. 175-188
-
-
Gawad, C1
Koh, W2
Quake, SR.3
-
17
-
-
84901417347
-
Prokka: rapid prokaryotic genome annotation
-
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
-
(2014)
Bioinformatics
, vol.30
, pp. 2068-2069
-
-
Seemann, T.1
-
18
-
-
33846668510
-
Operon prediction using both genome-specific and general genomic information
-
Dam P, Olman V, Harris K, Su Z, Xu Y. 2007. Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res 35:288 –298. https://doi.org/10.1093/nar/gkl1018.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 288-298
-
-
Dam, P1
Olman, V2
Harris, K3
Su, Z4
Xu, Y.5
-
20
-
-
0035478854
-
Random forests
-
Breiman L. 2001. Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
21
-
-
0345040873
-
Classification and Regression by randomForest
-
Liaw A, Wiener M. 2002. Classification and Regression by randomForest. R News 2:18–22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A1
Wiener, M.2
-
22
-
-
84891067341
-
Interpreting random forest classification models using a feature contribution method (extended)
-
San Francisco, CA
-
Palczewska A, Palczewski J, Robinson RM, Neagu D. 2013. Interpreting random forest classification models using a feature contribution method (extended). 2013 IEEE 14th Int Conf Inf Reuse Integr, San Francisco, CA.
-
(2013)
2013 IEEE 14th Int Conf Inf Reuse Integr
-
-
Palczewska, A1
Palczewski, J2
Robinson, RM3
Neagu, D.4
-
23
-
-
84907692666
-
Dynamic flux balance analysis for synthetic microbial communities
-
Henson MA, Hanly TJ. 2014. Dynamic flux balance analysis for synthetic microbial communities. IET Syst Biol 8:214–229. https://doi.org/10.1049/iet-syb.2013.0021.
-
(2014)
IET Syst Biol
, vol.8
, pp. 214-229
-
-
Henson, MA1
Hanly, TJ.2
-
24
-
-
84883809652
-
Basic concepts and principles of stoichiometric modeling of metabolic networks
-
Maarleveld TR, Khandelwal RA, Olivier BG, Teusink B, Bruggeman FJ. 2013. Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnol J 8:997–1008. https://doi.org/10.1002/biot.201200291.
-
(2013)
Biotechnol J
, vol.8
, pp. 997-1008
-
-
Maarleveld, TR1
Khandelwal, RA2
Olivier, BG3
Teusink, B4
Bruggeman, FJ.5
-
25
-
-
85020119549
-
Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires
-
Bauer E, Laczny CC, Magnusdottir S, Wilmes P, Thiele I. 2015. Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome 3:55. https://doi.org/10.1186/s40168 -015-0121-6.
-
(2015)
Microbiome
, vol.3
, pp. 55
-
-
Bauer, E1
Laczny, CC2
Magnusdottir, S3
Wilmes, P4
Thiele, I.5
-
26
-
-
0345548657
-
Random Forest: a classification and regression tool for compound classification and QSAR modeling
-
Svetnik V, Liaw A, Tong C, Culberson J, Sheridan RP, Feuston BP. 2003. Random Forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958. https://doi.org/10.1021/ci034160g.
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 1947-1958
-
-
Svetnik, V1
Liaw, A2
Tong, C3
Culberson, J4
Sheridan, RP5
Feuston, BP.6
-
27
-
-
84980090975
-
The distribution of the flora in the Alpine zone
-
Jaccard P. 1912. The distribution of the flora in the Alpine zone. New Phytol 11:37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x.
-
(1912)
New Phytol
, vol.11
, pp. 37-50
-
-
Jaccard, P.1
-
28
-
-
85039982657
-
Greatest soil microbial diversity found in micro-habitats
-
Bach EM, Williams RJ, Hargreaves SK, Yang F, Hofmockel KS. 2018. Greatest soil microbial diversity found in micro-habitats. Soil Biol Biochem 118:217–226. https://doi.org/10.1016/j.soilbio.2017.12.018.
-
(2018)
Soil Biol Biochem
, vol.118
, pp. 217-226
-
-
Bach, EM1
Williams, RJ2
Hargreaves, SK3
Yang, F4
Hofmockel, KS.5
-
29
-
-
85034424483
-
Statistical analysis of co-occurrence patterns in microbial presence-absence datasets
-
Mainali KP, Bewick S, Thielen P, Mehoke T, Breitwieser FP, Paudel S, Adhikari A, Wolfe J, Slud EV, Karig D, Fagan WF. 2017. Statistical analysis of co-occurrence patterns in microbial presence-absence datasets. PLoS One 12:e0187132. https://doi.org/10.1371/journal.pone.0187132.
-
(2017)
PLoS One
, vol.12
, pp. e0187132
-
-
Mainali, KP1
Bewick, S2
Thielen, P3
Mehoke, T4
Breitwieser, FP5
Paudel, S6
Adhikari, A7
Wolfe, J8
Slud, EV9
Karig, D10
Fagan, WF.11
-
30
-
-
79960570801
-
Interpretation of QSAR models based on Random Forest methods
-
Kuz’min VE, Polishchuk PG, Artemenko AG, Andronati SA. 2011. Interpretation of QSAR models based on Random Forest methods. Mol Inform 30:593–603. https://doi.org/10.1002/minf.201000173.
-
(2011)
Mol Inform
, vol.30
, pp. 593-603
-
-
Kuz’min, VE1
Polishchuk, PG2
Artemenko, AG3
Andronati, SA.4
-
31
-
-
84941975667
-
Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity
-
Di Luccia B, Crescenzo R, Mazzoli A, Cigliano L, Venditti P, Walser JC, Widmer A, Baccigalupi L, Ricca E, Iossa S. 2015. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLoS One 10:e0134893. https://doi.org/10.1371/journal.pone.0134893.
-
(2015)
PLoS One
, vol.10
, pp. e0134893
-
-
Di Luccia, B1
Crescenzo, R2
Mazzoli, A3
Cigliano, L4
Venditti, P5
Walser, JC6
Widmer, A7
Baccigalupi, L8
Ricca, E9
Iossa, S.10
-
32
-
-
84878720152
-
Fructose: a key factor in the development of metabolic syndrome and hypertension
-
Khitan Z, Kim DH. 2013. Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab 2013:682673. https://doi.org/10.1155/2013/682673.
-
(2013)
J Nutr Metab
, vol.2013
, pp. 682673
-
-
Khitan, Z1
Kim, DH.2
-
33
-
-
66749156511
-
Dietary fructose and metabolic syndrome and diabetes
-
Bantle JP. 2009. Dietary fructose and metabolic syndrome and diabetes. J Nutr 139:1263S–1268S. https://doi.org/10.3945/jn.108.098020.
-
(2009)
J Nutr
, vol.139
, pp. 1263S-1268S
-
-
Bantle, JP.1
-
34
-
-
85029768527
-
Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease
-
Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. 2017. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 8:1159. https://doi.org/10.3389/fimmu.2017.01159.
-
(2017)
Front Immunol
, vol.8
, pp. 1159
-
-
Lambertz, J1
Weiskirchen, S2
Landert, S3
Weiskirchen, R.4
-
35
-
-
84865561564
-
Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity
-
Payne AN, Chassard C, Lacroix C. 2012. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev 13:799 – 809. https://doi.org/10.1111/j.1467-789X.2012 .01009.x.
-
(2012)
Obes Rev
, vol.13
, pp. 799-809
-
-
Payne, AN1
Chassard, C2
Lacroix, C.3
-
36
-
-
84901049717
-
Syntrophic exchange in synthetic microbial communities
-
Mee MT, Collins JJ, Church GM, Wang HH. 2014. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci U S A 111: E2149–E2156. https://doi.org/10.1073/pnas.1405641111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E2149-E2156
-
-
Mee, MT1
Collins, JJ2
Church, GM3
Wang, HH.4
-
37
-
-
0032919364
-
KEGG: Kyoto encyclopedia of genes and genomes
-
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34. https://doi.org/10.1093/nar/27.1.29.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 29-34
-
-
Ogata, H1
Goto, S2
Sato, K3
Fujibuchi, W4
Bono, H5
Kanehisa, M.6
-
38
-
-
84884127512
-
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
-
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31: 814–821. https://doi.org/10.1038/nbt.2676.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 814-821
-
-
Langille, MGI1
Zaneveld, J2
Caporaso, JG3
McDonald, D4
Knights, D5
Reyes, JA6
Clemente, JC7
Burkepile, DE8
Vega Thurber, RL9
Knight, R10
Beiko, RG11
Huttenhower, C.12
-
39
-
-
75649132267
-
Wall teichoic acid function, biosynthesis, and inhibition
-
Swoboda JG, Campbell J, Meredith TC, Walker S. 2010. Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11:35–45. https://doi.org/10.1002/cbic.200900557.
-
(2010)
Chembiochem
, vol.11
, pp. 35-45
-
-
Swoboda, JG1
Campbell, J2
Meredith, TC3
Walker, S.4
-
40
-
-
85020191160
-
Beyond pairwise mechanisms of species coexistence in complex communities
-
Levine JM, Bascompte J, Adler PB, Allesina S. 2017. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546:56–64. https://doi.org/10.1038/nature22898.
-
(2017)
Nature
, vol.546
, pp. 56-64
-
-
Levine, JM1
Bascompte, J2
Adler, PB3
Allesina, S.4
-
41
-
-
67449096729
-
Flux balance analysis of biological systems: applications and challenges
-
Raman K, Chandra N. 2009. Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10:435– 449. https://doi.org/10.1093/bib/bbp011.
-
(2009)
Brief Bioinform
, vol.10
, pp. 435-449
-
-
Raman, K1
Chandra, N.2
-
42
-
-
84892788440
-
Constraint-based models predict metabolic and associated cellular functions
-
Bordbar A, Monk JM, King ZA, Palsson BO. 2014. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120. https://doi.org/10.1038/nrg3643.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 107-120
-
-
Bordbar, A1
Monk, JM2
King, ZA3
Palsson, BO.4
-
43
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
O’Brien EJ, Monk JM, Palsson BO. 2015. Using genome-scale models to predict biological capabilities. Cell 161:971–987. https://doi.org/10.1016/j.cell.2015.05.019.
-
(2015)
Cell
, vol.161
, pp. 971-987
-
-
O’Brien, EJ1
Monk, JM2
Palsson, BO.3
-
44
-
-
85037731980
-
More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes
-
van der Ark KCH, van Heck RGA, Martins Dos Santos VAP, Belzer C, de Vos WM. 2017. More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome 5:78. https://doi.org/10.1186/s40168-017-0299-x.
-
(2017)
Microbiome
, vol.5
, pp. 78
-
-
van der Ark, KCH1
van Heck, RGA2
Martins Dos Santos, VAP3
Belzer, C4
de Vos, WM.5
-
45
-
-
85034425139
-
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
-
Zomorrodi AR, Segrè D. 2017. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun 8:1563. https://doi.org/10.1038/s41467-017 -01407-5.
-
(2017)
Nat Commun
, vol.8
, pp. 1563
-
-
Zomorrodi, AR1
Segrè, D.2
-
46
-
-
77749320898
-
What is flux balance analysis?
-
Orth JD, Thiele I, Palsson BØ. 2010. What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 245-248
-
-
Orth, JD1
Thiele, I2
Palsson, BØ.3
-
47
-
-
80053651587
-
GenBank
-
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2013. GenBank. Nucleic Acids Res 41:D36–D42. https://doi.org/10.1093/nar/gks1195.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D36-D42
-
-
Benson, DA1
Cavanaugh, M2
Clark, K3
Karsch-Mizrachi, I4
Lipman, DJ5
Ostell, J6
Sayers, EW.7
-
48
-
-
79952709519
-
pROC: An open-source package for R and S₊ to analyze and compare ROC curves
-
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. 2011. pROC: An open-source package for R and S₊ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/ 1471-2105-12-77.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 77
-
-
Robin, X1
Turck, N2
Hainard, A3
Tiberti, N4
Lisacek, F5
Sanchez, JC6
Müller, M.7
|