메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages 85-92

Co-evolution of strain design methods based on flux balance and elementary mode analysis

Author keywords

Computational methods; Constraint based modeling; Metabolic engineering; Rational strain design

Indexed keywords

1, 4 BUTANEDIOL; 2, 3 BUTANEDIOL; ACETIC ACID; ACTINORHODINE; ALCOHOL; FLAVONOID; FUMARIC ACID; GLUCOSE; GLYCEROL; ISOBUTANOL; LACTIC ACID; LYCOPENE; MALONYL COENZYME A; PUTRESCINE; SUCCINIC ACID; THREONINE; UNCLASSIFIED DRUG; VALINE; VANILLIN; XYLOSE;

EID: 84938074954     PISSN: None     EISSN: 22140301     Source Type: Journal    
DOI: 10.1016/j.meteno.2015.04.001     Document Type: Review
Times cited : (65)

References (89)
  • 1
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in escherichia coli
    • Alper H., Jin Y.-S., Moxley J., Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in escherichia coli. Metabol. Eng. 2005, 7(3):155-164.
    • (2005) Metabol. Eng. , vol.7 , Issue.3 , pp. 155-164
    • Alper, H.1    Jin, Y.-S.2    Moxley, J.3    Stephanopoulos, G.4
  • 2
    • 22844452835 scopus 로고    scopus 로고
    • Construction of lycopene-overproducing e. coli strains by combining systematic and combinatorial gene knockout targets
    • Alper H., Miyaoku K., Stephanopoulos G. Construction of lycopene-overproducing e. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 2005, 23(5):612-616.
    • (2005) Nat. Biotechnol. , vol.23 , Issue.5 , pp. 612-616
    • Alper, H.1    Miyaoku, K.2    Stephanopoulos, G.3
  • 3
    • 70449592325 scopus 로고    scopus 로고
    • Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
    • Asadollahi M.A., Maury J., Patil K.R., Schalk M., Clark A., Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metabol. Eng. 2009, 11(6):328-334.
    • (2009) Metabol. Eng. , vol.11 , Issue.6 , pp. 328-334
    • Asadollahi, M.A.1    Maury, J.2    Patil, K.R.3    Schalk, M.4    Clark, A.5    Nielsen, J.6
  • 4
    • 79952106791 scopus 로고    scopus 로고
    • From zero to herodesign-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
    • Becker J., Zelder O., Häfner S., Schröder H., Wittmann C. From zero to herodesign-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metabol. Eng. 2011, 13(2):159-168.
    • (2011) Metabol. Eng. , vol.13 , Issue.2 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5
  • 6
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • Bordbar A., Monk J.M., King Z.A., Palsson B.O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 2014, 15(2):107-120.
    • (2014) Nat. Rev. Genet. , vol.15 , Issue.2 , pp. 107-120
    • Bordbar, A.1    Monk, J.M.2    King, Z.A.3    Palsson, B.O.4
  • 8
    • 0242487787 scopus 로고    scopus 로고
    • Optknock. a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A.P., Pharkya P., Maranas C.D. Optknock. a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84(6):647-657.
    • (2003) Biotechnol. Bioeng. , vol.84 , Issue.6 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 9
    • 76749151341 scopus 로고    scopus 로고
    • Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • Chemler J.A., Fowler Z.L., McHugh K.P., Koffas M.A. Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metabol. Eng. 2010, 12(2):96-104.
    • (2010) Metabol. Eng. , vol.12 , Issue.2 , pp. 96-104
    • Chemler, J.A.1    Fowler, Z.L.2    McHugh, K.P.3    Koffas, M.A.4
  • 10
    • 77952265112 scopus 로고    scopus 로고
    • In silico identification of gene amplification targets for improvement of lycopene production
    • Choi H.S., Lee S.Y., Kim T.Y., Woo H.M. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 2010, 76(10):3097-3105.
    • (2010) Appl. Environ. Microbiol. , vol.76 , Issue.10 , pp. 3097-3105
    • Choi, H.S.1    Lee, S.Y.2    Kim, T.Y.3    Woo, H.M.4
  • 11
    • 84864303934 scopus 로고    scopus 로고
    • Identifying gene knockout strategies using a hybrid of bees algorithm and flux balance analysis for in silico optimization of microbial strains
    • Springer, Berlin, Heidelberg
    • Choon Y.W., Mohamad M.S., Deris S., Chong C.K., Chai L.E., Ibrahim Z., Omatu S. Identifying gene knockout strategies using a hybrid of bees algorithm and flux balance analysis for in silico optimization of microbial strains. Distributed Computing and Artificial Intelligence 2012, 371-378. Springer, Berlin, Heidelberg.
    • (2012) Distributed Computing and Artificial Intelligence , pp. 371-378
    • Choon, Y.W.1    Mohamad, M.S.2    Deris, S.3    Chong, C.K.4    Chai, L.E.5    Ibrahim, Z.6    Omatu, S.7
  • 13
    • 84895756673 scopus 로고    scopus 로고
    • K-optforce. integrating kinetics with flux balance analysis for strain design
    • Chowdhury A., Zomorrodi A.R., Maranas C.D. k-optforce. integrating kinetics with flux balance analysis for strain design. PLoS Comput. Biol. 2014, 10(2):e1003487.
    • (2014) PLoS Comput. Biol. , vol.10 , Issue.2
    • Chowdhury, A.1    Zomorrodi, A.R.2    Maranas, C.D.3
  • 15
    • 84877118199 scopus 로고    scopus 로고
    • Constraint-based strain design using continuous modifications (cosmos) of flux bounds finds new strategies for metabolic engineering
    • Cotten C., Reed J. Constraint-based strain design using continuous modifications (cosmos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J. 2013, 8(5):595-604.
    • (2013) Biotechnol. J. , vol.8 , Issue.5 , pp. 595-604
    • Cotten, C.1    Reed, J.2
  • 17
    • 0034625143 scopus 로고    scopus 로고
    • The escherichia coli mg1655 in silico metabolic genotype: its definition, characteristics, and capabilities.
    • Edwards, J., Palsson, B., 2000. The escherichia coli mg1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. 97 (10), 5528-5533.
    • (2000) Proc. Natl. Acad. Sci. , vol.97 , Issue.10 , pp. 5528-5533
    • Edwards, J.1    Palsson, B.2
  • 18
    • 84863532131 scopus 로고    scopus 로고
    • Truncated branch and bound achieves efficient constraint-based genetic design
    • Egen D., Lun D.S. Truncated branch and bound achieves efficient constraint-based genetic design. Bioinformatics 2012, 28(12):1619-1623.
    • (2012) Bioinformatics , vol.28 , Issue.12 , pp. 1619-1623
    • Egen, D.1    Lun, D.S.2
  • 19
    • 84912567357 scopus 로고    scopus 로고
    • Constrictor. constraint modification provides insight into design of biochemical networks
    • Erickson K.E., Gill R.T., Chatterjee A. Constrictor. constraint modification provides insight into design of biochemical networks. PloS One 2014, 9(11):e113820.
    • (2014) PloS One , vol.9 , Issue.11
    • Erickson, K.E.1    Gill, R.T.2    Chatterjee, A.3
  • 21
    • 77950863401 scopus 로고    scopus 로고
    • Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli
    • Feist A.M., Zielinski D.C., Orth J.D., Schellenberger J., Herrgard M.J., Palsson B.Ø. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metabol. Eng. 2010, 12(3):173-186.
    • (2010) Metabol. Eng. , vol.12 , Issue.3 , pp. 173-186
    • Feist, A.M.1    Zielinski, D.C.2    Orth, J.D.3    Schellenberger, J.4    Herrgard, M.J.5    Palsson, B.Ø.6
  • 22
    • 84877149255 scopus 로고    scopus 로고
    • Smet. systematic multiple enzyme targeting-a method to rationally design optimal strains for target chemical overproduction
    • Flowers D., Thompson R.A., Birdwell D., Wang T., Trinh C.T. Smet. systematic multiple enzyme targeting-a method to rationally design optimal strains for target chemical overproduction. Biotechnol. J. 2013, 8(5):605-618.
    • (2013) Biotechnol. J. , vol.8 , Issue.5 , pp. 605-618
    • Flowers, D.1    Thompson, R.A.2    Birdwell, D.3    Wang, T.4    Trinh, C.T.5
  • 24
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J., Famili I., Fu P., Palsson B.Ø, Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13(2):244-253.
    • (2003) Genome Res. , vol.13 , Issue.2 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø4    Nielsen, J.5
  • 25
    • 67650660144 scopus 로고    scopus 로고
    • Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
    • Fowler Z.L., Gikandi W.W., Koffas M.A. Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol. 2009, 75(18):5831-5839.
    • (2009) Appl. Environ. Microbiol. , vol.75 , Issue.18 , pp. 5831-5839
    • Fowler, Z.L.1    Gikandi, W.W.2    Koffas, M.A.3
  • 26
    • 77952585143 scopus 로고    scopus 로고
    • Casop. a computational approach for strain optimization aiming at high productivity
    • Hädicke O., Klamt S. Casop. a computational approach for strain optimization aiming at high productivity. J. Biotechnol. 2010, 147(2):88-101.
    • (2010) J. Biotechnol. , vol.147 , Issue.2 , pp. 88-101
    • Hädicke, O.1    Klamt, S.2
  • 27
    • 79952103372 scopus 로고    scopus 로고
    • Computing complex metabolic intervention strategies using constrained minimal cut sets
    • Hädicke O., Klamt S. Computing complex metabolic intervention strategies using constrained minimal cut sets. Metabol. Eng. 2011, 13(2):204-213.
    • (2011) Metabol. Eng. , vol.13 , Issue.2 , pp. 204-213
    • Hädicke, O.1    Klamt, S.2
  • 28
    • 44149128882 scopus 로고    scopus 로고
    • Exploiting the pathway structure of metabolism to reveal high-order epistasis
    • Imielinski M., Belta C. Exploiting the pathway structure of metabolism to reveal high-order epistasis. BMC Syst. Biol. 2008, 2(1):40.
    • (2008) BMC Syst. Biol. , vol.2 , Issue.1 , pp. 40
    • Imielinski, M.1    Belta, C.2
  • 30
    • 41249084917 scopus 로고    scopus 로고
    • Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli c that produce succinate and malate
    • Jantama K., Haupt M., Svoronos S.A., Zhang X., Moore J., Shanmugam K., Ingram L. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli c that produce succinate and malate. Biotechnol. Bioeng. 2008, 99(5):1140-1153.
    • (2008) Biotechnol. Bioeng. , vol.99 , Issue.5 , pp. 1140-1153
    • Jantama, K.1    Haupt, M.2    Svoronos, S.A.3    Zhang, X.4    Moore, J.5    Shanmugam, K.6    Ingram, L.7
  • 31
    • 84864923763 scopus 로고    scopus 로고
    • Designing optimal cell factories. integer programming couples elementary mode analysis with regulation
    • Jungreuthmayer C., Zanghellini J. Designing optimal cell factories. integer programming couples elementary mode analysis with regulation. BMC Syst. Biol. 2012, 6(1):103.
    • (2012) BMC Syst. Biol. , vol.6 , Issue.1 , pp. 103
    • Jungreuthmayer, C.1    Zanghellini, J.2
  • 32
    • 84856560417 scopus 로고    scopus 로고
    • EFMEvolver: computing elementary flux modes in genome-scale metabolic networks.
    • Kaleta, C., de Figueiredo, L., Behre, J., Schuster, S., 2009. EFMEvolver: computing elementary flux modes in genome-scale metabolic networks. In: Lecture Notes in Informatics, vol. 157, pp. 179-189.
    • (2009) Lecture Notes in Informatics , vol.157 , pp. 179-189
    • Kaleta, C.1    de Figueiredo, L.2    Behre, J.3    Schuster, S.4
  • 33
    • 77951552860 scopus 로고    scopus 로고
    • Optorf. optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
    • Kim J., Reed J. Optorf. optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 2010, 4(1):53.
    • (2010) BMC Syst. Biol. , vol.4 , Issue.1 , pp. 53
    • Kim, J.1    Reed, J.2
  • 34
    • 80052573483 scopus 로고    scopus 로고
    • Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
    • Kim J., Reed J.L., Maravelias C.T. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 2011, 6(9):e24162.
    • (2011) PLoS One , vol.6 , Issue.9
    • Kim, J.1    Reed, J.L.2    Maravelias, C.T.3
  • 35
    • 84906949001 scopus 로고    scopus 로고
    • Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in streptomyces coelicolor a3
    • Kim M., Sang Yi, J., Kim J., Kim J.-N., Kim M.W., Kim B.-G. Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in streptomyces coelicolor a3. Biotechnol. J. 2014, (2).
    • (2014) Biotechnol. J. , Issue.2
    • Kim, M.1    Sang, Y.J.2    Kim, J.3    Kim, J.-N.4    Kim, M.W.5    Kim, B.-G.6
  • 36
    • 84881496214 scopus 로고    scopus 로고
    • Optimizing cofactor specificity of oxidoreductase enzymes for the generation of microbial production strainsoptswap
    • King Z.A., Feist A.M. Optimizing cofactor specificity of oxidoreductase enzymes for the generation of microbial production strainsoptswap. Ind. Biotechnol. 2013, 9(4):236-246.
    • (2013) Ind. Biotechnol. , vol.9 , Issue.4 , pp. 236-246
    • King, Z.A.1    Feist, A.M.2
  • 37
    • 1042269472 scopus 로고    scopus 로고
    • Minimal cut sets in biochemical reaction networks
    • Klamt S., Gilles E.D. Minimal cut sets in biochemical reaction networks. Bioinformatics 2004, 20(2):226-234.
    • (2004) Bioinformatics , vol.20 , Issue.2 , pp. 226-234
    • Klamt, S.1    Gilles, E.D.2
  • 38
    • 36849002434 scopus 로고    scopus 로고
    • Systems metabolic engineering of escherichia coli for l-threonine production
    • Lee K.H., Park J.H., Kim T.Y., Kim H.U., Lee S.Y. Systems metabolic engineering of escherichia coli for l-threonine production. Mol. Syst. Biol. 2007, 3:1.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 1
    • Lee, K.H.1    Park, J.H.2    Kim, T.Y.3    Kim, H.U.4    Lee, S.Y.5
  • 39
    • 29144484729 scopus 로고    scopus 로고
    • Metabolic engineering of escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
    • Lee S.J., Lee D.-Y., Kim T.Y., Kim B.H., Lee J., Lee S.Y. Metabolic engineering of escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 2005, 71(12):7880-7887.
    • (2005) Appl. Environ. Microbiol. , vol.71 , Issue.12 , pp. 7880-7887
    • Lee, S.J.1    Lee, D.-Y.2    Kim, T.Y.3    Kim, B.H.4    Lee, J.5    Lee, S.Y.6
  • 41
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis N.E., Nagarajan H., Palsson B.O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10(4):291-305.
    • (2012) Nat. Rev. Microbiol. , vol.10 , Issue.4 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 42
    • 84864516296 scopus 로고    scopus 로고
    • Rational improvement of the engineered isobutanol-producing bacillus subtilis by elementary mode analysis
    • Li S., Huang D., Li Y., Wen J., Jia X. Rational improvement of the engineered isobutanol-producing bacillus subtilis by elementary mode analysis. Microb. Cell Fact. 2012, 11:101.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 101
    • Li, S.1    Huang, D.2    Li, Y.3    Wen, J.4    Jia, X.5
  • 45
    • 84866443920 scopus 로고    scopus 로고
    • Random sampling of elementary flux modes in large-scale metabolic networks
    • Machado D., Soons Z., Patil K.R., Ferreira E.C., Rocha I. Random sampling of elementary flux modes in large-scale metabolic networks. Bioinformatics 2012, 28(18):i515-i521.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. i515-i521
    • Machado, D.1    Soons, Z.2    Patil, K.R.3    Ferreira, E.C.4    Rocha, I.5
  • 46
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • McCloskey D., Palsson B.Ø, Feist A.M. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 2013, 9:1.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 1
    • McCloskey, D.1    Palsson, B.Ø2    Feist, A.M.3
  • 47
    • 74549189949 scopus 로고    scopus 로고
    • Flux design. in silico design of cell factories based on correlation of pathway fluxes to desired properties
    • Melzer G., Esfandabadi M.E., Franco-Lara E., Wittmann C. Flux design. in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst. Biol. 2009, 3(1):120.
    • (2009) BMC Syst. Biol. , vol.3 , Issue.1 , pp. 120
    • Melzer, G.1    Esfandabadi, M.E.2    Franco-Lara, E.3    Wittmann, C.4
  • 48
    • 79952149701 scopus 로고    scopus 로고
    • Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering
    • Neuner A., Heinzle E. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol. J. 2011, 6(3):318-329.
    • (2011) Biotechnol. J. , vol.6 , Issue.3 , pp. 318-329
    • Neuner, A.1    Heinzle, E.2
  • 49
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng C.Y., Jung M.-y., Lee J., Oh M.-K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 2012, 11(1):68.
    • (2012) Microb. Cell Fact. , vol.11 , Issue.1 , pp. 68
    • Ng, C.Y.1    Jung, M.-Y.2    Lee, J.3    Oh, M.-K.4
  • 50
    • 69149110444 scopus 로고    scopus 로고
    • Multiobjective flux balancing using the nise method for metabolic network analysis
    • Oh Y.-G., Lee D.-Y., Lee S.Y., Park S. Multiobjective flux balancing using the nise method for metabolic network analysis. Biotechnol. Prog. 2009, 25(4):999-1008.
    • (2009) Biotechnol. Prog. , vol.25 , Issue.4 , pp. 999-1008
    • Oh, Y.-G.1    Lee, D.-Y.2    Lee, S.Y.3    Park, S.4
  • 51
    • 84897378649 scopus 로고    scopus 로고
    • Fastpros: screening of reaction knockout strategies for metabolic engineering.
    • btt672
    • Ohno, S., Shimizu, H., Furusawa, C., 2013. Fastpros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics, btt672,. http://dx.doi.org/10.1093/bioinformatics/btt672.
    • (2013) Bioinformatics
    • Ohno, S.1    Shimizu, H.2    Furusawa, C.3
  • 52
    • 79953168114 scopus 로고    scopus 로고
    • Reconstruction and use of microbial metabolic networks. the core Escherichia coli metabolic model as an educational guide
    • ASM Press, Washington, DC, A. Bock, I.R. Curtiss, J. Kaper, P. Karp, F. Neidhardt, T. Nystrom, J. Slauch, C. Squires, D. Ussery (Eds.)
    • Orth J., Fleming R., Palsson B. Reconstruction and use of microbial metabolic networks. the core Escherichia coli metabolic model as an educational guide. EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology 2009, 56-99. ASM Press, Washington, DC. A. Bock, I.R. Curtiss, J. Kaper, P. Karp, F. Neidhardt, T. Nystrom, J. Slauch, C. Squires, D. Ussery (Eds.).
    • (2009) EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology , pp. 56-99
    • Orth, J.1    Fleming, R.2    Palsson, B.3
  • 54
    • 84872655172 scopus 로고    scopus 로고
    • Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
    • Otero J.M., Cimini D., Patil K.R., Poulsen S.G., Olsson L., Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PloS One 2013, 8(1):e54144.
    • (2013) PloS One , vol.8 , Issue.1
    • Otero, J.M.1    Cimini, D.2    Patil, K.R.3    Poulsen, S.G.4    Olsson, L.5    Nielsen, J.6
  • 55
    • 79952578981 scopus 로고    scopus 로고
    • Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis
    • Park J.H., Kim T.Y., Lee K.H., Lee S.Y. Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol. Bioeng. 2011, 108(4):934-946.
    • (2011) Biotechnol. Bioeng. , vol.108 , Issue.4 , pp. 934-946
    • Park, J.H.1    Kim, T.Y.2    Lee, K.H.3    Lee, S.Y.4
  • 56
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation.
    • Park, J.H., Lee, K.H., Kim, T.Y., Lee, S.Y., 2007. Metabolic engineering of escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. 104 (19), 7797-7802.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , Issue.19 , pp. 7797-7802
    • Park, J.H.1    Lee, K.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 57
    • 84865075156 scopus 로고    scopus 로고
    • Flux variability scanning based on enforced objective flux for identifying gene amplification targets
    • Park J.M., Park H.M., Kim W.J., Kim H.U., Kim T.Y., Lee S.Y. Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol. 2012, 6(1):106.
    • (2012) BMC Syst. Biol. , vol.6 , Issue.1 , pp. 106
    • Park, J.M.1    Park, H.M.2    Kim, W.J.3    Kim, H.U.4    Kim, T.Y.5    Lee, S.Y.6
  • 58
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil K., Rocha I., Forster J., Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinf. 2005, 6(1):308.
    • (2005) BMC Bioinf. , vol.6 , Issue.1 , pp. 308
    • Patil, K.1    Rocha, I.2    Forster, J.3    Nielsen, J.4
  • 59
    • 8744224466 scopus 로고    scopus 로고
    • Optstrain. a computational framework for redesign of microbial production systems
    • Pharkya P., Burgard A.P., Maranas C.D. Optstrain. a computational framework for redesign of microbial production systems. Genome Res. 2004, 14(11):2367-2376.
    • (2004) Genome Res. , vol.14 , Issue.11 , pp. 2367-2376
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 60
    • 29544436058 scopus 로고    scopus 로고
    • An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems
    • Pharkya P., Maranas C.D. An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabol. Eng. 2006, 8(1):1-13.
    • (2006) Metabol. Eng. , vol.8 , Issue.1 , pp. 1-13
    • Pharkya, P.1    Maranas, C.D.2
  • 62
    • 77954590959 scopus 로고    scopus 로고
    • Optforce. an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan S., Suthers P.F., Maranas C.D. Optforce. an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 2010, 6(4):e1000744.
    • (2010) PLoS Comput. Biol. , vol.6 , Issue.4
    • Ranganathan, S.1    Suthers, P.F.2    Maranas, C.D.3
  • 64
    • 84881493893 scopus 로고    scopus 로고
    • Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints
    • Ren S., Zeng B., Qian X. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints. BMC Bioinf. 2013, 14(Suppl 2):S17.
    • (2013) BMC Bioinf. , vol.14 , pp. S17
    • Ren, S.1    Zeng, B.2    Qian, X.3
  • 66
    • 84873515411 scopus 로고    scopus 로고
    • Redirector. designing cell factories by reconstructing the metabolic objective
    • Rockwell G., Guido N.J., Church G.M. Redirector. designing cell factories by reconstructing the metabolic objective. PLoS Comput. Biol. 2013, 9(1):e1002882.
    • (2013) PLoS Comput. Biol. , vol.9 , Issue.1
    • Rockwell, G.1    Guido, N.J.2    Church, G.M.3
  • 67
    • 33747369422 scopus 로고    scopus 로고
    • Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains
    • Sánchez A.M., Bennett G.N., San K.-Y. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metabol. Eng. 2006, 8(3):209-226.
    • (2006) Metabol. Eng. , vol.8 , Issue.3 , pp. 209-226
    • Sánchez, A.M.1    Bennett, G.N.2    San, K.-Y.3
  • 68
    • 84900314611 scopus 로고    scopus 로고
    • Crispr-cas systems for editing, regulating and targeting genomes
    • Sander J.D., Joung J.K. Crispr-cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32(4):347-355.
    • (2014) Nat. Biotechnol. , vol.32 , Issue.4 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 69
    • 0000029295 scopus 로고
    • On elementary flux modes in biochemical reaction systems at steady state
    • Schuster S., Hilgetag C. On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 1994, 2(02):165-182.
    • (1994) J. Biol. Syst. , vol.2 , Issue.2 , pp. 165-182
    • Schuster, S.1    Hilgetag, C.2
  • 70
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks.
    • Segrè, D., Vitkup, D., Church, G.M., 2002. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. 99 (23), 15112-15117.
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , Issue.23 , pp. 15112-15117
    • Segrè, D.1    Vitkup, D.2    Church, G.M.3
  • 71
    • 19644386033 scopus 로고    scopus 로고
    • Regulatory on/off minimization of metabolic flux changes after genetic perturbations.
    • Shlomi, T., Berkman, O., Ruppin, E., 2005. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. 102 (21), 7695-7700.
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , Issue.21 , pp. 7695-7700
    • Shlomi, T.1    Berkman, O.2    Ruppin, E.3
  • 72
    • 84876575387 scopus 로고    scopus 로고
    • Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes
    • Soons Z.I., Ferreira E.C., Patil K.R., Rocha I. Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes. PloS One 2013, 8(4):e61648.
    • (2013) PloS One , vol.8 , Issue.4
    • Soons, Z.I.1    Ferreira, E.C.2    Patil, K.R.3    Rocha, I.4
  • 73
    • 77949495880 scopus 로고    scopus 로고
    • Predicting metabolic engineering knockout strategies for chemical production. accounting for competing pathways
    • Tepper N., Shlomi T. Predicting metabolic engineering knockout strategies for chemical production. accounting for competing pathways. Bioinformatics 2010, 26(4):536-543.
    • (2010) Bioinformatics , vol.26 , Issue.4 , pp. 536-543
    • Tepper, N.1    Shlomi, T.2
  • 74
    • 84900437499 scopus 로고    scopus 로고
    • Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli
    • Tokuyama K., Ohno S., Yoshikawa K., Hirasawa T., Tanaka S., Furusawa C., Shimizu H. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb. Cell Fact. 2014, 13(1):1-11.
    • (2014) Microb. Cell Fact. , vol.13 , Issue.1 , pp. 1-11
    • Tokuyama, K.1    Ohno, S.2    Yoshikawa, K.3    Hirasawa, T.4    Tanaka, S.5    Furusawa, C.6    Shimizu, H.7
  • 75
    • 84924041133 scopus 로고    scopus 로고
    • Ssdesign: Computational metabolic pathway design based on flux variability using elementary flux modes.
    • Toya, Y., Shiraki, T., Shimizu, H., 2014. Ssdesign: Computational metabolic pathway design based on flux variability using elementary flux modes. Biotechnol. Bioeng,. http://dx.doi.org/10.1002/bit.25498.
    • (2014) Biotechnol. Bioeng
    • Toya, Y.1    Shiraki, T.2    Shimizu, H.3
  • 76
    • 33749448704 scopus 로고    scopus 로고
    • Design, construction and performance of the most efficient biomass producing E. coli bacterium
    • Trinh C.T., Carlson R., Wlaschin A., Srienc F. Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metabol. Eng. 2006, 8(6):628-638.
    • (2006) Metabol. Eng. , vol.8 , Issue.6 , pp. 628-638
    • Trinh, C.T.1    Carlson, R.2    Wlaschin, A.3    Srienc, F.4
  • 77
    • 79961084093 scopus 로고    scopus 로고
    • Redesigning escherichia coli metabolism for anaerobic production of isobutanol
    • Trinh C.T., Li J., Blanch H.W., Clark D.S. Redesigning escherichia coli metabolism for anaerobic production of isobutanol. Appl. Environ. Microbiol. 2011, 77(14):4894-4904.
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.14 , pp. 4894-4904
    • Trinh, C.T.1    Li, J.2    Blanch, H.W.3    Clark, D.S.4
  • 78
    • 70350517579 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol
    • Trinh C.T., Srienc F. Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl. Environ. Microbiol. 2009, 75(21):6696-6705.
    • (2009) Appl. Environ. Microbiol. , vol.75 , Issue.21 , pp. 6696-6705
    • Trinh, C.T.1    Srienc, F.2
  • 79
    • 45749137679 scopus 로고    scopus 로고
    • Minimal escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
    • Trinh C.T., Unrean P., Srienc F. Minimal escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 2008, 74(12):3634-3643.
    • (2008) Appl. Environ. Microbiol. , vol.74 , Issue.12 , pp. 3634-3643
    • Trinh, C.T.1    Unrean, P.2    Srienc, F.3
  • 80
    • 58149154663 scopus 로고    scopus 로고
    • Elementary mode analysis. a useful metabolic pathway analysis tool for characterizing cellular metabolism
    • Trinh C.T., Wlaschin A., Srienc F. Elementary mode analysis. a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biotechnol. 2009, 81(5):813-826.
    • (2009) Appl. Microbiol. Biotechnol. , vol.81 , Issue.5 , pp. 813-826
    • Trinh, C.T.1    Wlaschin, A.2    Srienc, F.3
  • 81
    • 76749169796 scopus 로고    scopus 로고
    • Rational design and construction of an efficient E. coli for production of diapolycopendioic acid
    • Unrean P., Trinh C.T., Srienc F. Rational design and construction of an efficient E. coli for production of diapolycopendioic acid. Metabol. Eng. 2010, 12(2):112-122.
    • (2010) Metabol. Eng. , vol.12 , Issue.2 , pp. 112-122
    • Unrean, P.1    Trinh, C.T.2    Srienc, F.3
  • 82
    • 84896731390 scopus 로고    scopus 로고
    • Enumeration of smallest intervention strategies in genome-scale metabolic networks
    • von Kamp A., Klamt S. Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput. Biol. 2014, 10(1):e1003378.
    • (2014) PLoS Comput. Biol. , vol.10 , Issue.1
    • von Kamp, A.1    Klamt, S.2
  • 83
    • 84873997973 scopus 로고    scopus 로고
    • Genome-scale metabolic model in guiding metabolic engineering of microbial improvement
    • Xu C., Liu L., Zhang Z., Jin D., Qiu J., Chen M. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl. Microbiol. Biotechnol. 2013, 97(2):519-539.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , Issue.2 , pp. 519-539
    • Xu, C.1    Liu, L.2    Zhang, Z.3    Jin, D.4    Qiu, J.5    Chen, M.6
  • 84
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-coa
    • Xu P., Ranganathan S., Fowler Z.L., Maranas C.D., Koffas M.A. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-coa. Metabol. Eng. 2011, 13(5):578-587.
    • (2011) Metabol. Eng. , vol.13 , Issue.5 , pp. 578-587
    • Xu, P.1    Ranganathan, S.2    Fowler, Z.L.3    Maranas, C.D.4    Koffas, M.A.5
  • 85
    • 84892598828 scopus 로고    scopus 로고
    • Reacknock. identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network
    • Xu Z., Zheng P., Sun J., Ma Y. Reacknock. identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network. PloS One 2013, 8(12):e72150.
    • (2013) PloS One , vol.8 , Issue.12
    • Xu, Z.1    Zheng, P.2    Sun, J.3    Ma, Y.4
  • 86
    • 79955145774 scopus 로고    scopus 로고
    • Emilio. a fast algorithm for genome-scale strain design
    • Yang L., Cluett W.R., Mahadevan R. Emilio. a fast algorithm for genome-scale strain design. Metabol. Eng. 2011, 13(3):272-281.
    • (2011) Metabol. Eng. , vol.13 , Issue.3 , pp. 272-281
    • Yang, L.1    Cluett, W.R.2    Mahadevan, R.3
  • 88
    • 84875383513 scopus 로고    scopus 로고
    • Probabilistic strain optimization under constraint uncertainty
    • Yousofshahi M., Orshansky M., Lee K., Hassoun S., et al. Probabilistic strain optimization under constraint uncertainty. BMC Syst. Biol. 2013, 7(1):29.
    • (2013) BMC Syst. Biol. , vol.7 , Issue.1 , pp. 29
    • Yousofshahi, M.1    Orshansky, M.2    Lee, K.3    Hassoun, S.4
  • 89
    • 84873258066 scopus 로고    scopus 로고
    • Dynamic strain scanning optimization. an efficient strain design strategy for balanced yield, titer, and productivity. Dyssco strategy for strain design
    • Zhuang K., Yang L., Cluett W.R., Mahadevan R. Dynamic strain scanning optimization. an efficient strain design strategy for balanced yield, titer, and productivity. Dyssco strategy for strain design. BMC Biotechnol. 2013, 13(1):1-15.
    • (2013) BMC Biotechnol. , vol.13 , Issue.1 , pp. 1-15
    • Zhuang, K.1    Yang, L.2    Cluett, W.R.3    Mahadevan, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.