-
1
-
-
84971238065
-
Single-cell genomics: coming of age
-
Linnarsson, S., Teichmann, S.A., Single-cell genomics: coming of age. Genome Biol, 17, 2016, 97.
-
(2016)
Genome Biol
, vol.17
, pp. 97
-
-
Linnarsson, S.1
Teichmann, S.A.2
-
2
-
-
85040459896
-
Science forum: the human cell Atlas
-
Description of the idea as well as the potential of the Human Cell Atlas Project, aiming to build an open molecular reference map of cell states in healthy human tissues.
-
Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P.J., Carninci, P., Clatworthy, M., et al., Human Cell Atlas Meeting Participants. Science forum: the human cell Atlas. Elife, 6, 2017, 10.7554/eLife.27041 Description of the idea as well as the potential of the Human Cell Atlas Project, aiming to build an open molecular reference map of cell states in healthy human tissues.
-
(2017)
Elife
, vol.6
-
-
Regev, A.1
Teichmann, S.A.2
Lander, E.S.3
Amit, I.4
Benoist, C.5
Birney, E.6
Bodenmiller, B.7
Campbell, P.J.8
Carninci, P.9
Clatworthy, M.10
-
3
-
-
84894630323
-
Entering the era of single-cell transcriptomics in biology and medicine
-
Sandberg, R., Entering the era of single-cell transcriptomics in biology and medicine. Nat Meth 11 (2014), 22–24.
-
(2014)
Nat Meth
, vol.11
, pp. 22-24
-
-
Sandberg, R.1
-
4
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Systematic review of the main challenges in the analysis of single cell transcriptomics data.
-
Stegle, O., Teichmann, S.A., Marioni, J.C., Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16 (2015), 133–145 Systematic review of the main challenges in the analysis of single cell transcriptomics data.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
5
-
-
67349146589
-
mRNA-Seq whole-transcriptome analysis of a single cell
-
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., Lao, K., Surani, M.A., mRNA-Seq whole-transcriptome analysis of a single cell. Nat Meth 6 (2009), 377–382.
-
(2009)
Nat Meth
, vol.6
, pp. 377-382
-
-
Tang, F.1
Barbacioru, C.2
Wang, Y.3
Nordman, E.4
Lee, C.5
Xu, N.6
Wang, X.7
Bodeau, J.8
Tuch, B.B.9
Siddiqui, A.10
Lao, K.11
Surani, M.A.12
-
6
-
-
79953766940
-
Tumour evolution inferred by single-cell sequencing
-
Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., Levy, D., Esposito, D., et al. Tumour evolution inferred by single-cell sequencing. Nature 472 (2011), 90–94.
-
(2011)
Nature
, vol.472
, pp. 90-94
-
-
Navin, N.1
Kendall, J.2
Troge, J.3
Andrews, P.4
Rodgers, L.5
McIndoo, J.6
Cook, K.7
Stepansky, A.8
Levy, D.9
Esposito, D.10
-
7
-
-
84869096434
-
DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution
-
Falconer, E., Hills, M., Naumann, U., Poon, S.S.S., Chavez, E.A., Sanders, A.D., Zhao, Y., Hirst, M., Lansdorp, P.M., DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat Meth 9 (2012), 1107–1112.
-
(2012)
Nat Meth
, vol.9
, pp. 1107-1112
-
-
Falconer, E.1
Hills, M.2
Naumann, U.3
Poon, S.S.S.4
Chavez, E.A.5
Sanders, A.D.6
Zhao, Y.7
Hirst, M.8
Lansdorp, P.M.9
-
8
-
-
84905405443
-
Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
-
Smallwood, S.A., Lee, H.J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, S.R., Stegle, O., Reik, W., Kelsey, G., Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Meth 11 (2014), 817–820.
-
(2014)
Nat Meth
, vol.11
, pp. 817-820
-
-
Smallwood, S.A.1
Lee, H.J.2
Angermueller, C.3
Krueger, F.4
Saadeh, H.5
Peat, J.6
Andrews, S.R.7
Stegle, O.8
Reik, W.9
Kelsey, G.10
-
9
-
-
84946545109
-
Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state
-
Rotem, A., Ram, O., Shoresh, N., Sperling, R.A., Goren, A., Weitz, D.A., Bernstein, B.E., Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33 (2015), 1165–1172.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1165-1172
-
-
Rotem, A.1
Ram, O.2
Shoresh, N.3
Sperling, R.A.4
Goren, A.5
Weitz, D.A.6
Bernstein, B.E.7
-
10
-
-
84937857359
-
Single-cell chromatin accessibility reveals principles of regulatory variation
-
Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., Chang, H.Y., Greenleaf, W.J., Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523 (2015), 486–490.
-
(2015)
Nature
, vol.523
, pp. 486-490
-
-
Buenrostro, J.D.1
Wu, B.2
Litzenburger, U.M.3
Ruff, D.4
Gonzales, M.L.5
Snyder, M.P.6
Chang, H.Y.7
Greenleaf, W.J.8
-
11
-
-
84949227165
-
Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples
-
Jin, W., Tang, Q., Wan, M., Cui, K., Zhang, Y., Ren, G., Ni, B., Sklar, J., Przytycka, T.M., Childs, R., Levens, D., Zhao, K., Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528 (2015), 142–146.
-
(2015)
Nature
, vol.528
, pp. 142-146
-
-
Jin, W.1
Tang, Q.2
Wan, M.3
Cui, K.4
Zhang, Y.5
Ren, G.6
Ni, B.7
Sklar, J.8
Przytycka, T.M.9
Childs, R.10
Levens, D.11
Zhao, K.12
-
12
-
-
84930006926
-
Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing
-
Cusanovich, D.A., Daza, R., Adey, A., Pliner, H.A., Christiansen, L., Gunderson, K.L., Steemers, F.J., Trapnell, C., Shendure, J., Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348 (2015), 910–914.
-
(2015)
Science
, vol.348
, pp. 910-914
-
-
Cusanovich, D.A.1
Daza, R.2
Adey, A.3
Pliner, H.A.4
Christiansen, L.5
Gunderson, K.L.6
Steemers, F.J.7
Trapnell, C.8
Shendure, J.9
-
13
-
-
84885617426
-
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
-
Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., Tanay, A., Fraser, P., Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502 (2013), 59–64.
-
(2013)
Nature
, vol.502
, pp. 59-64
-
-
Nagano, T.1
Lubling, Y.2
Stevens, T.J.3
Schoenfelder, S.4
Yaffe, E.5
Dean, W.6
Laue, E.D.7
Tanay, A.8
Fraser, P.9
-
14
-
-
84948587544
-
Genome-wide maps of nuclear lamina interactions in single human cells
-
Kind, J., Pagie, L., de Vries, S.S., Nahidiazar, L., Dey, S.S., Bienko, M., Zhan, Y., Lajoie, B., de Graaf, C.A., Amendola, M., et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163 (2015), 134–147.
-
(2015)
Cell
, vol.163
, pp. 134-147
-
-
Kind, J.1
Pagie, L.2
de Vries, S.S.3
Nahidiazar, L.4
Dey, S.S.5
Bienko, M.6
Zhan, Y.7
Lajoie, B.8
de Graaf, C.A.9
Amendola, M.10
-
15
-
-
84959248377
-
Highly multiplexed simultaneous detection of RNAs and proteins in single cells
-
Frei, A.P., Bava, F.-A., Zunder, E.R., Hsieh, E.W.Y., Chen, S.-Y., Nolan, G.P., Gherardini, P.F., Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat Meth 13 (2016), 269–275.
-
(2016)
Nat Meth
, vol.13
, pp. 269-275
-
-
Frei, A.P.1
Bava, F.-A.2
Zunder, E.R.3
Hsieh, E.W.Y.4
Chen, S.-Y.5
Nolan, G.P.6
Gherardini, P.F.7
-
16
-
-
85000962972
-
Metabolomics: small molecules, single cells
-
Fessenden, M., Metabolomics: small molecules, single cells. Nature 540 (2016), 153–155.
-
(2016)
Nature
, vol.540
, pp. 153-155
-
-
Fessenden, M.1
-
17
-
-
84930178333
-
G&T-seq: parallel sequencing of single-cell genomes and transcriptomes
-
Macaulay, I.C., Haerty, W., Kumar, P., Li, Y.I., Hu, T.X., Teng, M.J., Goolam, M., Saurat, N., Coupland, P., Shirley, L.M., et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Meth 12 (2015), 519–522.
-
(2015)
Nat Meth
, vol.12
, pp. 519-522
-
-
Macaulay, I.C.1
Haerty, W.2
Kumar, P.3
Li, Y.I.4
Hu, T.X.5
Teng, M.J.6
Goolam, M.7
Saurat, N.8
Coupland, P.9
Shirley, L.M.10
-
18
-
-
84924423596
-
Integrated genome and transcriptome sequencing of the same cell
-
Dey, S.S., Kester, L., Spanjaard, B., Bienko, M., van Oudenaarden, A., Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 33 (2015), 285–289.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 285-289
-
-
Dey, S.S.1
Kester, L.2
Spanjaard, B.3
Bienko, M.4
van Oudenaarden, A.5
-
19
-
-
84959255113
-
Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
-
Angermueller, C., Clark, S.J., Lee, H.J., Macaulay, I.C., Teng, M.J., Hu, T.X., Krueger, F., Smallwood, S.A., Ponting, C.P., Voet, T., Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Meth 13 (2016), 229–232.
-
(2016)
Nat Meth
, vol.13
, pp. 229-232
-
-
Angermueller, C.1
Clark, S.J.2
Lee, H.J.3
Macaulay, I.C.4
Teng, M.J.5
Hu, T.X.6
Krueger, F.7
Smallwood, S.A.8
Ponting, C.P.9
Voet, T.10
-
20
-
-
84982161976
-
Single-cell multimodal profiling reveals cellular epigenetic heterogeneity
-
Cheow, L.F., Courtois, E.T., Tan, Y., Viswanathan, R., Xing, Q., Tan, R.Z., Tan, D.S.W., Robson, P., Loh, Y.-H., Quake, S.R., Burkholder, W.F., Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Meth 13 (2016), 833–836.
-
(2016)
Nat Meth
, vol.13
, pp. 833-836
-
-
Cheow, L.F.1
Courtois, E.T.2
Tan, Y.3
Viswanathan, R.4
Xing, Q.5
Tan, R.Z.6
Tan, D.S.W.7
Robson, P.8
Loh, Y.-H.9
Quake, S.R.10
Burkholder, W.F.11
-
21
-
-
84960091878
-
Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas
-
One of a few papers describing the measurement and integration of more than two -omics layers of the same single cell, in particular genomics, epigenomics and transcriptomics.
-
Hou, Y., Guo, H., Cao, C., Li, X., Hu, B., Zhu, P., Wu, X., Wen, L., Tang, F., Huang, Y., Peng, J., Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26 (2016), 304–319 One of a few papers describing the measurement and integration of more than two -omics layers of the same single cell, in particular genomics, epigenomics and transcriptomics.
-
(2016)
Cell Res
, vol.26
, pp. 304-319
-
-
Hou, Y.1
Guo, H.2
Cao, C.3
Li, X.4
Hu, B.5
Zhu, P.6
Wu, X.7
Wen, L.8
Tang, F.9
Huang, Y.10
Peng, J.11
-
22
-
-
84965048064
-
Simultaneous profiling of transcriptome and DNA methylome from a single cell
-
Hu, Y., Huang, K., An, Q., Du, G., Hu, G., Xue, J., Zhu, X., Wang, C.-Y., Xue, Z., Fan, G., Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol, 17, 2016, 88.
-
(2016)
Genome Biol
, vol.17
, pp. 88
-
-
Hu, Y.1
Huang, K.2
An, Q.3
Du, G.4
Hu, G.5
Xue, J.6
Zhu, X.7
Wang, C.-Y.8
Xue, Z.9
Fan, G.10
-
23
-
-
85022345215
-
Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells
-
Pott, S., Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. Elife, 6, 2017, 10.7554/eLife.23203.
-
(2017)
Elife
, vol.6
-
-
Pott, S.1
-
24
-
-
85026666749
-
Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells
-
Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., Tang, F., Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27 (2017), 967–988.
-
(2017)
Cell Res
, vol.27
, pp. 967-988
-
-
Guo, F.1
Li, L.2
Li, J.3
Wu, X.4
Hu, B.5
Zhu, P.6
Wen, L.7
Tang, F.8
-
25
-
-
85040650700
-
Joint profiling of chromatin accessibility, DNA methylation and transcription in single cells
-
One of a few papers profiling and integrating more than two -omic layers of the same single cell, combining NOME-seq (chromatin accessibility and DNA methylation) with scRNA-seq.
-
Clark, S.J., Argelaguet, R., Kapourani, C.-A., Stubbs, T.M., Lee, H.J., Krueger, F., Sanguinetti, G., Kelsey, G., Marioni, J.C., Stegle, O., Reik, W., Joint profiling of chromatin accessibility, DNA methylation and transcription in single cells. bioRxiv, 2017, 138685, 10.1101/138685 One of a few papers profiling and integrating more than two -omic layers of the same single cell, combining NOME-seq (chromatin accessibility and DNA methylation) with scRNA-seq.
-
(2017)
bioRxiv
, pp. 138685
-
-
Clark, S.J.1
Argelaguet, R.2
Kapourani, C.-A.3
Stubbs, T.M.4
Lee, H.J.5
Krueger, F.6
Sanguinetti, G.7
Kelsey, G.8
Marioni, J.C.9
Stegle, O.10
Reik, W.11
-
26
-
-
85031308868
-
Multiplexed quantification of proteins and transcripts in single cells
-
Peterson, V.M., Zhang, K.X., Kumar, N., Wong, J., Li, L., Wilson, D.C., Moore, R., McClanahan, T.K., Sadekova, S., Klappenbach, J.A., Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35 (2017), 936–939.
-
(2017)
Nat Biotechnol
, vol.35
, pp. 936-939
-
-
Peterson, V.M.1
Zhang, K.X.2
Kumar, N.3
Wong, J.4
Li, L.5
Wilson, D.C.6
Moore, R.7
McClanahan, T.K.8
Sadekova, S.9
Klappenbach, J.A.10
-
27
-
-
85028316331
-
Simultaneous epitope and transcriptome measurement in single cells
-
Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P.K., Swerdlow, H., Satija, R., Smibert, P., Simultaneous epitope and transcriptome measurement in single cells. Nat Meth 14 (2017), 865–868.
-
(2017)
Nat Meth
, vol.14
, pp. 865-868
-
-
Stoeckius, M.1
Hafemeister, C.2
Stephenson, W.3
Houck-Loomis, B.4
Chattopadhyay, P.K.5
Swerdlow, H.6
Satija, R.7
Smibert, P.8
-
28
-
-
84938709678
-
Big data: astronomical or genomical?
-
Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E., Big data: astronomical or genomical?. PLoS Biol, 13, 2015, e1002195.
-
(2015)
PLoS Biol
, vol.13
, pp. e1002195
-
-
Stephens, Z.D.1
Lee, S.Y.2
Faghri, F.3
Campbell, R.H.4
Zhai, C.5
Efron, M.J.6
Iyer, R.7
Schatz, M.C.8
Sinha, S.9
Robinson, G.E.10
-
29
-
-
84887452388
-
A survey of multi-view machine learning
-
A comprehensive review and categorization of machine learning methods dealing with the integration of multi-modal (“multi-view”) data sets, i.e. samples with multiple alternative multivariate observations.
-
Sun, S., A survey of multi-view machine learning. Neural Comput Appl 23 (2013), 2031–2038 A comprehensive review and categorization of machine learning methods dealing with the integration of multi-modal (“multi-view”) data sets, i.e. samples with multiple alternative multivariate observations.
-
(2013)
Neural Comput Appl
, vol.23
, pp. 2031-2038
-
-
Sun, S.1
-
30
-
-
85049474548
-
A review on machine learning principles for multi-view biological data integration
-
Li, Y., Wu, F.-X., Ngom, A., A review on machine learning principles for multi-view biological data integration. Brief Bioinform, 2016, 10.1093/bib/bbw113.
-
(2016)
Brief Bioinform
-
-
Li, Y.1
Wu, F.-X.2
Ngom, A.3
-
31
-
-
85021210336
-
More is better: recent progress in multi-omics data integration methods
-
Huang, S., Chaudhary, K., Garmire, L.X., More is better: recent progress in multi-omics data integration methods. Front Genet, 8, 2017, 84.
-
(2017)
Front Genet
, vol.8
, pp. 84
-
-
Huang, S.1
Chaudhary, K.2
Garmire, L.X.3
-
32
-
-
84890546613
-
Systems genetics approaches to understand complex traits
-
Civelek, M., Lusis, A.J., Systems genetics approaches to understand complex traits. Nat Rev Genet 15 (2014), 34–48.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 34-48
-
-
Civelek, M.1
Lusis, A.J.2
-
33
-
-
84937790219
-
The human blood metabolome-transcriptome interface
-
Bartel, J., Krumsiek, J., Schramm, K., Adamski, J., Gieger, C., Herder, C., Carstensen, M., Peters, A., Rathmann, W., Roden, M., et al. The human blood metabolome-transcriptome interface. PLoS Genet, 11, 2015, e1005274.
-
(2015)
PLoS Genet
, vol.11
, pp. e1005274
-
-
Bartel, J.1
Krumsiek, J.2
Schramm, K.3
Adamski, J.4
Gieger, C.5
Herder, C.6
Carstensen, M.7
Peters, A.8
Rathmann, W.9
Roden, M.10
-
34
-
-
84995752772
-
Genetic drivers of epigenetic and transcriptional variation in human immune cells
-
e24
-
Chen, L., Ge, B., Casale, F.P., Vasquez, L., Kwan, T., Garrido-Martín, D., Watt, S., Yan, Y., Kundu, K., Ecker, S., et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167 (2016), 1398–1414 e24.
-
(2016)
Cell
, vol.167
, pp. 1398-1414
-
-
Chen, L.1
Ge, B.2
Casale, F.P.3
Vasquez, L.4
Kwan, T.5
Garrido-Martín, D.6
Watt, S.7
Yan, Y.8
Kundu, K.9
Ecker, S.10
-
35
-
-
84890011736
-
A modular framework for gene set analysis integrating multilevel omics data
-
Sass, S., Buettner, F., Mueller, N.S., Theis, F.J., A modular framework for gene set analysis integrating multilevel omics data,. Nucleic Acids Res 41 (2013), 9622–9633.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 9622-9633
-
-
Sass, S.1
Buettner, F.2
Mueller, N.S.3
Theis, F.J.4
-
36
-
-
84969504939
-
Multi-omics of single cells: strategies and applications
-
Bock, C., Farlik, M., Sheffield, N.C., Multi-omics of single cells: strategies and applications. Trends Biotechnol 34 (2016), 605–608.
-
(2016)
Trends Biotechnol
, vol.34
, pp. 605-608
-
-
Bock, C.1
Farlik, M.2
Sheffield, N.C.3
-
37
-
-
85039985019
-
SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells
-
Han, K.Y., Kim, K.-T., Joung, J.-G., Son, D.-S., Kim, Y.J., Jo, A., Jeon, H.-J., Moon, H.-S., Yoo, C.E., Chung, W., et al. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Res, 2017, 10.1101/gr.223263.117.
-
(2017)
Genome Res
-
-
Han, K.Y.1
Kim, K.-T.2
Joung, J.-G.3
Son, D.-S.4
Kim, Y.J.5
Jo, A.6
Jeon, H.-J.7
Moon, H.-S.8
Yoo, C.E.9
Chung, W.10
-
38
-
-
85025599203
-
MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
-
Description of a computational method to align multiple single cell omics layers, albeit assuming they have been measured in different single cells.
-
Welch, J.D., Hartemink, A.J., Prins, J.F., MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol, 18, 2017, 138 Description of a computational method to align multiple single cell omics layers, albeit assuming they have been measured in different single cells.
-
(2017)
Genome Biol
, vol.18
, pp. 138
-
-
Welch, J.D.1
Hartemink, A.J.2
Prins, J.F.3
-
39
-
-
85041108250
-
Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
-
Computational integration of single cell transcriptomic measurements performed on different populations of single cells
-
Butler, A., Satija, R., Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. bioRxiv, 2017, 164889, 10.1101/164889 Computational integration of single cell transcriptomic measurements performed on different populations of single cells.
-
(2017)
bioRxiv
, pp. 164889
-
-
Butler, A.1
Satija, R.2
-
40
-
-
70149096300
-
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
-
Witten, D.M., Tibshirani, R., Hastie, T., A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 (2009), 515–534.
-
(2009)
Biostatistics
, vol.10
, pp. 515-534
-
-
Witten, D.M.1
Tibshirani, R.2
Hastie, T.3
-
41
-
-
60849113429
-
Sparse canonical methods for biological data integration: application to a cross-platform study
-
Lê Cao, K.-A., Martin, P.G.P., Robert-Granié, C., Besse, P., Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinf, 10, 2009, 34.
-
(2009)
BMC Bioinf
, vol.10
, pp. 34
-
-
Lê Cao, K.-A.1
Martin, P.G.P.2
Robert-Granié, C.3
Besse, P.4
-
42
-
-
38849098283
-
Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis
-
Article3
-
Waaijenborg, S., Verselewel de Witt Hamer, P.C., Zwinderman, A.H., Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat Appl Genet Mol Biol, 7, 2008 Article3.
-
(2008)
Stat Appl Genet Mol Biol
, vol.7
-
-
Waaijenborg, S.1
Verselewel de Witt Hamer, P.C.2
Zwinderman, A.H.3
-
44
-
-
84984643819
-
Diffusion pseudotime robustly reconstructs lineage branching
-
Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F., Theis, F.J., Diffusion pseudotime robustly reconstructs lineage branching. Nat Meth 13 (2016), 845–848.
-
(2016)
Nat Meth
, vol.13
, pp. 845-848
-
-
Haghverdi, L.1
Büttner, M.2
Wolf, F.A.3
Buettner, F.4
Theis, F.J.5
-
45
-
-
56349094785
-
Fast unfolding of communities in large networks
-
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., Fast unfolding of communities in large networks. J Stat Mech, 2008, 2008, P10008.
-
(2008)
J Stat Mech
, vol.2008
, pp. P10008
-
-
Blondel, V.D.1
Guillaume, J.-L.2
Lambiotte, R.3
Lefebvre, E.4
-
46
-
-
84934442835
-
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
-
Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., Amir, E.-A.D., Tadmor, M.D., Litvin, O., Fienberg, H.G., Jager, A., Zunder, E.R., et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162 (2015), 184–197.
-
(2015)
Cell
, vol.162
, pp. 184-197
-
-
Levine, J.H.1
Simonds, E.F.2
Bendall, S.C.3
Davis, K.L.4
Amir, E.-A.D.5
Tadmor, M.D.6
Litvin, O.7
Fienberg, H.G.8
Jager, A.9
Zunder, E.R.10
-
47
-
-
84879815802
-
Multiple instance classification: review, taxonomy and comparative study
-
Amores, J., Multiple instance classification: review, taxonomy and comparative study. Artif Intell 201 (2013), 81–105.
-
(2013)
Artif Intell
, vol.201
, pp. 81-105
-
-
Amores, J.1
-
48
-
-
85027682796
-
Multiplexing droplet-based single cell RNA-sequencing using natural genetic barcodes
-
Kang, H.M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., Wan, E., Wong, S., Byrnes, L., Lanata, C., Gate, R., et al. Multiplexing droplet-based single cell RNA-sequencing using natural genetic barcodes. bioRxiv, 2017, 118778, 10.1101/118778.
-
(2017)
bioRxiv
, pp. 118778
-
-
Kang, H.M.1
Subramaniam, M.2
Targ, S.3
Nguyen, M.4
Maliskova, L.5
Wan, E.6
Wong, S.7
Byrnes, L.8
Lanata, C.9
Gate, R.10
-
49
-
-
85041430720
-
Single cells make big data: new challenges and opportunities in transcriptomics
-
Review of computational challenges arising from the increasing size of scRNAseq data sets, highlighting opportunities and challenges in the context of big data analytics.
-
Angerer, P., Simon, L., Tritschler, S., Wolf, F.A., Fischer, D., Theis, F.J., Single cells make big data: new challenges and opportunities in transcriptomics. Curr Opin Struct Biol 4 (2017), 85–91 Review of computational challenges arising from the increasing size of scRNAseq data sets, highlighting opportunities and challenges in the context of big data analytics.
-
(2017)
Curr Opin Struct Biol
, vol.4
, pp. 85-91
-
-
Angerer, P.1
Simon, L.2
Tritschler, S.3
Wolf, F.A.4
Fischer, D.5
Theis, F.J.6
-
50
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun, 8, 2017, 14049.
-
(2017)
Nat Commun
, vol.8
, pp. 14049
-
-
Zheng, G.X.Y.1
Terry, J.M.2
Belgrader, P.3
Ryvkin, P.4
Bent, Z.W.5
Wilson, R.6
Ziraldo, S.B.7
Wheeler, T.D.8
McDermott, G.P.9
Zhu, J.10
-
51
-
-
85019365266
-
Scaling single cell transcriptomics through split pool barcoding
-
Rosenberg, A.B., Roco, C., Muscat, R.A., Kuchina, A., Mukherjee, S., Chen, W., Peeler, D.J., Yao, Z., Tasic, B., Sellers, D.L., Pun, S.H., Seelig, G., Scaling single cell transcriptomics through split pool barcoding. bioRxiv, 2017, 105163, 10.1101/105163.
-
(2017)
bioRxiv
, pp. 105163
-
-
Rosenberg, A.B.1
Roco, C.2
Muscat, R.A.3
Kuchina, A.4
Mukherjee, S.5
Chen, W.6
Peeler, D.J.7
Yao, Z.8
Tasic, B.9
Sellers, D.L.10
Pun, S.H.11
Seelig, G.12
-
52
-
-
85045340292
-
The human cell Atlas: technical approaches and challenges
-
Hon, C.-C., Shin, J.W., Carninci, P., Stubbington, M.J.T., The human cell Atlas: technical approaches and challenges. Brief Funct Genomics, 2017, 10.1093/bfgp/elx029.
-
(2017)
Brief Funct Genomics
-
-
Hon, C.-C.1
Shin, J.W.2
Carninci, P.3
Stubbington, M.J.T.4
|