메뉴 건너뛰기




Volumn 3, Issue 5, 2018, Pages

Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks

Author keywords

Coculture experiments; Ecological networks; Flux balance analysis; Machine learning; Metabolic modeling; Microbial interactions; Microbiome; Random forests; Synthetic ecology; Systems biology

Indexed keywords

ARTICLE; BACTERIUM CULTURE; COCULTURE; COMMUNITY DYNAMICS; COMPUTER MODEL; ECOLOGY; ENVIRONMENTAL HEALTH; ESCHERICHIA COLI; GASTROINTESTINAL TRACT; HUMAN; MICROBIAL INTERACTION; NONHUMAN; PHENOTYPE; RANDOM FOREST; SOIL MICROFLORA; SYSTEMS BIOLOGY;

EID: 85064188785     PISSN: None     EISSN: 23795077     Source Type: Journal    
DOI: 10.1128/MSYSTEMS.00181-18     Document Type: Article
Times cited : (47)

References (49)
  • 1
    • 84962491989 scopus 로고    scopus 로고
    • Studying bacterial multispecies biofilms: where to start?
    • Røder HL, Sørensen SJ, Burmølle M. 2016. Studying bacterial multispecies biofilms: where to start? Trends Microbiol 24:503–513. https://doi.org/10.1016/j.tim.2016.02.019.
    • (2016) Trends Microbiol , vol.24 , pp. 503-513
    • Røder, HL1    Sørensen, SJ2    Burmølle, M.3
  • 3
    • 85045285050 scopus 로고    scopus 로고
    • Co-occurring soil bacteria exhibit a robust competitive hierarchy and lack of non-transitive interactions
    • Higgins LM, Friedman J, Shen H, Gore J. 2017. Co-occurring soil bacteria exhibit a robust competitive hierarchy and lack of non-transitive interactions. bioRxiv https://doi.org/10.1101/175737.
    • (2017) bioRxiv
    • Higgins, LM1    Friedman, J2    Shen, H3    Gore, J.4
  • 4
    • 84982735422 scopus 로고    scopus 로고
    • High-order species interactions shape ecosystem diversity
    • Bairey E, Kelsic ED, Kishony R. 2016. High-order species interactions shape ecosystem diversity. Nat Commun 7:12285. https://doi.org/10.1038/ncomms12285.
    • (2016) Nat Commun , vol.7 , pp. 12285
    • Bairey, E1    Kelsic, ED2    Kishony, R.3
  • 6
    • 84947216877 scopus 로고    scopus 로고
    • The ecology of the microbiome: networks, competition, and stability
    • Coyte KZ, Schluter J, Foster KR. 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:663–666. https://doi.org/10.1126/science.aad2602.
    • (2015) Science , vol.350 , pp. 663-666
    • Coyte, KZ1    Schluter, J2    Foster, KR.3
  • 7
    • 0345060796 scopus 로고    scopus 로고
    • Chemical communication among bacteria
    • Taga ME, Bassler BL. 2003. Chemical communication among bacteria. Proc Natl Acad Sci U S A 100:14549–14554. https://doi.org/10.1073/pnas.1934514100.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 14549-14554
    • Taga, ME1    Bassler, BL.2
  • 8
    • 84975511062 scopus 로고    scopus 로고
    • Microbial interactions lead to rapid micro-scale successions on model marine particles
    • Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. 2016. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun 7:11965. https://doi.org/10.1038/ncomms11965.
    • (2016) Nat Commun , vol.7 , pp. 11965
    • Datta, MS1    Sliwerska, E2    Gore, J3    Polz, MF4    Cordero, OX.5
  • 9
    • 84962855606 scopus 로고    scopus 로고
    • Principles for designing synthetic microbial communities
    • Johns NI, Blazejewski T, Gomes ALC, Wang HH. 2016. Principles for designing synthetic microbial communities. Curr Opin Microbiol 31: 146–153. https://doi.org/10.1016/j.mib.2016.03.010.
    • (2016) Curr Opin Microbiol , vol.31 , pp. 146-153
    • Johns, NI1    Blazejewski, T2    Gomes, ALC3    Wang, HH.4
  • 10
    • 33846936445 scopus 로고    scopus 로고
    • Synthetic cooperation in engineered yeast populations
    • Shou W, Ram S, Vilar JMG. 2007. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882. https://doi .org/10.1073/pnas.0610575104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 1877-1882
    • Shou, W1    Ram, S2    Vilar, JMG.3
  • 11
    • 84960804622 scopus 로고    scopus 로고
    • Synthetic ecology of microbes: mathematical models and applications
    • Zomorrodi AR, Segrè D. 2016. Synthetic ecology of microbes: mathematical models and applications. J Mol Biol 428:837–861. https://doi.org/10.1016/j.jmb.2015.10.019.
    • (2016) J Mol Biol , vol.428 , pp. 837-861
    • Zomorrodi, AR1    Segrè, D.2
  • 13
    • 85020218190 scopus 로고    scopus 로고
    • Community structure follows simple assembly rules in microbial microcosms
    • Friedman J, Higgins LM, Gore J. 2017. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol 1:109. https://doi.org/10.1038/s41559-017-0109.
    • (2017) Nat Ecol Evol , vol.1 , pp. 109
    • Friedman, J1    Higgins, LM2    Gore, J.3
  • 14
    • 84922394953 scopus 로고    scopus 로고
    • Co-culture systems and technologies: taking synthetic biology to the next level
    • Goers L, Freemont P, Polizzi KM. 2014. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11:20140065. https://doi.org/10.1098/rsif.2014.0065.
    • (2014) J R Soc Interface , vol.11 , pp. 20140065
    • Goers, L1    Freemont, P2    Polizzi, KM.3
  • 15
    • 84906317195 scopus 로고    scopus 로고
    • Recent advances in genomic DNA sequencing of microbial species from single cells
    • Lasken RS, McLean JS. 2014. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 15:577–584. https://doi.org/10.1038/nrg3785.
    • (2014) Nat Rev Genet , vol.15 , pp. 577-584
    • Lasken, RS1    McLean, JS.2
  • 16
    • 84958606331 scopus 로고    scopus 로고
    • Single-cell genome sequencing: current state of the science
    • Gawad C, Koh W, Quake SR. 2016. Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188. https://doi.org/10.1038/nrg.2015.16.
    • (2016) Nat Rev Genet , vol.17 , pp. 175-188
    • Gawad, C1    Koh, W2    Quake, SR.3
  • 17
    • 84901417347 scopus 로고    scopus 로고
    • Prokka: rapid prokaryotic genome annotation
    • Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
    • (2014) Bioinformatics , vol.30 , pp. 2068-2069
    • Seemann, T.1
  • 18
    • 33846668510 scopus 로고    scopus 로고
    • Operon prediction using both genome-specific and general genomic information
    • Dam P, Olman V, Harris K, Su Z, Xu Y. 2007. Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res 35:288 –298. https://doi.org/10.1093/nar/gkl1018.
    • (2007) Nucleic Acids Res , vol.35 , pp. 288-298
    • Dam, P1    Olman, V2    Harris, K3    Su, Z4    Xu, Y.5
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001. Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 21
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw A, Wiener M. 2002. Classification and Regression by randomForest. R News 2:18–22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A1    Wiener, M.2
  • 22
    • 84891067341 scopus 로고    scopus 로고
    • Interpreting random forest classification models using a feature contribution method (extended)
    • San Francisco, CA
    • Palczewska A, Palczewski J, Robinson RM, Neagu D. 2013. Interpreting random forest classification models using a feature contribution method (extended). 2013 IEEE 14th Int Conf Inf Reuse Integr, San Francisco, CA.
    • (2013) 2013 IEEE 14th Int Conf Inf Reuse Integr
    • Palczewska, A1    Palczewski, J2    Robinson, RM3    Neagu, D.4
  • 23
    • 84907692666 scopus 로고    scopus 로고
    • Dynamic flux balance analysis for synthetic microbial communities
    • Henson MA, Hanly TJ. 2014. Dynamic flux balance analysis for synthetic microbial communities. IET Syst Biol 8:214–229. https://doi.org/10.1049/iet-syb.2013.0021.
    • (2014) IET Syst Biol , vol.8 , pp. 214-229
    • Henson, MA1    Hanly, TJ.2
  • 24
    • 84883809652 scopus 로고    scopus 로고
    • Basic concepts and principles of stoichiometric modeling of metabolic networks
    • Maarleveld TR, Khandelwal RA, Olivier BG, Teusink B, Bruggeman FJ. 2013. Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnol J 8:997–1008. https://doi.org/10.1002/biot.201200291.
    • (2013) Biotechnol J , vol.8 , pp. 997-1008
    • Maarleveld, TR1    Khandelwal, RA2    Olivier, BG3    Teusink, B4    Bruggeman, FJ.5
  • 25
    • 85020119549 scopus 로고    scopus 로고
    • Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires
    • Bauer E, Laczny CC, Magnusdottir S, Wilmes P, Thiele I. 2015. Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome 3:55. https://doi.org/10.1186/s40168 -015-0121-6.
    • (2015) Microbiome , vol.3 , pp. 55
    • Bauer, E1    Laczny, CC2    Magnusdottir, S3    Wilmes, P4    Thiele, I.5
  • 26
    • 0345548657 scopus 로고    scopus 로고
    • Random Forest: a classification and regression tool for compound classification and QSAR modeling
    • Svetnik V, Liaw A, Tong C, Culberson J, Sheridan RP, Feuston BP. 2003. Random Forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958. https://doi.org/10.1021/ci034160g.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1947-1958
    • Svetnik, V1    Liaw, A2    Tong, C3    Culberson, J4    Sheridan, RP5    Feuston, BP.6
  • 27
    • 84980090975 scopus 로고
    • The distribution of the flora in the Alpine zone
    • Jaccard P. 1912. The distribution of the flora in the Alpine zone. New Phytol 11:37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x.
    • (1912) New Phytol , vol.11 , pp. 37-50
    • Jaccard, P.1
  • 28
    • 85039982657 scopus 로고    scopus 로고
    • Greatest soil microbial diversity found in micro-habitats
    • Bach EM, Williams RJ, Hargreaves SK, Yang F, Hofmockel KS. 2018. Greatest soil microbial diversity found in micro-habitats. Soil Biol Biochem 118:217–226. https://doi.org/10.1016/j.soilbio.2017.12.018.
    • (2018) Soil Biol Biochem , vol.118 , pp. 217-226
    • Bach, EM1    Williams, RJ2    Hargreaves, SK3    Yang, F4    Hofmockel, KS.5
  • 30
    • 79960570801 scopus 로고    scopus 로고
    • Interpretation of QSAR models based on Random Forest methods
    • Kuz’min VE, Polishchuk PG, Artemenko AG, Andronati SA. 2011. Interpretation of QSAR models based on Random Forest methods. Mol Inform 30:593–603. https://doi.org/10.1002/minf.201000173.
    • (2011) Mol Inform , vol.30 , pp. 593-603
    • Kuz’min, VE1    Polishchuk, PG2    Artemenko, AG3    Andronati, SA.4
  • 31
    • 84941975667 scopus 로고    scopus 로고
    • Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity
    • Di Luccia B, Crescenzo R, Mazzoli A, Cigliano L, Venditti P, Walser JC, Widmer A, Baccigalupi L, Ricca E, Iossa S. 2015. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLoS One 10:e0134893. https://doi.org/10.1371/journal.pone.0134893.
    • (2015) PLoS One , vol.10 , pp. e0134893
    • Di Luccia, B1    Crescenzo, R2    Mazzoli, A3    Cigliano, L4    Venditti, P5    Walser, JC6    Widmer, A7    Baccigalupi, L8    Ricca, E9    Iossa, S.10
  • 32
    • 84878720152 scopus 로고    scopus 로고
    • Fructose: a key factor in the development of metabolic syndrome and hypertension
    • Khitan Z, Kim DH. 2013. Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab 2013:682673. https://doi.org/10.1155/2013/682673.
    • (2013) J Nutr Metab , vol.2013 , pp. 682673
    • Khitan, Z1    Kim, DH.2
  • 33
    • 66749156511 scopus 로고    scopus 로고
    • Dietary fructose and metabolic syndrome and diabetes
    • Bantle JP. 2009. Dietary fructose and metabolic syndrome and diabetes. J Nutr 139:1263S–1268S. https://doi.org/10.3945/jn.108.098020.
    • (2009) J Nutr , vol.139 , pp. 1263S-1268S
    • Bantle, JP.1
  • 34
    • 85029768527 scopus 로고    scopus 로고
    • Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease
    • Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. 2017. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 8:1159. https://doi.org/10.3389/fimmu.2017.01159.
    • (2017) Front Immunol , vol.8 , pp. 1159
    • Lambertz, J1    Weiskirchen, S2    Landert, S3    Weiskirchen, R.4
  • 35
    • 84865561564 scopus 로고    scopus 로고
    • Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity
    • Payne AN, Chassard C, Lacroix C. 2012. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev 13:799 – 809. https://doi.org/10.1111/j.1467-789X.2012 .01009.x.
    • (2012) Obes Rev , vol.13 , pp. 799-809
    • Payne, AN1    Chassard, C2    Lacroix, C.3
  • 36
    • 84901049717 scopus 로고    scopus 로고
    • Syntrophic exchange in synthetic microbial communities
    • Mee MT, Collins JJ, Church GM, Wang HH. 2014. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci U S A 111: E2149–E2156. https://doi.org/10.1073/pnas.1405641111.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E2149-E2156
    • Mee, MT1    Collins, JJ2    Church, GM3    Wang, HH.4
  • 39
    • 75649132267 scopus 로고    scopus 로고
    • Wall teichoic acid function, biosynthesis, and inhibition
    • Swoboda JG, Campbell J, Meredith TC, Walker S. 2010. Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11:35–45. https://doi.org/10.1002/cbic.200900557.
    • (2010) Chembiochem , vol.11 , pp. 35-45
    • Swoboda, JG1    Campbell, J2    Meredith, TC3    Walker, S.4
  • 40
    • 85020191160 scopus 로고    scopus 로고
    • Beyond pairwise mechanisms of species coexistence in complex communities
    • Levine JM, Bascompte J, Adler PB, Allesina S. 2017. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546:56–64. https://doi.org/10.1038/nature22898.
    • (2017) Nature , vol.546 , pp. 56-64
    • Levine, JM1    Bascompte, J2    Adler, PB3    Allesina, S.4
  • 41
    • 67449096729 scopus 로고    scopus 로고
    • Flux balance analysis of biological systems: applications and challenges
    • Raman K, Chandra N. 2009. Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10:435– 449. https://doi.org/10.1093/bib/bbp011.
    • (2009) Brief Bioinform , vol.10 , pp. 435-449
    • Raman, K1    Chandra, N.2
  • 42
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • Bordbar A, Monk JM, King ZA, Palsson BO. 2014. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120. https://doi.org/10.1038/nrg3643.
    • (2014) Nat Rev Genet , vol.15 , pp. 107-120
    • Bordbar, A1    Monk, JM2    King, ZA3    Palsson, BO.4
  • 43
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O’Brien EJ, Monk JM, Palsson BO. 2015. Using genome-scale models to predict biological capabilities. Cell 161:971–987. https://doi.org/10.1016/j.cell.2015.05.019.
    • (2015) Cell , vol.161 , pp. 971-987
    • O’Brien, EJ1    Monk, JM2    Palsson, BO.3
  • 44
    • 85037731980 scopus 로고    scopus 로고
    • More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes
    • van der Ark KCH, van Heck RGA, Martins Dos Santos VAP, Belzer C, de Vos WM. 2017. More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome 5:78. https://doi.org/10.1186/s40168-017-0299-x.
    • (2017) Microbiome , vol.5 , pp. 78
    • van der Ark, KCH1    van Heck, RGA2    Martins Dos Santos, VAP3    Belzer, C4    de Vos, WM.5
  • 45
    • 85034425139 scopus 로고    scopus 로고
    • Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
    • Zomorrodi AR, Segrè D. 2017. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun 8:1563. https://doi.org/10.1038/s41467-017 -01407-5.
    • (2017) Nat Commun , vol.8 , pp. 1563
    • Zomorrodi, AR1    Segrè, D.2
  • 46
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth JD, Thiele I, Palsson BØ. 2010. What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614.
    • (2010) Nat Biotechnol , vol.28 , pp. 245-248
    • Orth, JD1    Thiele, I2    Palsson, BØ.3
  • 48
    • 79952709519 scopus 로고    scopus 로고
    • pROC: An open-source package for R and S₊ to analyze and compare ROC curves
    • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. 2011. pROC: An open-source package for R and S₊ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/ 1471-2105-12-77.
    • (2011) BMC Bioinformatics , vol.12 , pp. 77
    • Robin, X1    Turck, N2    Hainard, A3    Tiberti, N4    Lisacek, F5    Sanchez, JC6    Müller, M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.