메뉴 건너뛰기




Volumn 7, Issue , 2018, Pages 54-59

Statistical single cell multi-omics integration

Author keywords

[No Author keywords available]

Indexed keywords

CELL FATE; CELL HETEROGENEITY; CHROMATIN STRUCTURE; CLASSIFIER; DNA METHYLATION; EPIGENETICS; GENOMICS; HUMAN; MACHINE LEARNING; METABOLOMICS; OMICS; PROTEOMICS; QUANTITATIVE TRAIT LOCUS; REVIEW; RNA SEQUENCE; SINGLE CELL ANALYSIS; TRANSCRIPTION REGULATION; TRANSCRIPTOMICS;

EID: 85045325679     PISSN: None     EISSN: 24523100     Source Type: Journal    
DOI: 10.1016/j.coisb.2018.01.003     Document Type: Review
Times cited : (59)

References (52)
  • 1
    • 84971238065 scopus 로고    scopus 로고
    • Single-cell genomics: coming of age
    • Linnarsson, S., Teichmann, S.A., Single-cell genomics: coming of age. Genome Biol, 17, 2016, 97.
    • (2016) Genome Biol , vol.17 , pp. 97
    • Linnarsson, S.1    Teichmann, S.A.2
  • 2
    • 85040459896 scopus 로고    scopus 로고
    • Science forum: the human cell Atlas
    • Description of the idea as well as the potential of the Human Cell Atlas Project, aiming to build an open molecular reference map of cell states in healthy human tissues.
    • Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P.J., Carninci, P., Clatworthy, M., et al., Human Cell Atlas Meeting Participants. Science forum: the human cell Atlas. Elife, 6, 2017, 10.7554/eLife.27041 Description of the idea as well as the potential of the Human Cell Atlas Project, aiming to build an open molecular reference map of cell states in healthy human tissues.
    • (2017) Elife , vol.6
    • Regev, A.1    Teichmann, S.A.2    Lander, E.S.3    Amit, I.4    Benoist, C.5    Birney, E.6    Bodenmiller, B.7    Campbell, P.J.8    Carninci, P.9    Clatworthy, M.10
  • 3
    • 84894630323 scopus 로고    scopus 로고
    • Entering the era of single-cell transcriptomics in biology and medicine
    • Sandberg, R., Entering the era of single-cell transcriptomics in biology and medicine. Nat Meth 11 (2014), 22–24.
    • (2014) Nat Meth , vol.11 , pp. 22-24
    • Sandberg, R.1
  • 4
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Systematic review of the main challenges in the analysis of single cell transcriptomics data.
    • Stegle, O., Teichmann, S.A., Marioni, J.C., Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16 (2015), 133–145 Systematic review of the main challenges in the analysis of single cell transcriptomics data.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 16
    • 85000962972 scopus 로고    scopus 로고
    • Metabolomics: small molecules, single cells
    • Fessenden, M., Metabolomics: small molecules, single cells. Nature 540 (2016), 153–155.
    • (2016) Nature , vol.540 , pp. 153-155
    • Fessenden, M.1
  • 21
    • 84960091878 scopus 로고    scopus 로고
    • Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas
    • One of a few papers describing the measurement and integration of more than two -omics layers of the same single cell, in particular genomics, epigenomics and transcriptomics.
    • Hou, Y., Guo, H., Cao, C., Li, X., Hu, B., Zhu, P., Wu, X., Wen, L., Tang, F., Huang, Y., Peng, J., Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26 (2016), 304–319 One of a few papers describing the measurement and integration of more than two -omics layers of the same single cell, in particular genomics, epigenomics and transcriptomics.
    • (2016) Cell Res , vol.26 , pp. 304-319
    • Hou, Y.1    Guo, H.2    Cao, C.3    Li, X.4    Hu, B.5    Zhu, P.6    Wu, X.7    Wen, L.8    Tang, F.9    Huang, Y.10    Peng, J.11
  • 23
    • 85022345215 scopus 로고    scopus 로고
    • Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells
    • Pott, S., Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. Elife, 6, 2017, 10.7554/eLife.23203.
    • (2017) Elife , vol.6
    • Pott, S.1
  • 24
    • 85026666749 scopus 로고    scopus 로고
    • Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells
    • Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., Tang, F., Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27 (2017), 967–988.
    • (2017) Cell Res , vol.27 , pp. 967-988
    • Guo, F.1    Li, L.2    Li, J.3    Wu, X.4    Hu, B.5    Zhu, P.6    Wen, L.7    Tang, F.8
  • 25
    • 85040650700 scopus 로고    scopus 로고
    • Joint profiling of chromatin accessibility, DNA methylation and transcription in single cells
    • One of a few papers profiling and integrating more than two -omic layers of the same single cell, combining NOME-seq (chromatin accessibility and DNA methylation) with scRNA-seq.
    • Clark, S.J., Argelaguet, R., Kapourani, C.-A., Stubbs, T.M., Lee, H.J., Krueger, F., Sanguinetti, G., Kelsey, G., Marioni, J.C., Stegle, O., Reik, W., Joint profiling of chromatin accessibility, DNA methylation and transcription in single cells. bioRxiv, 2017, 138685, 10.1101/138685 One of a few papers profiling and integrating more than two -omic layers of the same single cell, combining NOME-seq (chromatin accessibility and DNA methylation) with scRNA-seq.
    • (2017) bioRxiv , pp. 138685
    • Clark, S.J.1    Argelaguet, R.2    Kapourani, C.-A.3    Stubbs, T.M.4    Lee, H.J.5    Krueger, F.6    Sanguinetti, G.7    Kelsey, G.8    Marioni, J.C.9    Stegle, O.10    Reik, W.11
  • 29
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • A comprehensive review and categorization of machine learning methods dealing with the integration of multi-modal (“multi-view”) data sets, i.e. samples with multiple alternative multivariate observations.
    • Sun, S., A survey of multi-view machine learning. Neural Comput Appl 23 (2013), 2031–2038 A comprehensive review and categorization of machine learning methods dealing with the integration of multi-modal (“multi-view”) data sets, i.e. samples with multiple alternative multivariate observations.
    • (2013) Neural Comput Appl , vol.23 , pp. 2031-2038
    • Sun, S.1
  • 30
    • 85049474548 scopus 로고    scopus 로고
    • A review on machine learning principles for multi-view biological data integration
    • Li, Y., Wu, F.-X., Ngom, A., A review on machine learning principles for multi-view biological data integration. Brief Bioinform, 2016, 10.1093/bib/bbw113.
    • (2016) Brief Bioinform
    • Li, Y.1    Wu, F.-X.2    Ngom, A.3
  • 31
    • 85021210336 scopus 로고    scopus 로고
    • More is better: recent progress in multi-omics data integration methods
    • Huang, S., Chaudhary, K., Garmire, L.X., More is better: recent progress in multi-omics data integration methods. Front Genet, 8, 2017, 84.
    • (2017) Front Genet , vol.8 , pp. 84
    • Huang, S.1    Chaudhary, K.2    Garmire, L.X.3
  • 32
    • 84890546613 scopus 로고    scopus 로고
    • Systems genetics approaches to understand complex traits
    • Civelek, M., Lusis, A.J., Systems genetics approaches to understand complex traits. Nat Rev Genet 15 (2014), 34–48.
    • (2014) Nat Rev Genet , vol.15 , pp. 34-48
    • Civelek, M.1    Lusis, A.J.2
  • 35
    • 84890011736 scopus 로고    scopus 로고
    • A modular framework for gene set analysis integrating multilevel omics data
    • Sass, S., Buettner, F., Mueller, N.S., Theis, F.J., A modular framework for gene set analysis integrating multilevel omics data,. Nucleic Acids Res 41 (2013), 9622–9633.
    • (2013) Nucleic Acids Res , vol.41 , pp. 9622-9633
    • Sass, S.1    Buettner, F.2    Mueller, N.S.3    Theis, F.J.4
  • 36
    • 84969504939 scopus 로고    scopus 로고
    • Multi-omics of single cells: strategies and applications
    • Bock, C., Farlik, M., Sheffield, N.C., Multi-omics of single cells: strategies and applications. Trends Biotechnol 34 (2016), 605–608.
    • (2016) Trends Biotechnol , vol.34 , pp. 605-608
    • Bock, C.1    Farlik, M.2    Sheffield, N.C.3
  • 38
    • 85025599203 scopus 로고    scopus 로고
    • MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
    • Description of a computational method to align multiple single cell omics layers, albeit assuming they have been measured in different single cells.
    • Welch, J.D., Hartemink, A.J., Prins, J.F., MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol, 18, 2017, 138 Description of a computational method to align multiple single cell omics layers, albeit assuming they have been measured in different single cells.
    • (2017) Genome Biol , vol.18 , pp. 138
    • Welch, J.D.1    Hartemink, A.J.2    Prins, J.F.3
  • 39
    • 85041108250 scopus 로고    scopus 로고
    • Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
    • Computational integration of single cell transcriptomic measurements performed on different populations of single cells
    • Butler, A., Satija, R., Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. bioRxiv, 2017, 164889, 10.1101/164889 Computational integration of single cell transcriptomic measurements performed on different populations of single cells.
    • (2017) bioRxiv , pp. 164889
    • Butler, A.1    Satija, R.2
  • 40
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D.M., Tibshirani, R., Hastie, T., A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 (2009), 515–534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 41
    • 60849113429 scopus 로고    scopus 로고
    • Sparse canonical methods for biological data integration: application to a cross-platform study
    • Lê Cao, K.-A., Martin, P.G.P., Robert-Granié, C., Besse, P., Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinf, 10, 2009, 34.
    • (2009) BMC Bioinf , vol.10 , pp. 34
    • Lê Cao, K.-A.1    Martin, P.G.P.2    Robert-Granié, C.3    Besse, P.4
  • 42
    • 38849098283 scopus 로고    scopus 로고
    • Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis
    • Article3
    • Waaijenborg, S., Verselewel de Witt Hamer, P.C., Zwinderman, A.H., Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat Appl Genet Mol Biol, 7, 2008 Article3.
    • (2008) Stat Appl Genet Mol Biol , vol.7
    • Waaijenborg, S.1    Verselewel de Witt Hamer, P.C.2    Zwinderman, A.H.3
  • 44
    • 84984643819 scopus 로고    scopus 로고
    • Diffusion pseudotime robustly reconstructs lineage branching
    • Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F., Theis, F.J., Diffusion pseudotime robustly reconstructs lineage branching. Nat Meth 13 (2016), 845–848.
    • (2016) Nat Meth , vol.13 , pp. 845-848
    • Haghverdi, L.1    Büttner, M.2    Wolf, F.A.3    Buettner, F.4    Theis, F.J.5
  • 47
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: review, taxonomy and comparative study
    • Amores, J., Multiple instance classification: review, taxonomy and comparative study. Artif Intell 201 (2013), 81–105.
    • (2013) Artif Intell , vol.201 , pp. 81-105
    • Amores, J.1
  • 49
    • 85041430720 scopus 로고    scopus 로고
    • Single cells make big data: new challenges and opportunities in transcriptomics
    • Review of computational challenges arising from the increasing size of scRNAseq data sets, highlighting opportunities and challenges in the context of big data analytics.
    • Angerer, P., Simon, L., Tritschler, S., Wolf, F.A., Fischer, D., Theis, F.J., Single cells make big data: new challenges and opportunities in transcriptomics. Curr Opin Struct Biol 4 (2017), 85–91 Review of computational challenges arising from the increasing size of scRNAseq data sets, highlighting opportunities and challenges in the context of big data analytics.
    • (2017) Curr Opin Struct Biol , vol.4 , pp. 85-91
    • Angerer, P.1    Simon, L.2    Tritschler, S.3    Wolf, F.A.4    Fischer, D.5    Theis, F.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.