-
1
-
-
84880044091
-
Fluxomics–connecting’omics analysis and phenotypes
-
23279205, .;():–.
-
Winter G, Krömer JO, Fluxomics–connecting’omics analysis and phenotypes. Environmental Microbiology. 2013;15(7):1901–1916. doi: 10.1111/1462-2920.1206423279205
-
(2013)
Environmental Microbiology
, vol.15
, Issue.7
, pp. 1901-1916
-
-
Winter, G.1
Krömer, J.O.2
-
2
-
-
78650574197
-
13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli
-
21129495, .;():–.
-
Chen X, Alonso AP, Allen DK, Reed JL, Shachar-Hill Y, Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli. Metabolic Engineering. 2011;13(1):38–48. doi: 10.1016/j.ymben.2010.11.00421129495
-
(2011)
Metabolic Engineering
, vol.13
, Issue.1
, pp. 38-48
-
-
Chen, X.1
Alonso, A.P.2
Allen, D.K.3
Reed, J.L.4
Shachar-Hill, Y.5
-
3
-
-
34250829079
-
Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid
-
17468285, .;():–.
-
Tang YJ, Chakraborty R, Martín HG, Chu J, Hazen TC, Keasling JD, Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Applied and Environmental Microbiology. 2007;73(12):3859–3864. doi: 10.1128/AEM.02986-0617468285
-
(2007)
Applied and Environmental Microbiology
, vol.73
, Issue.12
, pp. 3859-3864
-
-
Tang, Y.J.1
Chakraborty, R.2
Martín, H.G.3
Chu, J.4
Hazen, T.C.5
Keasling, J.D.6
-
4
-
-
84867457060
-
13C isotopic fingerprints
-
.;():–.
-
Tang JKH, You L, Blankenship RE, Tang YJ, Recent advances in mapping environmental microbial metabolisms through 13C isotopic fingerprints. Journal of The Royal Society Interface. 2012;9(76):2767–2780. doi: 10.1098/rsif.2012.0396
-
(2012)
Journal of The Royal Society Interface
, vol.9
, Issue.76
, pp. 2767-2780
-
-
Tang, J.K.H.1
You, L.2
Blankenship, R.E.3
Tang, Y.J.4
-
5
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol
-
21602812, ..;():–.
-
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, et al. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nature Chemical Biology. 2011;7(7):445–452. doi: 10.1038/nchembio.58021602812
-
(2011)
Nature Chemical Biology
, vol.7
, Issue.7
, pp. 445-452
-
-
Yim, H.1
Haselbeck, R.2
Niu, W.3
Pujol-Baxley, C.4
Burgard, A.5
Boldt, J.6
-
6
-
-
79952106791
-
From zero to hero–Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
-
21241816, .;():–.
-
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C, From zero to hero–Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering. 2011;13(2):159–168. doi: 10.1016/j.ymben.2011.01.00321241816
-
(2011)
Metabolic Engineering
, vol.13
, Issue.2
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
7
-
-
84892799105
-
13C-metabolic flux analysis
-
24122357, ..;():–.
-
He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewicz MR, Tang YJ, et al. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnology and Bioengineering. 2014;111(3):575–585. doi: 10.1002/bit.2512424122357
-
(2014)
Biotechnology and Bioengineering
, vol.111
, Issue.3
, pp. 575-585
-
-
He, L.1
Xiao, Y.2
Gebreselassie, N.3
Zhang, F.4
Antoniewicz, M.R.5
Tang, Y.J.6
-
8
-
-
33845679072
-
Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions
-
17088092, .;():–.
-
Antoniewicz MR, Kelleher JK, Stephanopoulos G, Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metabolic Engineering. 2007;9(1):68–86. doi: 10.1016/j.ymben.2006.09.00117088092
-
(2007)
Metabolic Engineering
, vol.9
, Issue.1
, pp. 68-86
-
-
Antoniewicz, M.R.1
Kelleher, J.K.2
Stephanopoulos, G.3
-
9
-
-
84871768724
-
13C-metabolic flux analysis
-
23110970, .;():–.
-
Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W, 13CFLUX2–high-performance software suite for 13C-metabolic flux analysis. Bioinformatics. 2013;29(1):143–145. doi: 10.1093/bioinformatics/bts64623110970
-
(2013)
Bioinformatics
, vol.29
, Issue.1
, pp. 143-145
-
-
Weitzel, M.1
Nöh, K.2
Dalman, T.3
Niedenführ, S.4
Stute, B.5
Wiechert, W.6
-
10
-
-
66949164842
-
13C-based metabolic flux analysis
-
19409084, .;:.
-
Quek LE, Wittmann C, Nielsen LK, Krömer JO, OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microbial Cell Factories. 2009;8:25. doi: 10.1186/1475-2859-8-2519409084
-
(2009)
Microbial Cell Factories
, vol.8
, pp. 25
-
-
Quek, L.E.1
Wittmann, C.2
Nielsen, L.K.3
Krömer, J.O.4
-
11
-
-
25444489844
-
13C-glucose experiments
-
16122385, .;():.
-
Zamboni N, Fischer E, Sauer U, FiatFlux–a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics. 2005;6(1):209. doi: 10.1186/1471-2105-6-20916122385
-
(2005)
BMC Bioinformatics
, vol.6
, Issue.1
, pp. 209
-
-
Zamboni, N.1
Fischer, E.2
Sauer, U.3
-
12
-
-
84922245805
-
13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli
-
25596508, .;:–.
-
Crown SB, Long CP, Antoniewicz MR, Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metabolic Engineering. 2015;28:151–158. doi: 10.1016/j.ymben.2015.01.00125596508
-
(2015)
Metabolic Engineering
, vol.28
, pp. 151-158
-
-
Crown, S.B.1
Long, C.P.2
Antoniewicz, M.R.3
-
13
-
-
34249297627
-
Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1, 3-propanediol
-
17400499, .;():–.
-
Antoniewicz MR, Kraynie DF, Laffend LA, González-Lergier J, Kelleher JK, Stephanopoulos G, Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1, 3-propanediol. Metabolic Engineering. 2007;9(3):277–292. doi: 10.1016/j.ymben.2007.01.00317400499
-
(2007)
Metabolic Engineering
, vol.9
, Issue.3
, pp. 277-292
-
-
Antoniewicz, M.R.1
Kraynie, D.F.2
Laffend, L.A.3
González-Lergier, J.4
Kelleher, J.K.5
Stephanopoulos, G.6
-
14
-
-
34047177923
-
13C labeling experiments
-
17207877, .;():–.
-
Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W, Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. Journal of Biotechnology. 2007;129(2):249–267. doi: 10.1016/j.jbiotec.2006.11.01517207877
-
(2007)
Journal of Biotechnology
, vol.129
, Issue.2
, pp. 249-267
-
-
Nöh, K.1
Grönke, K.2
Luo, B.3
Takors, R.4
Oldiges, M.5
Wiechert, W.6
-
15
-
-
65549087156
-
13C isotopic labeling
-
19025966, .;():–.
-
Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE, Keasling JD, Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrometry Reviews. 2009;28(2):362–375. doi: 10.1002/mas.2019119025966
-
(2009)
Mass Spectrometry Reviews
, vol.28
, Issue.2
, pp. 362-375
-
-
Tang, Y.J.1
Martin, H.G.2
Myers, S.3
Rodriguez, S.4
Baidoo, E.E.5
Keasling, J.D.6
-
16
-
-
84899621607
-
Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi
-
..;():–.
-
Zhuang WQ, Yi S, Bill M, Brisson VL, Feng X, Men Y, et al. Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proceedings of the National Academy of Sciences. 2015;111(17):6419–6424. doi: 10.1073/pnas.1321542111
-
(2015)
Proceedings of the National Academy of Sciences
, vol.111
, Issue.17
, pp. 6419-6424
-
-
Zhuang, W.Q.1
Yi, S.2
Bill, M.3
Brisson, V.L.4
Feng, X.5
Men, Y.6
-
17
-
-
84872256757
-
Machine learning and its applications to biology
-
17604446, .;():.
-
Tarca AL, Carey VJ, Chen X, Romero R, Draghici S, Machine learning and its applications to biology. PLoS Computational Biology. 2007;3(6):e116. doi: 10.1371/journal.pcbi.003011617604446
-
(2007)
PLoS Computational Biology
, vol.3
, Issue.6
, pp. e116
-
-
Tarca, A.L.1
Carey, V.J.2
Chen, X.3
Romero, R.4
Draghici, S.5
-
18
-
-
33644959172
-
Metabolomics, modelling and machine learning in systems biology–towards an understanding of the languages of cells
-
.;():–.
-
Kell DB, Metabolomics, modelling and machine learning in systems biology–towards an understanding of the languages of cells. FEBS Journal. 2006;273(5):873–894.
-
(2006)
FEBS Journal
, vol.273
, Issue.5
, pp. 873-894
-
-
Kell, D.B.1
-
19
-
-
77249139318
-
Machine learning methods for metabolic pathway prediction
-
20064214, .;():.
-
Dale JM, Popescu L, Karp PD, Machine learning methods for metabolic pathway prediction. BMC Bioinformatics. 2010;11(1):15. doi: 10.1186/1471-2105-11-1520064214
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 15
-
-
Dale, J.M.1
Popescu, L.2
Karp, P.D.3
-
20
-
-
33847268161
-
Improving the Caenorhabditis elegans genome annotation using machine learning
-
17319737, ..;():.
-
Rätsch G, Sonnenburg S, Srinivasan J, Witte H, Müller KR, Sommer RJ, et al. Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Computational Biology. 2007;3(2):e20. doi: 10.1371/journal.pcbi.003002017319737
-
(2007)
PLoS Computational Biology
, vol.3
, Issue.2
, pp. e20
-
-
Rätsch, G.1
Sonnenburg, S.2
Srinivasan, J.3
Witte, H.4
Müller, K.R.5
Sommer, R.J.6
-
21
-
-
0037391756
-
Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning
-
12640447, ..;():–.
-
Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, et al. Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nature Medicine. 2003;9(4):416–423. doi: 10.1038/nm84312640447
-
(2003)
Nature Medicine
, vol.9
, Issue.4
, pp. 416-423
-
-
Ye, Q.H.1
Qin, L.X.2
Forgues, M.3
He, P.4
Kim, J.W.5
Peng, A.C.6
-
22
-
-
18244409933
-
Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
-
11786909, ..;():–.
-
Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine. 2002;8(1):68–74. doi: 10.1038/nm0102-6811786909
-
(2002)
Nature Medicine
, vol.8
, Issue.1
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
Weng, A.P.4
Kutok, J.L.5
Aguiar, R.C.6
-
23
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
11120680, .;():–.
-
Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D, Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000;16(10):906–914. doi: 10.1093/bioinformatics/16.10.90611120680
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
24
-
-
38149108345
-
Enhanced analytical power of SDS-PAGE using machine learning algorithms
-
18046695, .;():–.
-
Supek F, Peharec P, Krsnik-Rasol M, Šmuc T, Enhanced analytical power of SDS-PAGE using machine learning algorithms. Proteomics. 2008;8(1):28–31. doi: 10.1002/pmic.20070055518046695
-
(2008)
Proteomics
, vol.8
, Issue.1
, pp. 28-31
-
-
Supek, F.1
Peharec, P.2
Krsnik-Rasol, M.3
Šmuc, T.4
-
25
-
-
54749109964
-
Analysis of metabolomic data using support vector machines
-
18767870, .;():–.
-
Mahadevan S, Shah SL, Marrie TJ, Slupsky CM, Analysis of metabolomic data using support vector machines. Analytical Chemistry. 2008;80(19):7562–7570. doi: 10.1021/ac800954c18767870
-
(2008)
Analytical Chemistry
, vol.80
, Issue.19
, pp. 7562-7570
-
-
Mahadevan, S.1
Shah, S.L.2
Marrie, T.J.3
Slupsky, C.M.4
-
26
-
-
84941279254
-
13C-fluxomics
-
..;:–.
-
Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, et al. CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics. Nucleic Acids Research. 2014;43:D549–D557. doi: 10.1093/nar/gku1137
-
(2014)
Nucleic Acids Research
, vol.43
, pp. D549-D557
-
-
Zhang, Z.1
Shen, T.2
Rui, B.3
Zhou, W.4
Zhou, X.5
Shang, C.6
-
27
-
-
17644375240
-
The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria
-
16102602, .;():–.
-
Sauer U, Eikmanns BJ, The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews. 2005;29(4):765–794. doi: 10.1016/j.femsre.2004.11.00216102602
-
(2005)
FEMS Microbiology Reviews
, vol.29
, Issue.4
, pp. 765-794
-
-
Sauer, U.1
Eikmanns, B.J.2
-
28
-
-
63549092275
-
Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain
-
19016470, ..;():–.
-
Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, et al. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnology and Bioengineering. 2009;102(5):1377–1386. doi: 10.1002/bit.2218119016470
-
(2009)
Biotechnology and Bioengineering
, vol.102
, Issue.5
, pp. 1377-1386
-
-
Tang, Y.J.1
Sapra, R.2
Joyner, D.3
Hazen, T.C.4
Myers, S.5
Reichmuth, D.6
-
29
-
-
0031967783
-
Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene
-
9579065, .;():–.
-
Peters-Wendisch PG, Kreutzer C, Kalinowski J, Pátek M, Sahm H, Eikmanns BJ, Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology. 1998;144(4):915–927. doi: 10.1099/00221287-144-4-9159579065
-
(1998)
Microbiology
, vol.144
, Issue.4
, pp. 915-927
-
-
Peters-Wendisch, P.G.1
Kreutzer, C.2
Kalinowski, J.3
Pátek, M.4
Sahm, H.5
Eikmanns, B.J.6
-
30
-
-
77956969126
-
13C-metabolic flux analysis for batch culture of Escherichia coli and its pyk and pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites
-
20730757, ..;():–.
-
Toya Y, Ishii N, Nakahigashi K, Hirasawa T, Soga T, Tomita M, et al. 13C-metabolic flux analysis for batch culture of Escherichia coli and its pyk and pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites. Biotechnology Progress. 2010;26(4):975–992. 20730757
-
(2010)
Biotechnology Progress
, vol.26
, Issue.4
, pp. 975-992
-
-
Toya, Y.1
Ishii, N.2
Nakahigashi, K.3
Hirasawa, T.4
Soga, T.5
Tomita, M.6
-
31
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
..;:–.
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research. 2011;12:2825–2830.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
32
-
-
84884386184
-
COMPLETE-MFA: Complementary parallel labeling experiments technique for metabolic flux analysis
-
24021936, .;:–.
-
Leighty RW, Antoniewicz MR, COMPLETE-MFA: Complementary parallel labeling experiments technique for metabolic flux analysis. Metabolic Engineering. 2013;20:49–55. doi: 10.1016/j.ymben.2013.08.00624021936
-
(2013)
Metabolic Engineering
, vol.20
, pp. 49-55
-
-
Leighty, R.W.1
Antoniewicz, M.R.2
-
33
-
-
2342565059
-
Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate
-
15113569, .;():–.
-
Zhao J, Baba T, Mori H, Shimizu K, Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metabolic Engineering. 2004;6(2):164–174. doi: 10.1016/j.ymben.2004.02.00415113569
-
(2004)
Metabolic Engineering
, vol.6
, Issue.2
, pp. 164-174
-
-
Zhao, J.1
Baba, T.2
Mori, H.3
Shimizu, K.4
-
34
-
-
0037069467
-
Analysis of optimality in natural and perturbed metabolic networks
-
.;():–.
-
Segre D, Vitkup D, Church GM, Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences. 2002;99(23):15112–15117. doi: 10.1073/pnas.232349399
-
(2002)
Proceedings of the National Academy of Sciences
, vol.99
, Issue.23
, pp. 15112-15117
-
-
Segre, D.1
Vitkup, D.2
Church, G.M.3
-
36
-
-
0028529307
-
Knowledge-based artificial neural networks
-
.;():–.
-
Towell GG, Shavlik JW, Knowledge-based artificial neural networks. Artificial Intelligence. 1994;70(1):119–165. doi: 10.1016/0004-3702(94)90105-8
-
(1994)
Artificial Intelligence
, vol.70
, Issue.1
, pp. 119-165
-
-
Towell, G.G.1
Shavlik, J.W.2
-
38
-
-
84964736109
-
-
Niemeyer G. python-constraint: Constraint Solving Problem solver for Python;. Available from.
-
Niemeyer G. python-constraint: Constraint Solving Problem solver for Python;. Available from https://labix.org/python-constraint.
-
-
-
-
39
-
-
1642538406
-
13C constraints
-
14751266, .;():–.
-
Fischer E, Zamboni N, Sauer U, High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13C constraints. Analytical Biochemistry. 2004;325(2):308–316. doi: 10.1016/j.ab.2003.10.03614751266
-
(2004)
Analytical Biochemistry
, vol.325
, Issue.2
, pp. 308-316
-
-
Fischer, E.1
Zamboni, N.2
Sauer, U.3
-
40
-
-
1642294491
-
13C-labeling experiments and the measurement of enzyme activities
-
14661115, .;():–.
-
Zhao J, Baba T, Mori H, Shimizu K, Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Applied Microbiology and Biotechnology. 2004;64(1):91–98. doi: 10.1007/s00253-003-1458-514661115
-
(2004)
Applied Microbiology and Biotechnology
, vol.64
, Issue.1
, pp. 91-98
-
-
Zhao, J.1
Baba, T.2
Mori, H.3
Shimizu, K.4
-
41
-
-
33646362289
-
Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes
-
16319065, .;():–.
-
Fong SS, Nanchen A, Palsson BO, Sauer U, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. Journal of Biological Chemistry. 2006;281(12):8024–8033. doi: 10.1074/jbc.M51001620016319065
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.12
, pp. 8024-8033
-
-
Fong, S.S.1
Nanchen, A.2
Palsson, B.O.3
Sauer, U.4
-
42
-
-
2442707990
-
13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements
-
15158257, .;():–.
-
Peng L, Arauzo-Bravo MJ, Shimizu K, Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements. FEMS Microbiology Letters. 2004;235(1):17–23. doi: 10.1111/j.1574-6968.2004.tb09562.x15158257
-
(2004)
FEMS Microbiology Letters
, vol.235
, Issue.1
, pp. 17-23
-
-
Peng, L.1
Arauzo-Bravo, M.J.2
Shimizu, K.3
-
43
-
-
47349107339
-
Maintenance metabolism and carbon fluxes in Bacillus species
-
18564406, .;():.
-
Tännler S, Decasper S, Sauer U, Maintenance metabolism and carbon fluxes in Bacillus species. Microbial Cell Factories. 2008;7(1):19. doi: 10.1186/1475-2859-7-1918564406
-
(2008)
Microbial Cell Factories
, vol.7
, Issue.1
, pp. 19
-
-
Tännler, S.1
Decasper, S.2
Sauer, U.3
-
44
-
-
84889643157
-
Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis
-
24281055, ..;():.
-
Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, et al. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Molecular Systems Biology. 2013;9(1):709. doi: 10.1038/msb.2013.6624281055
-
(2013)
Molecular Systems Biology
, vol.9
, Issue.1
, pp. 709
-
-
Chubukov, V.1
Uhr, M.2
Le Chat, L.3
Kleijn, R.J.4
Jules, M.5
Link, H.6
-
45
-
-
84862689750
-
Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity
-
22392073, .;():–.
-
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L, Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnology and Bioengineering. 2012;109(8):2070–2081. doi: 10.1002/bit.2448622392073
-
(2012)
Biotechnology and Bioengineering
, vol.109
, Issue.8
, pp. 2070-2081
-
-
van Ooyen, J.1
Noack, S.2
Bott, M.3
Reth, A.4
Eggeling, L.5
-
46
-
-
84903743153
-
A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
-
24953302, .;:–.
-
Bommareddy RR, Chen Z, Rappert S, Zeng AP, A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic Engineering. 2014;25:30–37. doi: 10.1016/j.ymben.2014.06.00524953302
-
(2014)
Metabolic Engineering
, vol.25
, pp. 30-37
-
-
Bommareddy, R.R.1
Chen, Z.2
Rappert, S.3
Zeng, A.P.4
-
47
-
-
84862823912
-
13C-labeled glucose
-
..;():–.
-
Wang ZJ, Wang P, Liu YW, Zhang YM, Chu J, Huang Mz, et al. Metabolic flux analysis of the central carbon metabolism of the industrial vitamin B12 producing strain Pseudomonas denitrificans using 13C-labeled glucose. Journal of the Taiwan Institute of Chemical Engineers. 2012;43(2):181–187. doi: 10.1016/j.jtice.2011.09.002
-
(2012)
Journal of the Taiwan Institute of Chemical Engineers
, vol.43
, Issue.2
, pp. 181-187
-
-
Wang, Z.J.1
Wang, P.2
Liu, Y.W.3
Zhang, Y.M.4
Chu, J.5
Huang, M.6
-
48
-
-
83055180107
-
Correlation of genomic and physiological traits of Thermoanaerobacter species with biofuel yields
-
21948836, ..;():–.
-
Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, et al. Correlation of genomic and physiological traits of Thermoanaerobacter species with biofuel yields. Applied and Environmental Microbiology. 2011;77(22):7998–8008. doi: 10.1128/AEM.05677-1121948836
-
(2011)
Applied and Environmental Microbiology
, vol.77
, Issue.22
, pp. 7998-8008
-
-
Hemme, C.L.1
Fields, M.W.2
He, Q.3
Deng, Y.4
Lin, L.5
Tu, Q.6
-
49
-
-
33846634149
-
Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry
-
17114264, .;():–.
-
Tang Y, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD, Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. Journal of Bacteriology. 2007;189(3):940–949. doi: 10.1128/JB.00948-0617114264
-
(2007)
Journal of Bacteriology
, vol.189
, Issue.3
, pp. 940-949
-
-
Tang, Y.1
Pingitore, F.2
Mukhopadhyay, A.3
Phan, R.4
Hazen, T.C.5
Keasling, J.D.6
-
50
-
-
77749320898
-
What is flux balance analysis?
-
20212490, .;():–.
-
Orth JD, Thiele I, Palsson BØ, What is flux balance analysis?Nature Biotechnology. 2010;28(3):245–248. doi: 10.1038/nbt.161420212490
-
(2010)
Nature Biotechnology
, vol.28
, Issue.3
, pp. 245-248
-
-
Orth, J.D.1
Thiele, I.2
Palsson, B.Ø3
-
51
-
-
80054069179
-
A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011
-
21988831, ..;():.
-
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Molecular Systems Biology. 2011;7(1):535. doi: 10.1038/msb.2011.6521988831
-
(2011)
Molecular Systems Biology
, vol.7
, Issue.1
, pp. 535
-
-
Orth, J.D.1
Conrad, T.M.2
Na, J.3
Lerman, J.A.4
Nam, H.5
Feist, A.M.6
-
52
-
-
77955141026
-
Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
-
20664636, ..;():.
-
Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Molecular Systems Biology. 2010;6(1):390. doi: 10.1038/msb.2010.4720664636
-
(2010)
Molecular Systems Biology
, vol.6
, Issue.1
, pp. 390
-
-
Lewis, N.E.1
Hixson, K.K.2
Conrad, T.M.3
Lerman, J.A.4
Charusanti, P.5
Polpitiya, A.D.6
-
53
-
-
67349218872
-
Flux balance analysis: a geometric perspective
-
19490860, .;():–.
-
Smallbone K, Simeonidis E, Flux balance analysis: a geometric perspective. Journal of Theoretical Biology. 2009;258(2):311–315. doi: 10.1016/j.jtbi.2009.01.02719490860
-
(2009)
Journal of Theoretical Biology
, vol.258
, Issue.2
, pp. 311-315
-
-
Smallbone, K.1
Simeonidis, E.2
-
54
-
-
84862159261
-
Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions
-
22548736, .;():.
-
Orth JD, Palsson B, Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions. BMC Systems Biology. 2012;6(1):30. doi: 10.1186/1752-0509-6-3022548736
-
(2012)
BMC Systems Biology
, vol.6
, Issue.1
, pp. 30
-
-
Orth, J.D.1
Palsson, B.2
-
55
-
-
84928315635
-
An ancient Chinese wisdom for metabolic engineering: Yin-Yang
-
25889067, .;():.
-
Wu SG, He L, Wang Q, Tang YJ, An ancient Chinese wisdom for metabolic engineering: Yin-Yang. Microbial Cell Factories. 2015;14(1):39. doi: 10.1186/s12934-015-0219-325889067
-
(2015)
Microbial Cell Factories
, vol.14
, Issue.1
, pp. 39
-
-
Wu, S.G.1
He, L.2
Wang, Q.3
Tang, Y.J.4
-
56
-
-
20044375201
-
Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism
-
15880104, .;():–.
-
Fischer E, Sauer U, Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nature Genetics. 2005;37(6):636–640. doi: 10.1038/ng155515880104
-
(2005)
Nature Genetics
, vol.37
, Issue.6
, pp. 636-640
-
-
Fischer, E.1
Sauer, U.2
-
57
-
-
34447523907
-
Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
-
17625511, .;():.
-
Schuetz R, Kuepfer L, Sauer U, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Molecular Systems Biology. 2007;3(1):119. doi: 10.1038/msb410016217625511
-
(2007)
Molecular Systems Biology
, vol.3
, Issue.1
, pp. 119
-
-
Schuetz, R.1
Kuepfer, L.2
Sauer, U.3
-
58
-
-
70350158322
-
Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations
-
19610125, ..;():–.
-
Tang YJ, Martin HG, Deutschbauer A, Feng X, Huang R, Llora X, et al. Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations. Biotechnology Progress. 2009;25(5):1254–1259. doi: 10.1002/btpr.22719610125
-
(2009)
Biotechnology Progress
, vol.25
, Issue.5
, pp. 1254-1259
-
-
Tang, Y.J.1
Martin, H.G.2
Deutschbauer, A.3
Feng, X.4
Huang, R.5
Llora, X.6
-
59
-
-
0032600888
-
Metabolic fluxes and metabolic engineering
-
10935750, .;():–.
-
Stephanopoulos G, Metabolic fluxes and metabolic engineering. Metabolic Engineering. 1999;1(1):1–11. doi: 10.1006/mben.1998.010110935750
-
(1999)
Metabolic Engineering
, vol.1
, Issue.1
, pp. 1-11
-
-
Stephanopoulos, G.1
-
60
-
-
0025866296
-
Network rigidity and metabolic engineering in metabolite overproduction
-
1904627, .;():–.
-
Stephanopoulos G, Vallino JJ, Network rigidity and metabolic engineering in metabolite overproduction. Science. 1991;252(5013):1675–1681. doi: 10.1126/science.19046271904627
-
(1991)
Science
, vol.252
, Issue.5013
, pp. 1675-1681
-
-
Stephanopoulos, G.1
Vallino, J.J.2
-
61
-
-
84927711563
-
Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through central metabolic pathways in response to inactivation of the anti-sigma factor MucA
-
25889900, .;():.
-
Lien SK, Niedenführ S, Sletta H, Nöh K, Bruheim P, Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through central metabolic pathways in response to inactivation of the anti-sigma factor MucA. BMC Systems Biology. 2015;9(1):6. doi: 10.1186/s12918-015-0148-025889900
-
(2015)
BMC Systems Biology
, vol.9
, Issue.1
, pp. 6
-
-
Lien, S.K.1
Niedenführ, S.2
Sletta, H.3
Nöh, K.4
Bruheim, P.5
-
62
-
-
14244256095
-
Experimental identification and quantification of glucose metabolism in seven bacterial species
-
15716428, .;():–.
-
Fuhrer T, Fischer E, Sauer U, Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology. 2005;187(5):1581–1590. doi: 10.1128/JB.187.5.1581-1590.200515716428
-
(2005)
Journal of Bacteriology
, vol.187
, Issue.5
, pp. 1581-1590
-
-
Fuhrer, T.1
Fischer, E.2
Sauer, U.3
-
63
-
-
68349141531
-
Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics
-
19560494, .;():–.
-
Wierckx N, Ruijssenaars HJ, de Winde JH, Schmid A, Blank LM, Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. Journal of Biotechnology. 2009;143(2):124–129. doi: 10.1016/j.jbiotec.2009.06.02319560494
-
(2009)
Journal of Biotechnology
, vol.143
, Issue.2
, pp. 124-129
-
-
Wierckx, N.1
Ruijssenaars, H.J.2
de Winde, J.H.3
Schmid, A.4
Blank, L.M.5
-
64
-
-
34447522100
-
Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis
-
17483213, .;():–.
-
del Castillo T, Ramos JL, Rodríguez-Herva JJ, Fuhrer T, Sauer U, Duque E, Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. Journal of Bacteriology. 2007;189(14):5142–5152. doi: 10.1128/JB.00203-0717483213
-
(2007)
Journal of Bacteriology
, vol.189
, Issue.14
, pp. 5142-5152
-
-
del Castillo, T.1
Ramos, J.L.2
Rodríguez-Herva, J.J.3
Fuhrer, T.4
Sauer, U.5
Duque, E.6
-
65
-
-
52449130902
-
Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase
-
18803670, .;():–.
-
Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A, Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS Journal. 2008;275(20):5173–5190. doi: 10.1111/j.1742-4658.2008.06648.x18803670
-
(2008)
FEBS Journal
, vol.275
, Issue.20
, pp. 5173-5190
-
-
Blank, L.M.1
Ionidis, G.2
Ebert, B.E.3
Bühler, B.4
Schmid, A.5
-
66
-
-
0026913168
-
The Entner-Doudoroff pathway: history, physiology and molecular biology
-
.;():–.
-
Conway T, The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiology Reviews. 1992;103(1):1–28. doi: 10.1111/j.1574-6968.1992.tb05822.x
-
(1992)
FEMS Microbiology Reviews
, vol.103
, Issue.1
, pp. 1-28
-
-
Conway, T.1
-
67
-
-
84861422324
-
Rethinking glycolysis: on the biochemical logic of metabolic pathways
-
22596202, .;():–.
-
Bar-Even A, Flamholz A, Noor E, Milo R, Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nature Chemical Biology. 2012;8(6):509–517. doi: 10.1038/nchembio.97122596202
-
(2012)
Nature Chemical Biology
, vol.8
, Issue.6
, pp. 509-517
-
-
Bar-Even, A.1
Flamholz, A.2
Noor, E.3
Milo, R.4
-
68
-
-
84878966835
-
Glycolytic strategy as a tradeoff between energy yield and protein cost
-
.;():–.
-
Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R, Glycolytic strategy as a tradeoff between energy yield and protein cost. Proceedings of the National Academy of Sciences. 2013;110(24):10039–10044. doi: 10.1073/pnas.1215283110
-
(2013)
Proceedings of the National Academy of Sciences
, vol.110
, Issue.24
, pp. 10039-10044
-
-
Flamholz, A.1
Noor, E.2
Bar-Even, A.3
Liebermeister, W.4
Milo, R.5
-
69
-
-
84899450145
-
Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa
-
.;().
-
Berger A, Dohnt K, Tielen P, Jahn D, Becker J, Wittmann C, Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PloS One. 2014;9(4). doi: 10.1371/journal.pone.0088368
-
(2014)
PloS One
, vol.9
, Issue.4
-
-
Berger, A.1
Dohnt, K.2
Tielen, P.3
Jahn, D.4
Becker, J.5
Wittmann, C.6
-
70
-
-
80052787409
-
Response of Pseudomonas putida KT2440 to increased NADH and ATP demand
-
21803911, .;():–.
-
Ebert BE, Kurth F, Grund M, Blank LM, Schmid A, Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Applied and Environmental Microbiology. 2011;77(18):6597–6605. doi: 10.1128/AEM.05588-1121803911
-
(2011)
Applied and Environmental Microbiology
, vol.77
, Issue.18
, pp. 6597-6605
-
-
Ebert, B.E.1
Kurth, F.2
Grund, M.3
Blank, L.M.4
Schmid, A.5
-
71
-
-
80051498516
-
Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants
-
21831320, .;():–.
-
Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K, Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microbial Cell Factories. 2011;10(67):1475–2859doi: 10.1186/1475-2859-10-6721831320.
-
(2011)
Microbial Cell Factories
, vol.10
, Issue.67
, pp. 1475-2859
-
-
Yao, R.1
Hirose, Y.2
Sarkar, D.3
Nakahigashi, K.4
Ye, Q.5
Shimizu, K.6
-
72
-
-
85041912553
-
Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning
-
.;():–.
-
Wu SG, Shimizu K, Tang JKH, Tang YJ, Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. ChemBioEng Reviews. 2016;3(2):1–11doi: 10.1002/cben.201500024.
-
(2016)
ChemBioEng Reviews
, vol.3
, Issue.2
, pp. 1-11
-
-
Wu, S.G.1
Shimizu, K.2
Tang, J.K.H.3
Tang, Y.J.4
|