-
1
-
-
18844392599
-
Identifying gene targets for the metabolic engineering of lycopene biosynthesis in escherichia coli
-
Alper H., Jin Y.-S., Moxley J., Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in escherichia coli. Metabol. Eng. 2005, 7(3):155-164.
-
(2005)
Metabol. Eng.
, vol.7
, Issue.3
, pp. 155-164
-
-
Alper, H.1
Jin, Y.-S.2
Moxley, J.3
Stephanopoulos, G.4
-
2
-
-
22844452835
-
Construction of lycopene-overproducing e. coli strains by combining systematic and combinatorial gene knockout targets
-
Alper H., Miyaoku K., Stephanopoulos G. Construction of lycopene-overproducing e. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 2005, 23(5):612-616.
-
(2005)
Nat. Biotechnol.
, vol.23
, Issue.5
, pp. 612-616
-
-
Alper, H.1
Miyaoku, K.2
Stephanopoulos, G.3
-
3
-
-
70449592325
-
Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
-
Asadollahi M.A., Maury J., Patil K.R., Schalk M., Clark A., Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metabol. Eng. 2009, 11(6):328-334.
-
(2009)
Metabol. Eng.
, vol.11
, Issue.6
, pp. 328-334
-
-
Asadollahi, M.A.1
Maury, J.2
Patil, K.R.3
Schalk, M.4
Clark, A.5
Nielsen, J.6
-
4
-
-
79952106791
-
From zero to herodesign-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
-
Becker J., Zelder O., Häfner S., Schröder H., Wittmann C. From zero to herodesign-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metabol. Eng. 2011, 13(2):159-168.
-
(2011)
Metabol. Eng.
, vol.13
, Issue.2
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
5
-
-
84856571424
-
Casop gs: computing intervention strategies targeted at production improvement in genome-scale metabolic networks.
-
Bohl, K., de Figueiredo, L.F., Hädicke, O., Klamt, S., Kost, C., Schuster, S., Kaleta, C., 2010. Casop gs: computing intervention strategies targeted at production improvement in genome-scale metabolic networks. In: Lecture Notes in Informatics, pp. 71-80.
-
(2010)
Lecture Notes in Informatics
, pp. 71-80
-
-
Bohl, K.1
de Figueiredo, L.F.2
Hädicke, O.3
Klamt, S.4
Kost, C.5
Schuster, S.6
Kaleta, C.7
-
6
-
-
84892788440
-
Constraint-based models predict metabolic and associated cellular functions
-
Bordbar A., Monk J.M., King Z.A., Palsson B.O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 2014, 15(2):107-120.
-
(2014)
Nat. Rev. Genet.
, vol.15
, Issue.2
, pp. 107-120
-
-
Bordbar, A.1
Monk, J.M.2
King, Z.A.3
Palsson, B.O.4
-
7
-
-
78049460641
-
Improved vanillin production in Baker[U+05F3]s yeast through in silico design
-
Brochado A.R., Matos C., Møller B.L., Hansen J., Mortensen U.H., Patil K.R. Improved vanillin production in Baker[U+05F3]s yeast through in silico design. Microb. Cell Fact. 2010, 9(1):84.
-
(2010)
Microb. Cell Fact.
, vol.9
, Issue.1
, pp. 84
-
-
Brochado, A.R.1
Matos, C.2
Møller, B.L.3
Hansen, J.4
Mortensen, U.H.5
Patil, K.R.6
-
8
-
-
0242487787
-
Optknock. a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard A.P., Pharkya P., Maranas C.D. Optknock. a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84(6):647-657.
-
(2003)
Biotechnol. Bioeng.
, vol.84
, Issue.6
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
9
-
-
76749151341
-
Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering
-
Chemler J.A., Fowler Z.L., McHugh K.P., Koffas M.A. Improving nadph availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metabol. Eng. 2010, 12(2):96-104.
-
(2010)
Metabol. Eng.
, vol.12
, Issue.2
, pp. 96-104
-
-
Chemler, J.A.1
Fowler, Z.L.2
McHugh, K.P.3
Koffas, M.A.4
-
10
-
-
77952265112
-
In silico identification of gene amplification targets for improvement of lycopene production
-
Choi H.S., Lee S.Y., Kim T.Y., Woo H.M. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 2010, 76(10):3097-3105.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, Issue.10
, pp. 3097-3105
-
-
Choi, H.S.1
Lee, S.Y.2
Kim, T.Y.3
Woo, H.M.4
-
11
-
-
84864303934
-
Identifying gene knockout strategies using a hybrid of bees algorithm and flux balance analysis for in silico optimization of microbial strains
-
Springer, Berlin, Heidelberg
-
Choon Y.W., Mohamad M.S., Deris S., Chong C.K., Chai L.E., Ibrahim Z., Omatu S. Identifying gene knockout strategies using a hybrid of bees algorithm and flux balance analysis for in silico optimization of microbial strains. Distributed Computing and Artificial Intelligence 2012, 371-378. Springer, Berlin, Heidelberg.
-
(2012)
Distributed Computing and Artificial Intelligence
, pp. 371-378
-
-
Choon, Y.W.1
Mohamad, M.S.2
Deris, S.3
Chong, C.K.4
Chai, L.E.5
Ibrahim, Z.6
Omatu, S.7
-
12
-
-
84904557466
-
Differential bees flux balance analysis with optknock for in silico microbial strains optimization
-
Choon Y.W., Mohamad M.S., Deris S., Illias R.M., Chong C.K., Chai L.E., Omatu S., Corchado J.M. Differential bees flux balance analysis with optknock for in silico microbial strains optimization. PLoS One 2014, 9(7):e102744.
-
(2014)
PLoS One
, vol.9
, Issue.7
-
-
Choon, Y.W.1
Mohamad, M.S.2
Deris, S.3
Illias, R.M.4
Chong, C.K.5
Chai, L.E.6
Omatu, S.7
Corchado, J.M.8
-
13
-
-
84895756673
-
K-optforce. integrating kinetics with flux balance analysis for strain design
-
Chowdhury A., Zomorrodi A.R., Maranas C.D. k-optforce. integrating kinetics with flux balance analysis for strain design. PLoS Comput. Biol. 2014, 10(2):e1003487.
-
(2014)
PLoS Comput. Biol.
, vol.10
, Issue.2
-
-
Chowdhury, A.1
Zomorrodi, A.R.2
Maranas, C.D.3
-
14
-
-
84870461031
-
Robust design of microbial strains
-
Costanza J., Carapezza G., Angione C., Lió P., Nicosia G. Robust design of microbial strains. Bioinformatics 2012, 28(23):3097-3104.
-
(2012)
Bioinformatics
, vol.28
, Issue.23
, pp. 3097-3104
-
-
Costanza, J.1
Carapezza, G.2
Angione, C.3
Lió, P.4
Nicosia, G.5
-
15
-
-
84877118199
-
Constraint-based strain design using continuous modifications (cosmos) of flux bounds finds new strategies for metabolic engineering
-
Cotten C., Reed J. Constraint-based strain design using continuous modifications (cosmos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J. 2013, 8(5):595-604.
-
(2013)
Biotechnol. J.
, vol.8
, Issue.5
, pp. 595-604
-
-
Cotten, C.1
Reed, J.2
-
16
-
-
75849164426
-
Computing the shortest elementary flux modes in genome-scale metabolic networks
-
de Figueiredo L.F., Podhorski A., Rubio A., Kaleta C., Beasley J.E., Schuster S., Planes F.J. Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 2009, 25(23):3158-3165.
-
(2009)
Bioinformatics
, vol.25
, Issue.23
, pp. 3158-3165
-
-
de Figueiredo, L.F.1
Podhorski, A.2
Rubio, A.3
Kaleta, C.4
Beasley, J.E.5
Schuster, S.6
Planes, F.J.7
-
17
-
-
0034625143
-
The escherichia coli mg1655 in silico metabolic genotype: its definition, characteristics, and capabilities.
-
Edwards, J., Palsson, B., 2000. The escherichia coli mg1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. 97 (10), 5528-5533.
-
(2000)
Proc. Natl. Acad. Sci.
, vol.97
, Issue.10
, pp. 5528-5533
-
-
Edwards, J.1
Palsson, B.2
-
18
-
-
84863532131
-
Truncated branch and bound achieves efficient constraint-based genetic design
-
Egen D., Lun D.S. Truncated branch and bound achieves efficient constraint-based genetic design. Bioinformatics 2012, 28(12):1619-1623.
-
(2012)
Bioinformatics
, vol.28
, Issue.12
, pp. 1619-1623
-
-
Egen, D.1
Lun, D.S.2
-
19
-
-
84912567357
-
Constrictor. constraint modification provides insight into design of biochemical networks
-
Erickson K.E., Gill R.T., Chatterjee A. Constrictor. constraint modification provides insight into design of biochemical networks. PloS One 2014, 9(11):e113820.
-
(2014)
PloS One
, vol.9
, Issue.11
-
-
Erickson, K.E.1
Gill, R.T.2
Chatterjee, A.3
-
20
-
-
34347332311
-
A genome-scale metabolic reconstruction for Escherichia coli k-12 mg1655 that accounts for 1260 orfs and thermodynamic information
-
Feist A.M., Henry C.S., Reed J.L., Krummenacker M., Joyce A.R., Karp P.D., Broadbelt L.J., Hatzimanikatis V., Palsson B.Ø. A genome-scale metabolic reconstruction for Escherichia coli k-12 mg1655 that accounts for 1260 orfs and thermodynamic information. Mol. Syst. Biol. 2007, 3(1).
-
(2007)
Mol. Syst. Biol.
, vol.3
, Issue.1
-
-
Feist, A.M.1
Henry, C.S.2
Reed, J.L.3
Krummenacker, M.4
Joyce, A.R.5
Karp, P.D.6
Broadbelt, L.J.7
Hatzimanikatis, V.8
Palsson, B.Ø.9
-
21
-
-
77950863401
-
Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli
-
Feist A.M., Zielinski D.C., Orth J.D., Schellenberger J., Herrgard M.J., Palsson B.Ø. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metabol. Eng. 2010, 12(3):173-186.
-
(2010)
Metabol. Eng.
, vol.12
, Issue.3
, pp. 173-186
-
-
Feist, A.M.1
Zielinski, D.C.2
Orth, J.D.3
Schellenberger, J.4
Herrgard, M.J.5
Palsson, B.Ø.6
-
22
-
-
84877149255
-
Smet. systematic multiple enzyme targeting-a method to rationally design optimal strains for target chemical overproduction
-
Flowers D., Thompson R.A., Birdwell D., Wang T., Trinh C.T. Smet. systematic multiple enzyme targeting-a method to rationally design optimal strains for target chemical overproduction. Biotechnol. J. 2013, 8(5):605-618.
-
(2013)
Biotechnol. J.
, vol.8
, Issue.5
, pp. 605-618
-
-
Flowers, D.1
Thompson, R.A.2
Birdwell, D.3
Wang, T.4
Trinh, C.T.5
-
23
-
-
25144505718
-
In silico design and adaptive evolution of Escherichia coli for production of lactic acid
-
Fong S.S., Burgard A.P., Herring C.D., Knight E.M., Blattner F.R., Maranas C.D., Palsson B.O. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 2005, 91(5):643-648.
-
(2005)
Biotechnol. Bioeng.
, vol.91
, Issue.5
, pp. 643-648
-
-
Fong, S.S.1
Burgard, A.P.2
Herring, C.D.3
Knight, E.M.4
Blattner, F.R.5
Maranas, C.D.6
Palsson, B.O.7
-
24
-
-
0037313750
-
Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
-
Förster J., Famili I., Fu P., Palsson B.Ø, Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13(2):244-253.
-
(2003)
Genome Res.
, vol.13
, Issue.2
, pp. 244-253
-
-
Förster, J.1
Famili, I.2
Fu, P.3
Palsson, B.Ø4
Nielsen, J.5
-
25
-
-
67650660144
-
Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
-
Fowler Z.L., Gikandi W.W., Koffas M.A. Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol. 2009, 75(18):5831-5839.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, Issue.18
, pp. 5831-5839
-
-
Fowler, Z.L.1
Gikandi, W.W.2
Koffas, M.A.3
-
26
-
-
77952585143
-
Casop. a computational approach for strain optimization aiming at high productivity
-
Hädicke O., Klamt S. Casop. a computational approach for strain optimization aiming at high productivity. J. Biotechnol. 2010, 147(2):88-101.
-
(2010)
J. Biotechnol.
, vol.147
, Issue.2
, pp. 88-101
-
-
Hädicke, O.1
Klamt, S.2
-
27
-
-
79952103372
-
Computing complex metabolic intervention strategies using constrained minimal cut sets
-
Hädicke O., Klamt S. Computing complex metabolic intervention strategies using constrained minimal cut sets. Metabol. Eng. 2011, 13(2):204-213.
-
(2011)
Metabol. Eng.
, vol.13
, Issue.2
, pp. 204-213
-
-
Hädicke, O.1
Klamt, S.2
-
28
-
-
44149128882
-
Exploiting the pathway structure of metabolism to reveal high-order epistasis
-
Imielinski M., Belta C. Exploiting the pathway structure of metabolism to reveal high-order epistasis. BMC Syst. Biol. 2008, 2(1):40.
-
(2008)
BMC Syst. Biol.
, vol.2
, Issue.1
, pp. 40
-
-
Imielinski, M.1
Belta, C.2
-
29
-
-
50549104615
-
Geobacter sulfurreducens strain engineered for increased rates of respiration
-
Izallalen M., Mahadevan R., Burgard A., Postier B., Didonato R., Sun J., Schilling C.H., Lovley D.R. Geobacter sulfurreducens strain engineered for increased rates of respiration. Metabol. Eng. 2008, 10(5):267-275.
-
(2008)
Metabol. Eng.
, vol.10
, Issue.5
, pp. 267-275
-
-
Izallalen, M.1
Mahadevan, R.2
Burgard, A.3
Postier, B.4
Didonato, R.5
Sun, J.6
Schilling, C.H.7
Lovley, D.R.8
-
30
-
-
41249084917
-
Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli c that produce succinate and malate
-
Jantama K., Haupt M., Svoronos S.A., Zhang X., Moore J., Shanmugam K., Ingram L. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli c that produce succinate and malate. Biotechnol. Bioeng. 2008, 99(5):1140-1153.
-
(2008)
Biotechnol. Bioeng.
, vol.99
, Issue.5
, pp. 1140-1153
-
-
Jantama, K.1
Haupt, M.2
Svoronos, S.A.3
Zhang, X.4
Moore, J.5
Shanmugam, K.6
Ingram, L.7
-
31
-
-
84864923763
-
Designing optimal cell factories. integer programming couples elementary mode analysis with regulation
-
Jungreuthmayer C., Zanghellini J. Designing optimal cell factories. integer programming couples elementary mode analysis with regulation. BMC Syst. Biol. 2012, 6(1):103.
-
(2012)
BMC Syst. Biol.
, vol.6
, Issue.1
, pp. 103
-
-
Jungreuthmayer, C.1
Zanghellini, J.2
-
32
-
-
84856560417
-
EFMEvolver: computing elementary flux modes in genome-scale metabolic networks.
-
Kaleta, C., de Figueiredo, L., Behre, J., Schuster, S., 2009. EFMEvolver: computing elementary flux modes in genome-scale metabolic networks. In: Lecture Notes in Informatics, vol. 157, pp. 179-189.
-
(2009)
Lecture Notes in Informatics
, vol.157
, pp. 179-189
-
-
Kaleta, C.1
de Figueiredo, L.2
Behre, J.3
Schuster, S.4
-
33
-
-
77951552860
-
Optorf. optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
-
Kim J., Reed J. Optorf. optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 2010, 4(1):53.
-
(2010)
BMC Syst. Biol.
, vol.4
, Issue.1
, pp. 53
-
-
Kim, J.1
Reed, J.2
-
34
-
-
80052573483
-
Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
-
Kim J., Reed J.L., Maravelias C.T. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 2011, 6(9):e24162.
-
(2011)
PLoS One
, vol.6
, Issue.9
-
-
Kim, J.1
Reed, J.L.2
Maravelias, C.T.3
-
35
-
-
84906949001
-
Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in streptomyces coelicolor a3
-
Kim M., Sang Yi, J., Kim J., Kim J.-N., Kim M.W., Kim B.-G. Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in streptomyces coelicolor a3. Biotechnol. J. 2014, (2).
-
(2014)
Biotechnol. J.
, Issue.2
-
-
Kim, M.1
Sang, Y.J.2
Kim, J.3
Kim, J.-N.4
Kim, M.W.5
Kim, B.-G.6
-
36
-
-
84881496214
-
Optimizing cofactor specificity of oxidoreductase enzymes for the generation of microbial production strainsoptswap
-
King Z.A., Feist A.M. Optimizing cofactor specificity of oxidoreductase enzymes for the generation of microbial production strainsoptswap. Ind. Biotechnol. 2013, 9(4):236-246.
-
(2013)
Ind. Biotechnol.
, vol.9
, Issue.4
, pp. 236-246
-
-
King, Z.A.1
Feist, A.M.2
-
37
-
-
1042269472
-
Minimal cut sets in biochemical reaction networks
-
Klamt S., Gilles E.D. Minimal cut sets in biochemical reaction networks. Bioinformatics 2004, 20(2):226-234.
-
(2004)
Bioinformatics
, vol.20
, Issue.2
, pp. 226-234
-
-
Klamt, S.1
Gilles, E.D.2
-
38
-
-
36849002434
-
Systems metabolic engineering of escherichia coli for l-threonine production
-
Lee K.H., Park J.H., Kim T.Y., Kim H.U., Lee S.Y. Systems metabolic engineering of escherichia coli for l-threonine production. Mol. Syst. Biol. 2007, 3:1.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 1
-
-
Lee, K.H.1
Park, J.H.2
Kim, T.Y.3
Kim, H.U.4
Lee, S.Y.5
-
39
-
-
29144484729
-
Metabolic engineering of escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
-
Lee S.J., Lee D.-Y., Kim T.Y., Kim B.H., Lee J., Lee S.Y. Metabolic engineering of escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 2005, 71(12):7880-7887.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, Issue.12
, pp. 7880-7887
-
-
Lee, S.J.1
Lee, D.-Y.2
Kim, T.Y.3
Kim, B.H.4
Lee, J.5
Lee, S.Y.6
-
40
-
-
77955141026
-
Omic data from evolved e. coli are consistent with computed optimal growth from genome-scale models
-
Lewis N.E., Hixson K.K., Conrad T.M., Lerman J.A., Charusanti P., Polpitiya A.D., Adkins J.N., Schramm G., Purvine S.O., Lopez-Ferrer D., et al. Omic data from evolved e. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 2010, 6(1).
-
(2010)
Mol. Syst. Biol.
, vol.6
, Issue.1
-
-
Lewis, N.E.1
Hixson, K.K.2
Conrad, T.M.3
Lerman, J.A.4
Charusanti, P.5
Polpitiya, A.D.6
Adkins, J.N.7
Schramm, G.8
Purvine, S.O.9
Lopez-Ferrer, D.10
-
41
-
-
84858439602
-
Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
-
Lewis N.E., Nagarajan H., Palsson B.O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10(4):291-305.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, Issue.4
, pp. 291-305
-
-
Lewis, N.E.1
Nagarajan, H.2
Palsson, B.O.3
-
42
-
-
84864516296
-
Rational improvement of the engineered isobutanol-producing bacillus subtilis by elementary mode analysis
-
Li S., Huang D., Li Y., Wen J., Jia X. Rational improvement of the engineered isobutanol-producing bacillus subtilis by elementary mode analysis. Microb. Cell Fact. 2012, 11:101.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 101
-
-
Li, S.1
Huang, D.2
Li, Y.3
Wen, J.4
Jia, X.5
-
43
-
-
69249146187
-
Large-scale identification of genetic design strategies using local search
-
Lun D.S., Rockwell G., Guido N.J., Baym M., Kelner J.A., Berger B., Galagan J.E., Church G.M. Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol. 2009, 5(1).
-
(2009)
Mol. Syst. Biol.
, vol.5
, Issue.1
-
-
Lun, D.S.1
Rockwell, G.2
Guido, N.J.3
Baym, M.4
Kelner, J.A.5
Berger, B.6
Galagan, J.E.7
Church, G.M.8
-
44
-
-
84867843623
-
Modeling formalisms in systems biology
-
Machado D., Costa R.S., Rocha M., Ferreira E.C., Tidor B., Rocha I. Modeling formalisms in systems biology. AMB Express 2011, 1(1):1-14.
-
(2011)
AMB Express
, vol.1
, Issue.1
, pp. 1-14
-
-
Machado, D.1
Costa, R.S.2
Rocha, M.3
Ferreira, E.C.4
Tidor, B.5
Rocha, I.6
-
45
-
-
84866443920
-
Random sampling of elementary flux modes in large-scale metabolic networks
-
Machado D., Soons Z., Patil K.R., Ferreira E.C., Rocha I. Random sampling of elementary flux modes in large-scale metabolic networks. Bioinformatics 2012, 28(18):i515-i521.
-
(2012)
Bioinformatics
, vol.28
, Issue.18
, pp. i515-i521
-
-
Machado, D.1
Soons, Z.2
Patil, K.R.3
Ferreira, E.C.4
Rocha, I.5
-
46
-
-
84879002382
-
Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
-
McCloskey D., Palsson B.Ø, Feist A.M. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 2013, 9:1.
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 1
-
-
McCloskey, D.1
Palsson, B.Ø2
Feist, A.M.3
-
47
-
-
74549189949
-
Flux design. in silico design of cell factories based on correlation of pathway fluxes to desired properties
-
Melzer G., Esfandabadi M.E., Franco-Lara E., Wittmann C. Flux design. in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst. Biol. 2009, 3(1):120.
-
(2009)
BMC Syst. Biol.
, vol.3
, Issue.1
, pp. 120
-
-
Melzer, G.1
Esfandabadi, M.E.2
Franco-Lara, E.3
Wittmann, C.4
-
48
-
-
79952149701
-
Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering
-
Neuner A., Heinzle E. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol. J. 2011, 6(3):318-329.
-
(2011)
Biotechnol. J.
, vol.6
, Issue.3
, pp. 318-329
-
-
Neuner, A.1
Heinzle, E.2
-
49
-
-
84861442550
-
Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
-
Ng C.Y., Jung M.-y., Lee J., Oh M.-K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 2012, 11(1):68.
-
(2012)
Microb. Cell Fact.
, vol.11
, Issue.1
, pp. 68
-
-
Ng, C.Y.1
Jung, M.-Y.2
Lee, J.3
Oh, M.-K.4
-
50
-
-
69149110444
-
Multiobjective flux balancing using the nise method for metabolic network analysis
-
Oh Y.-G., Lee D.-Y., Lee S.Y., Park S. Multiobjective flux balancing using the nise method for metabolic network analysis. Biotechnol. Prog. 2009, 25(4):999-1008.
-
(2009)
Biotechnol. Prog.
, vol.25
, Issue.4
, pp. 999-1008
-
-
Oh, Y.-G.1
Lee, D.-Y.2
Lee, S.Y.3
Park, S.4
-
51
-
-
84897378649
-
Fastpros: screening of reaction knockout strategies for metabolic engineering.
-
btt672
-
Ohno, S., Shimizu, H., Furusawa, C., 2013. Fastpros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics, btt672,. http://dx.doi.org/10.1093/bioinformatics/btt672.
-
(2013)
Bioinformatics
-
-
Ohno, S.1
Shimizu, H.2
Furusawa, C.3
-
52
-
-
79953168114
-
Reconstruction and use of microbial metabolic networks. the core Escherichia coli metabolic model as an educational guide
-
ASM Press, Washington, DC, A. Bock, I.R. Curtiss, J. Kaper, P. Karp, F. Neidhardt, T. Nystrom, J. Slauch, C. Squires, D. Ussery (Eds.)
-
Orth J., Fleming R., Palsson B. Reconstruction and use of microbial metabolic networks. the core Escherichia coli metabolic model as an educational guide. EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology 2009, 56-99. ASM Press, Washington, DC. A. Bock, I.R. Curtiss, J. Kaper, P. Karp, F. Neidhardt, T. Nystrom, J. Slauch, C. Squires, D. Ussery (Eds.).
-
(2009)
EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology
, pp. 56-99
-
-
Orth, J.1
Fleming, R.2
Palsson, B.3
-
54
-
-
84872655172
-
Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
-
Otero J.M., Cimini D., Patil K.R., Poulsen S.G., Olsson L., Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PloS One 2013, 8(1):e54144.
-
(2013)
PloS One
, vol.8
, Issue.1
-
-
Otero, J.M.1
Cimini, D.2
Patil, K.R.3
Poulsen, S.G.4
Olsson, L.5
Nielsen, J.6
-
55
-
-
79952578981
-
Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis
-
Park J.H., Kim T.Y., Lee K.H., Lee S.Y. Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol. Bioeng. 2011, 108(4):934-946.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, Issue.4
, pp. 934-946
-
-
Park, J.H.1
Kim, T.Y.2
Lee, K.H.3
Lee, S.Y.4
-
56
-
-
34249934691
-
Metabolic engineering of escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation.
-
Park, J.H., Lee, K.H., Kim, T.Y., Lee, S.Y., 2007. Metabolic engineering of escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. 104 (19), 7797-7802.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, Issue.19
, pp. 7797-7802
-
-
Park, J.H.1
Lee, K.H.2
Kim, T.Y.3
Lee, S.Y.4
-
57
-
-
84865075156
-
Flux variability scanning based on enforced objective flux for identifying gene amplification targets
-
Park J.M., Park H.M., Kim W.J., Kim H.U., Kim T.Y., Lee S.Y. Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol. 2012, 6(1):106.
-
(2012)
BMC Syst. Biol.
, vol.6
, Issue.1
, pp. 106
-
-
Park, J.M.1
Park, H.M.2
Kim, W.J.3
Kim, H.U.4
Kim, T.Y.5
Lee, S.Y.6
-
58
-
-
30044437327
-
Evolutionary programming as a platform for in silico metabolic engineering
-
Patil K., Rocha I., Forster J., Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinf. 2005, 6(1):308.
-
(2005)
BMC Bioinf.
, vol.6
, Issue.1
, pp. 308
-
-
Patil, K.1
Rocha, I.2
Forster, J.3
Nielsen, J.4
-
59
-
-
8744224466
-
Optstrain. a computational framework for redesign of microbial production systems
-
Pharkya P., Burgard A.P., Maranas C.D. Optstrain. a computational framework for redesign of microbial production systems. Genome Res. 2004, 14(11):2367-2376.
-
(2004)
Genome Res.
, vol.14
, Issue.11
, pp. 2367-2376
-
-
Pharkya, P.1
Burgard, A.P.2
Maranas, C.D.3
-
60
-
-
29544436058
-
An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems
-
Pharkya P., Maranas C.D. An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabol. Eng. 2006, 8(1):1-13.
-
(2006)
Metabol. Eng.
, vol.8
, Issue.1
, pp. 1-13
-
-
Pharkya, P.1
Maranas, C.D.2
-
61
-
-
84871463200
-
In-silico-driven metabolic engineering of pseudomonas putida for enhanced production of poly-hydroxyalkanoates
-
Poblete-Castro I., Binger D., Rodrigues A., Becker J., Martins dos Santos V.A., Wittmann C. In-silico-driven metabolic engineering of pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metabol. Eng. 2013, 15:113-123.
-
(2013)
Metabol. Eng.
, vol.15
, pp. 113-123
-
-
Poblete-Castro, I.1
Binger, D.2
Rodrigues, A.3
Becker, J.4
Martins dos Santos, V.A.5
Wittmann, C.6
-
62
-
-
77954590959
-
Optforce. an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
-
Ranganathan S., Suthers P.F., Maranas C.D. Optforce. an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 2010, 6(4):e1000744.
-
(2010)
PLoS Comput. Biol.
, vol.6
, Issue.4
-
-
Ranganathan, S.1
Suthers, P.F.2
Maranas, C.D.3
-
63
-
-
84869027982
-
An integrated computational and experimental study for overproducing fatty acids in Escherichia coli
-
Ranganathan S., Tee T.W., Chowdhury A., Zomorrodi A.R., Yoon J.M., Fu Y., Shanks J.V., Maranas C.D. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metabol. Eng. 2012, 14(6):687-704.
-
(2012)
Metabol. Eng.
, vol.14
, Issue.6
, pp. 687-704
-
-
Ranganathan, S.1
Tee, T.W.2
Chowdhury, A.3
Zomorrodi, A.R.4
Yoon, J.M.5
Fu, Y.6
Shanks, J.V.7
Maranas, C.D.8
-
64
-
-
84881493893
-
Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints
-
Ren S., Zeng B., Qian X. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints. BMC Bioinf. 2013, 14(Suppl 2):S17.
-
(2013)
BMC Bioinf.
, vol.14
, pp. S17
-
-
Ren, S.1
Zeng, B.2
Qian, X.3
-
65
-
-
58149307906
-
Natural computation meta-heuristics for the in silico optimization of microbial strains
-
Rocha M., Maia P., Mendes R., Pinto J.P., Ferreira E.C., Nielsen J., Patil K.R., Rocha I. Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinf. 2008, 9(1):499.
-
(2008)
BMC Bioinf.
, vol.9
, Issue.1
, pp. 499
-
-
Rocha, M.1
Maia, P.2
Mendes, R.3
Pinto, J.P.4
Ferreira, E.C.5
Nielsen, J.6
Patil, K.R.7
Rocha, I.8
-
66
-
-
84873515411
-
Redirector. designing cell factories by reconstructing the metabolic objective
-
Rockwell G., Guido N.J., Church G.M. Redirector. designing cell factories by reconstructing the metabolic objective. PLoS Comput. Biol. 2013, 9(1):e1002882.
-
(2013)
PLoS Comput. Biol.
, vol.9
, Issue.1
-
-
Rockwell, G.1
Guido, N.J.2
Church, G.M.3
-
67
-
-
33747369422
-
Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains
-
Sánchez A.M., Bennett G.N., San K.-Y. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metabol. Eng. 2006, 8(3):209-226.
-
(2006)
Metabol. Eng.
, vol.8
, Issue.3
, pp. 209-226
-
-
Sánchez, A.M.1
Bennett, G.N.2
San, K.-Y.3
-
68
-
-
84900314611
-
Crispr-cas systems for editing, regulating and targeting genomes
-
Sander J.D., Joung J.K. Crispr-cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32(4):347-355.
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.4
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
69
-
-
0000029295
-
On elementary flux modes in biochemical reaction systems at steady state
-
Schuster S., Hilgetag C. On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 1994, 2(02):165-182.
-
(1994)
J. Biol. Syst.
, vol.2
, Issue.2
, pp. 165-182
-
-
Schuster, S.1
Hilgetag, C.2
-
70
-
-
0037069467
-
Analysis of optimality in natural and perturbed metabolic networks.
-
Segrè, D., Vitkup, D., Church, G.M., 2002. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. 99 (23), 15112-15117.
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, Issue.23
, pp. 15112-15117
-
-
Segrè, D.1
Vitkup, D.2
Church, G.M.3
-
71
-
-
19644386033
-
Regulatory on/off minimization of metabolic flux changes after genetic perturbations.
-
Shlomi, T., Berkman, O., Ruppin, E., 2005. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. 102 (21), 7695-7700.
-
(2005)
Proc. Natl. Acad. Sci.
, vol.102
, Issue.21
, pp. 7695-7700
-
-
Shlomi, T.1
Berkman, O.2
Ruppin, E.3
-
72
-
-
84876575387
-
Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes
-
Soons Z.I., Ferreira E.C., Patil K.R., Rocha I. Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes. PloS One 2013, 8(4):e61648.
-
(2013)
PloS One
, vol.8
, Issue.4
-
-
Soons, Z.I.1
Ferreira, E.C.2
Patil, K.R.3
Rocha, I.4
-
73
-
-
77949495880
-
Predicting metabolic engineering knockout strategies for chemical production. accounting for competing pathways
-
Tepper N., Shlomi T. Predicting metabolic engineering knockout strategies for chemical production. accounting for competing pathways. Bioinformatics 2010, 26(4):536-543.
-
(2010)
Bioinformatics
, vol.26
, Issue.4
, pp. 536-543
-
-
Tepper, N.1
Shlomi, T.2
-
74
-
-
84900437499
-
Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli
-
Tokuyama K., Ohno S., Yoshikawa K., Hirasawa T., Tanaka S., Furusawa C., Shimizu H. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb. Cell Fact. 2014, 13(1):1-11.
-
(2014)
Microb. Cell Fact.
, vol.13
, Issue.1
, pp. 1-11
-
-
Tokuyama, K.1
Ohno, S.2
Yoshikawa, K.3
Hirasawa, T.4
Tanaka, S.5
Furusawa, C.6
Shimizu, H.7
-
75
-
-
84924041133
-
Ssdesign: Computational metabolic pathway design based on flux variability using elementary flux modes.
-
Toya, Y., Shiraki, T., Shimizu, H., 2014. Ssdesign: Computational metabolic pathway design based on flux variability using elementary flux modes. Biotechnol. Bioeng,. http://dx.doi.org/10.1002/bit.25498.
-
(2014)
Biotechnol. Bioeng
-
-
Toya, Y.1
Shiraki, T.2
Shimizu, H.3
-
76
-
-
33749448704
-
Design, construction and performance of the most efficient biomass producing E. coli bacterium
-
Trinh C.T., Carlson R., Wlaschin A., Srienc F. Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metabol. Eng. 2006, 8(6):628-638.
-
(2006)
Metabol. Eng.
, vol.8
, Issue.6
, pp. 628-638
-
-
Trinh, C.T.1
Carlson, R.2
Wlaschin, A.3
Srienc, F.4
-
77
-
-
79961084093
-
Redesigning escherichia coli metabolism for anaerobic production of isobutanol
-
Trinh C.T., Li J., Blanch H.W., Clark D.S. Redesigning escherichia coli metabolism for anaerobic production of isobutanol. Appl. Environ. Microbiol. 2011, 77(14):4894-4904.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.14
, pp. 4894-4904
-
-
Trinh, C.T.1
Li, J.2
Blanch, H.W.3
Clark, D.S.4
-
78
-
-
70350517579
-
Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol
-
Trinh C.T., Srienc F. Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl. Environ. Microbiol. 2009, 75(21):6696-6705.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, Issue.21
, pp. 6696-6705
-
-
Trinh, C.T.1
Srienc, F.2
-
79
-
-
45749137679
-
Minimal escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
-
Trinh C.T., Unrean P., Srienc F. Minimal escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 2008, 74(12):3634-3643.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, Issue.12
, pp. 3634-3643
-
-
Trinh, C.T.1
Unrean, P.2
Srienc, F.3
-
80
-
-
58149154663
-
Elementary mode analysis. a useful metabolic pathway analysis tool for characterizing cellular metabolism
-
Trinh C.T., Wlaschin A., Srienc F. Elementary mode analysis. a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biotechnol. 2009, 81(5):813-826.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.81
, Issue.5
, pp. 813-826
-
-
Trinh, C.T.1
Wlaschin, A.2
Srienc, F.3
-
81
-
-
76749169796
-
Rational design and construction of an efficient E. coli for production of diapolycopendioic acid
-
Unrean P., Trinh C.T., Srienc F. Rational design and construction of an efficient E. coli for production of diapolycopendioic acid. Metabol. Eng. 2010, 12(2):112-122.
-
(2010)
Metabol. Eng.
, vol.12
, Issue.2
, pp. 112-122
-
-
Unrean, P.1
Trinh, C.T.2
Srienc, F.3
-
82
-
-
84896731390
-
Enumeration of smallest intervention strategies in genome-scale metabolic networks
-
von Kamp A., Klamt S. Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput. Biol. 2014, 10(1):e1003378.
-
(2014)
PLoS Comput. Biol.
, vol.10
, Issue.1
-
-
von Kamp, A.1
Klamt, S.2
-
83
-
-
84873997973
-
Genome-scale metabolic model in guiding metabolic engineering of microbial improvement
-
Xu C., Liu L., Zhang Z., Jin D., Qiu J., Chen M. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl. Microbiol. Biotechnol. 2013, 97(2):519-539.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, Issue.2
, pp. 519-539
-
-
Xu, C.1
Liu, L.2
Zhang, Z.3
Jin, D.4
Qiu, J.5
Chen, M.6
-
84
-
-
80052021573
-
Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-coa
-
Xu P., Ranganathan S., Fowler Z.L., Maranas C.D., Koffas M.A. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-coa. Metabol. Eng. 2011, 13(5):578-587.
-
(2011)
Metabol. Eng.
, vol.13
, Issue.5
, pp. 578-587
-
-
Xu, P.1
Ranganathan, S.2
Fowler, Z.L.3
Maranas, C.D.4
Koffas, M.A.5
-
85
-
-
84892598828
-
Reacknock. identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network
-
Xu Z., Zheng P., Sun J., Ma Y. Reacknock. identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network. PloS One 2013, 8(12):e72150.
-
(2013)
PloS One
, vol.8
, Issue.12
-
-
Xu, Z.1
Zheng, P.2
Sun, J.3
Ma, Y.4
-
86
-
-
79955145774
-
Emilio. a fast algorithm for genome-scale strain design
-
Yang L., Cluett W.R., Mahadevan R. Emilio. a fast algorithm for genome-scale strain design. Metabol. Eng. 2011, 13(3):272-281.
-
(2011)
Metabol. Eng.
, vol.13
, Issue.3
, pp. 272-281
-
-
Yang, L.1
Cluett, W.R.2
Mahadevan, R.3
-
87
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
-
Yim H., Haselbeck R., Niu W., Pujol-Baxley C., Burgard A., Boldt J., Khandurina J., Trawick J.D., Osterhout R.E., Stephen R., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 2011, 7(7):445-452.
-
(2011)
Nat. Chem. Biol.
, vol.7
, Issue.7
, pp. 445-452
-
-
Yim, H.1
Haselbeck, R.2
Niu, W.3
Pujol-Baxley, C.4
Burgard, A.5
Boldt, J.6
Khandurina, J.7
Trawick, J.D.8
Osterhout, R.E.9
Stephen, R.10
-
88
-
-
84875383513
-
Probabilistic strain optimization under constraint uncertainty
-
Yousofshahi M., Orshansky M., Lee K., Hassoun S., et al. Probabilistic strain optimization under constraint uncertainty. BMC Syst. Biol. 2013, 7(1):29.
-
(2013)
BMC Syst. Biol.
, vol.7
, Issue.1
, pp. 29
-
-
Yousofshahi, M.1
Orshansky, M.2
Lee, K.3
Hassoun, S.4
-
89
-
-
84873258066
-
Dynamic strain scanning optimization. an efficient strain design strategy for balanced yield, titer, and productivity. Dyssco strategy for strain design
-
Zhuang K., Yang L., Cluett W.R., Mahadevan R. Dynamic strain scanning optimization. an efficient strain design strategy for balanced yield, titer, and productivity. Dyssco strategy for strain design. BMC Biotechnol. 2013, 13(1):1-15.
-
(2013)
BMC Biotechnol.
, vol.13
, Issue.1
, pp. 1-15
-
-
Zhuang, K.1
Yang, L.2
Cluett, W.R.3
Mahadevan, R.4
|