메뉴 건너뛰기




Volumn 10, Issue 4, 2014, Pages

Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism

Author keywords

[No Author keywords available]

Indexed keywords

DATA INTEGRATION; ENZYME ACTIVITY; ESCHERICHIA COLI; FORECASTING; PHYSIOLOGY;

EID: 84901306814     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1003580     Document Type: Article
Times cited : (302)

References (63)
  • 6
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • McCloskey D, Palsson BØ, Feist AM, (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology 9: 1-15.
    • (2013) Molecular Systems Biology , vol.9 , pp. 1-15
    • McCloskey, D.1    Palsson, BØ.2    Feist, A.M.3
  • 8
    • 84866128045 scopus 로고    scopus 로고
    • Shrinking the Metabolic Solution Space Using Experimental Datasets
    • Reed J, (2012) Shrinking the Metabolic Solution Space Using Experimental Datasets. PLoS Computational Biology 8: e1002662.
    • (2012) PLoS Computational Biology , vol.8
    • Reed, J.1
  • 9
    • 84869457261 scopus 로고    scopus 로고
    • The expanding scope of DNA sequencing
    • Shendure J, Aiden E, (2012) The expanding scope of DNA sequencing. Nature Biotechnology 30: 1084-1094.
    • (2012) Nature Biotechnology , vol.30 , pp. 1084-1094
    • Shendure, J.1    Aiden, E.2
  • 10
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • Blazier A, Papin J, (2012) Integration of expression data in genome-scale metabolic network reconstructions. Frontiers in Physiology 3: 1-7.
    • (2012) Frontiers in Physiology , vol.3 , pp. 1-7
    • Blazier, A.1    Papin, J.2
  • 11
    • 84872093417 scopus 로고    scopus 로고
    • Analysis of omics data with genome-scale models of metabolism
    • Hyduke DR, Lewis NE, Palsson BØ, (2013) Analysis of omics data with genome-scale models of metabolism. Molecular BioSystems 9: 167-174.
    • (2013) Molecular BioSystems , vol.9 , pp. 167-174
    • Hyduke, D.R.1    Lewis, N.E.2    Palsson, BØ.3
  • 12
    • 84878882380 scopus 로고    scopus 로고
    • Novel algorithms and the benefits of comparative validation
    • Smith R, Ventura D, Prince JT, (2013) Novel algorithms and the benefits of comparative validation. Bioinformatics 29: 1583-1585.
    • (2013) Bioinformatics , vol.29 , pp. 1583-1585
    • Smith, R.1    Ventura, D.2    Prince, J.T.3
  • 14
    • 84888861753 scopus 로고    scopus 로고
    • Systematic evaluation of spliced alignment programs for RNA-seq data
    • Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, et al. (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nature Methods 10: 1185-1191.
    • (2013) Nature Methods , vol.10 , pp. 1185-1191
    • Engström, P.G.1    Steijger, T.2    Sipos, B.3    Grant, G.R.4    Kahles, A.5
  • 16
    • 79951745716 scopus 로고    scopus 로고
    • iMAT: an integrative metabolic analysis tool
    • Zur H, Ruppin E, Shlomi T, (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26: 3140-3142.
    • (2010) Bioinformatics , vol.26 , pp. 3140-3142
    • Zur, H.1    Ruppin, E.2    Shlomi, T.3
  • 17
    • 84870933131 scopus 로고    scopus 로고
    • Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
    • Wang Y, Eddy JA, Price ND, (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Systems Biology 6: 153.
    • (2012) BMC Systems Biology , vol.6 , pp. 153
    • Wang, Y.1    Eddy, J.A.2    Price, N.D.3
  • 18
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • Åkesson M, Förster J, Nielsen J, (2004) Integration of gene expression data into genome-scale metabolic models. Metabolic Engineering 6: 285-293.
    • (2004) Metabolic Engineering , vol.6 , pp. 285-293
    • Åkesson, M.1    Förster, J.2    Nielsen, J.3
  • 19
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker S, Palsson B, (2008) Context-specific metabolic networks are consistent with experiments. PLoS Computational Biology 4: e1000082.
    • (2008) PLoS Computational Biology , vol.4
    • Becker, S.1    Palsson, B.2
  • 20
    • 84890092837 scopus 로고    scopus 로고
    • GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data
    • Schmidt BJ, Ebrahim A, Metz TO, Adkins JN, Palsson BØ, et al. (2013) GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 29: 2900-2908.
    • (2013) Bioinformatics , vol.29 , pp. 2900-2908
    • Schmidt, B.J.1    Ebrahim, A.2    Metz, T.O.3    Adkins, J.N.4    Palsson, BØ.5
  • 22
    • 66149122278 scopus 로고    scopus 로고
    • Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p
    • Moxley J, Jewett M, Antoniewicz M, Villas-Boas S, Alper H, et al. (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proceedings of the National Academy of Sciences 106: 6477-6482.
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , pp. 6477-6482
    • Moxley, J.1    Jewett, M.2    Antoniewicz, M.3    Villas-Boas, S.4    Alper, H.5
  • 23
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production
    • Colijn C, Brandes A, Zucker J, Lun D, Weiner B, et al. (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Computational Biology 5: e1000489.
    • (2009) PLoS Computational Biology , vol.5
    • Colijn, C.1    Brandes, A.2    Zucker, J.3    Lun, D.4    Weiner, B.5
  • 24
    • 84860998236 scopus 로고    scopus 로고
    • Inferring Carbon Sources from Gene Expression Profiles Using Metabolic Flux Models
    • Brandes A, Lun DS, Ip K, Zucker J, Colijn C, et al. (2012) Inferring Carbon Sources from Gene Expression Profiles Using Metabolic Flux Models. PloS ONE 7: e36947.
    • (2012) PloS ONE , vol.7
    • Brandes, A.1    Lun, D.S.2    Ip, K.3    Zucker, J.4    Colijn, C.5
  • 25
    • 78049255973 scopus 로고    scopus 로고
    • Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
    • Chandrasekaran S, Price ND, (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences 107: 17845-17850.
    • (2010) Proceedings of the National Academy of Sciences , vol.107 , pp. 17845-17850
    • Chandrasekaran, S.1    Price, N.D.2
  • 26
    • 79951536020 scopus 로고    scopus 로고
    • Functional integration of a metabolic network model and expression data without arbitrary thresholding
    • Jensen P, Papin J, (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27: 541-547.
    • (2011) Bioinformatics , vol.27 , pp. 541-547
    • Jensen, P.1    Papin, J.2
  • 28
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, et al. (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Computational Biology 8: e1002518.
    • (2012) PLoS Computational Biology , vol.8
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3    Pornputtapong, N.4    Nookaew, I.5
  • 29
    • 84862301363 scopus 로고    scopus 로고
    • Improving metabolic flux predictions using absolute gene expression data
    • Lee D, Smallbone K, Dunn W, Murabito E, Winder C, et al. (2012) Improving metabolic flux predictions using absolute gene expression data. BMC Systems Biology 6: 73.
    • (2012) BMC Systems Biology , vol.6 , pp. 73
    • Lee, D.1    Smallbone, K.2    Dunn, W.3    Murabito, E.4    Winder, C.5
  • 30
    • 84866925914 scopus 로고    scopus 로고
    • Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia
    • Fang X, Wallqvist A, Reifman J, (2012) Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia. PLoS Computational Biology 8: e1002688.
    • (2012) PLoS Computational Biology , vol.8
    • Fang, X.1    Wallqvist, A.2    Reifman, J.3
  • 31
    • 84866539049 scopus 로고    scopus 로고
    • RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations
    • Kim J, Reed JL, et al. (2012) RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome Biology 13: R78.
    • (2012) Genome Biology , vol.13
    • Kim, J.1    Reed, J.L.2
  • 32
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli
    • Mahadevan R, Edwards JS, Doyle III FJ, (2002) Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli. Biophysical journal 83: 1331-1340.
    • (2002) Biophysical Journal , vol.83 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle III, F.J.3
  • 34
    • 84874020311 scopus 로고    scopus 로고
    • Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli
    • Töpfer N, Jozefczuk S, Nikoloski Z, (2012) Integration of time-resolved transcriptomics data with flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli. BMC Systems Biology 6: 148.
    • (2012) BMC Systems Biology , vol.6 , pp. 148
    • Töpfer, N.1    Jozefczuk, S.2    Nikoloski, Z.3
  • 35
    • 0000029295 scopus 로고
    • On elementary flux modes in biochemical reaction systems at steady state
    • Schuster S, Hilgetag C, (1994) On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems 2: 165-182.
    • (1994) Journal of Biological Systems , vol.2 , pp. 165-182
    • Schuster, S.1    Hilgetag, C.2
  • 36
    • 84870398009 scopus 로고    scopus 로고
    • Genome-level transcription data of Yersinia pestis analyzed with a New metabolic constraint-based approach
    • Navid A, Almaas E, (2012) Genome-level transcription data of Yersinia pestis analyzed with a New metabolic constraint-based approach. BMC Systems Biology 6: 150.
    • (2012) BMC Systems Biology , vol.6 , pp. 150
    • Navid, A.1    Almaas, E.2
  • 37
    • 84866486479 scopus 로고    scopus 로고
    • Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism
    • Livnat Jerby TS, Ruppin E, (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Molecular Systems Biology 6: 1-9.
    • (2010) Molecular Systems Biology , vol.6 , pp. 1-9
    • Livnat Jerby, T.S.1    Ruppin, E.2
  • 38
    • 84883808938 scopus 로고    scopus 로고
    • Flux-coupled genes and their use in metabolic flux analysis
    • Kim Hyun Uk, Kim Won Jun, Lee Sang Yup, (2013) Flux-coupled genes and their use in metabolic flux analysis. Biotechnology Journal 8: 1035-1042.
    • (2013) Biotechnology Journal , vol.8 , pp. 1035-1042
    • Kim, H.U.1    Kim, W.J.2    Lee, S.Y.3
  • 39
    • 84875977583 scopus 로고    scopus 로고
    • Inferring Metabolic States in Uncharacterized Environments Using Gene-Expression Measurements
    • Rossell S, Huynen MA, Notebaart RA, (2013) Inferring Metabolic States in Uncharacterized Environments Using Gene-Expression Measurements. PLoS Computational Biology 9: e1002988.
    • (2013) PLoS Computational Biology , vol.9
    • Rossell, S.1    Huynen, M.A.2    Notebaart, R.A.3
  • 40
    • 34247612307 scopus 로고    scopus 로고
    • Multiple high-throughput analyses monitor the response of E. coli to perturbations
    • Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science Signalling 316: 593.
    • (2007) Science Signalling , vol.316 , pp. 593
    • Ishii, N.1    Nakahigashi, K.2    Baba, T.3    Robert, M.4    Soga, T.5
  • 41
    • 77952911331 scopus 로고    scopus 로고
    • Metabolic and transcriptional response to cofactor perturbations in Escherichia coli
    • Holm AK, Blank LM, Oldiges M, Schmid A, Solem C, et al. (2010) Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. Journal of Biological Chemistry 285: 17498-17506.
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 17498-17506
    • Holm, A.K.1    Blank, L.M.2    Oldiges, M.3    Schmid, A.4    Solem, C.5
  • 42
    • 70449646314 scopus 로고    scopus 로고
    • Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae
    • Rintala E, Toivari M, Pitkänen JP, Wiebe MG, Ruohonen L, et al. (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 10: 461.
    • (2009) BMC Genomics , vol.10 , pp. 461
    • Rintala, E.1    Toivari, M.2    Pitkänen, J.P.3    Wiebe, M.G.4    Ruohonen, L.5
  • 43
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist A, Henry C, Reed J, Krummenacker M, Joyce A, et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology 3: 1-18.
    • (2007) Molecular Systems Biology , vol.3 , pp. 1-18
    • Feist, A.1    Henry, C.2    Reed, J.3    Krummenacker, M.4    Joyce, A.5
  • 44
    • 49549104162 scopus 로고    scopus 로고
    • Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN. PK113-1A
    • Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, et al. (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN. PK113-1A. BMC Systems Biology 2: 60.
    • (2008) BMC Systems Biology , vol.2 , pp. 60
    • Jouhten, P.1    Rintala, E.2    Huuskonen, A.3    Tamminen, A.4    Toivari, M.5
  • 45
    • 84876789665 scopus 로고    scopus 로고
    • Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
    • Österlund T, Nookaew I, Bordel S, Nielsen J, (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Systems Biology 7: 36.
    • (2013) BMC Systems Biology , vol.7 , pp. 36
    • Österlund, T.1    Nookaew, I.2    Bordel, S.3    Nielsen, J.4
  • 46
    • 1542350073 scopus 로고    scopus 로고
    • Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae, a Chemostat Culture Study
    • Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, et al. (2004) Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae, a Chemostat Culture Study. Journal of Biological Chemistry 279: 9125-9138.
    • (2004) Journal of Biological Chemistry , vol.279 , pp. 9125-9138
    • Daran-Lapujade, P.1    Jansen, M.L.2    Daran, J.M.3    van Gulik, W.4    de Winde, J.H.5
  • 48
    • 84887626141 scopus 로고    scopus 로고
    • Somewhat in control {pipe} the role of transcription in regulating microbial metabolic fluxes
    • Kochanowski K, Sauer U, Chubukov V, (2013) Somewhat in control {pipe} the role of transcription in regulating microbial metabolic fluxes. Current Opinion in Biotechnology 24: 987-993.
    • (2013) Current Opinion in Biotechnology , vol.24 , pp. 987-993
    • Kochanowski, K.1    Sauer, U.2    Chubukov, V.3
  • 49
    • 67650473274 scopus 로고    scopus 로고
    • Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response
    • Ralser M, Wamelink MM, Latkolik S, Jansen EE, Lehrach H, et al. (2009) Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. Nature Biotechnology 27: 604-605.
    • (2009) Nature Biotechnology , vol.27 , pp. 604-605
    • Ralser, M.1    Wamelink, M.M.2    Latkolik, S.3    Jansen, E.E.4    Lehrach, H.5
  • 50
    • 84895963679 scopus 로고    scopus 로고
    • What mRNA Abundances Can Tell us about Metabolism
    • Hoppe A, (2012) What mRNA Abundances Can Tell us about Metabolism. Metabolites 2: 614-631.
    • (2012) Metabolites , vol.2 , pp. 614-631
    • Hoppe, A.1
  • 51
    • 0037079023 scopus 로고    scopus 로고
    • Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    • Ibarra RU, Edwards JS, Palsson BO, (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186-189.
    • (2002) Nature , vol.420 , pp. 186-189
    • Ibarra, R.U.1    Edwards, J.S.2    Palsson, B.O.3
  • 52
    • 0035929432 scopus 로고    scopus 로고
    • The dynamics of the macromolecular composition of biomass
    • Hanegraaf P, Muller E, (2001) The dynamics of the macromolecular composition of biomass. Journal of Theoretical Biology 212: 237-251.
    • (2001) Journal of Theoretical Biology , vol.212 , pp. 237-251
    • Hanegraaf, P.1    Muller, E.2
  • 54
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T, (2010) Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 26: i255-i260.
    • (2010) Bioinformatics , vol.26
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 55
    • 84864584520 scopus 로고    scopus 로고
    • Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters
    • Adadi R, Volkmer B, Milo R, Heinemann M, Shlomi T, (2012) Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters. PLoS Computational Biology 8: e1002575.
    • (2012) PLoS Computational Biology , vol.8
    • Adadi, R.1    Volkmer, B.2    Milo, R.3    Heinemann, M.4    Shlomi, T.5
  • 56
    • 84873053978 scopus 로고    scopus 로고
    • Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models
    • Cotten C, Reed JL, (2013) Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models. BMC Bioinformatics 14: 32.
    • (2013) BMC Bioinformatics , vol.14 , pp. 32
    • Cotten, C.1    Reed, J.L.2
  • 57
    • 78049304837 scopus 로고    scopus 로고
    • Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes
    • Bordel S, Agren R, Nielsen J, (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Computational Biology 6: e1000859.
    • (2010) PLoS Computational Biology , vol.6
    • Bordel, S.1    Agren, R.2    Nielsen, J.3
  • 58
  • 59
    • 84864258618 scopus 로고    scopus 로고
    • A whole-cell computational model predicts phenotype from genotype
    • Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, et al. (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150: 389-401.
    • (2012) Cell , vol.150 , pp. 389-401
    • Karr, J.R.1    Sanghvi, J.C.2    Macklin, D.N.3    Gutschow, M.V.4    Jacobs, J.M.5
  • 60
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
    • Schellenberger J, Que R, Fleming R, Thiele I, Orth J, et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature protocols 6: 1290-1307.
    • (2011) Nature Protocols , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.3    Thiele, I.4    Orth, J.5
  • 61
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R, Schilling C, (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic Engineering 5: 264-276.
    • (2003) Metabolic Engineering , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.2
  • 62
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
    • Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, et al. (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Molecular Systems Biology 6: 1-13.
    • (2010) Molecular Systems Biology , vol.6 , pp. 1-13
    • Lewis, N.E.1    Hixson, K.K.2    Conrad, T.M.3    Lerman, J.A.4    Charusanti, P.5
  • 63
    • 80053175304 scopus 로고    scopus 로고
    • TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks
    • Jensen P, Lutz K, Papin J, (2011) TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks. BMC Systems Biology 5: 147.
    • (2011) BMC Systems Biology , vol.5 , pp. 147
    • Jensen, P.1    Lutz, K.2    Papin, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.