메뉴 건너뛰기




Volumn , Issue , 2018, Pages 337-350

Enhancing Metabolic Models with Genome-Scale Experimental Data

Author keywords

Constraint based metabolic modeling; Flux balance analysis; Genome scale data; Genome scale modeling; Machine learning; Metabolomics; Proteomics; Shadow prices; Transcriptomics

Indexed keywords


EID: 85068320538     PISSN: 21979731     EISSN: 21979758     Source Type: Book Series    
DOI: 10.1007/978-3-319-92967-5_17     Document Type: Chapter
Times cited : (5)

References (54)
  • 1
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • Åkesson M, Förster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6:285–293
    • (2004) Metab Eng , vol.6 , pp. 285-293
    • Åkesson, M.1    Förster, J.2    Nielsen, J.3
  • 2
    • 84922448166 scopus 로고    scopus 로고
    • Methods and advances in metabolic flux analysis: A mini-review
    • Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42:317–325
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 317-325
    • Antoniewicz, M.R.1
  • 3
    • 31544450286 scopus 로고    scopus 로고
    • Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection
    • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008
    • (2006) Mol Syst Biol , vol.2 , Issue.2006 , pp. 0008
    • Baba, T.1    Ara, T.2    Hasegawa, M.3    Takai, Y.4    Okumura, Y.5
  • 4
    • 84947583295 scopus 로고    scopus 로고
    • Overflow metabolism in Escherichia coli results from efficient proteome allocation
    • Basan M, Hui S, Okano H, Zhang Z, Shen Y et al (2015) Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528:99–104
    • (2015) Nature , vol.528 , pp. 99-104
    • Basan, M.1    Hui, S.2    Okano, H.3    Zhang, Z.4    Shen, Y.5
  • 5
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4:e1000082
    • (2008) Plos Comput Biol , vol.4
    • Becker, S.A.1    Palsson, B.O.2
  • 6
    • 84951056186 scopus 로고    scopus 로고
    • Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics
    • Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N et al (2015) Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Syst 1:283–292
    • (2015) Cell Syst , vol.1 , pp. 283-292
    • Bordbar, A.1    McCloskey, D.2    Zielinski, D.C.3    Sonnenschein, N.4    Jamshidi, N.5
  • 7
    • 84963543358 scopus 로고    scopus 로고
    • Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes
    • Bordbar A, Johansson PI, Paglia G, Harrison SJ, Wichuk K et al (2016) Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion 56:852–862
    • (2016) Transfusion , vol.56 , pp. 852-862
    • Bordbar, A.1    Johansson, P.I.2    Paglia, G.3    Harrison, S.J.4    Wichuk, K.5
  • 8
    • 85017208176 scopus 로고    scopus 로고
    • Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
    • Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE et al (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep 7:46249
    • (2017) Sci Rep , vol.7
    • Bordbar, A.1    Yurkovich, J.T.2    Paglia, G.3    Rolfsson, O.4    Sigurjónsson, Ó.E.5
  • 9
    • 0000089325 scopus 로고
    • Observations on the carbohydrate metabolism of tumours
    • Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536– 545
    • (1929) Biochem J , vol.23 , pp. 536-545
    • Crabtree, H.G.1
  • 10
    • 75949088191 scopus 로고    scopus 로고
    • AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis
    • de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589
    • (2010) Plant Physiol , vol.152 , pp. 579-589
  • 11
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliomic data
    • Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 104:1777– 1782
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 1777-1782
    • Duarte, N.C.1    Becker, S.A.2    Jamshidi, N.3    Thiele, I.4    Mo, M.L.5
  • 12
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities
    • Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci 97:5528–5533
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 5528-5533
    • Edwards, J.S.1    Palsson, B.O.2
  • 13
    • 79959621970 scopus 로고    scopus 로고
    • Predicting selective drug targets in cancer through metabolic networks
    • Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:527–527
    • (2011) Mol Syst Biol , vol.7 , pp. 527-527
    • Folger, O.1    Jerby, L.2    Frezza, C.3    Gottlieb, E.4    Ruppin, E.5
  • 14
    • 0042816453 scopus 로고    scopus 로고
    • Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae
    • Förster J, Famili I, Palsson BO, Nielsen J (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS J Integr Biol 7:193–202
    • (2003) OMICS J Integr Biol , vol.7 , pp. 193-202
    • Förster, J.1    Famili, I.2    Palsson, B.O.3    Nielsen, J.4
  • 15
    • 84945587006 scopus 로고    scopus 로고
    • Quantitative prediction of genome-wide resource allocation in bacteria
    • Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E et al (2015) Quantitative prediction of genome-wide resource allocation in bacteria. Metab Eng 32:232–243
    • (2015) Metab Eng , vol.32 , pp. 232-243
    • Goelzer, A.1    Muntel, J.2    Chubukov, V.3    Jules, M.4    Prestel, E.5
  • 16
    • 84942248861 scopus 로고    scopus 로고
    • 13C metabolic flux analysis at a genome-scale
    • Gopalakrishnan S, Maranas CD (2015) 13C metabolic flux analysis at a genome-scale. Metab Eng 32:12–22
    • (2015) Metab Eng , vol.32 , pp. 12-22
    • Gopalakrishnan, S.1    Maranas, C.D.2
  • 17
    • 68949205722 scopus 로고    scopus 로고
    • Correlations between RNA and protein expression profiles in 23 human cell lines
    • Gry M, Rimini R, Strömberg S, Asplund A, Pontén F et al (2009) Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10:365
    • (2009) BMC Genomics , vol.10 , pp. 365
    • Gry, M.1    Rimini, R.2    Strömberg, S.3    Asplund, A.4    Pontén, F.5
  • 18
    • 85016312795 scopus 로고    scopus 로고
    • Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition
    • Halldorsson S, Rohatgi N, Magnusdottir M, Choudhary KS, Gudjonsson T et al (2017) Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 396:117–129
    • (2017) Cancer Lett , vol.396 , pp. 117-129
    • Halldorsson, S.1    Rohatgi, N.2    Magnusdottir, M.3    Choudhary, K.S.4    Gudjonsson, T.5
  • 19
    • 84949239513 scopus 로고    scopus 로고
    • Comparative analysis of yeast metabolic network models highlights progress, opportunities for metabolic reconstruction
    • Heavner BD, Price ND (2015) Comparative analysis of yeast metabolic network models highlights progress, opportunities for metabolic reconstruction. PLoS Comput Biol 11:1–26
    • (2015) Plos Comput Biol , vol.11 , pp. 1-26
    • Heavner, B.D.1    Price, N.D.2
  • 20
    • 42949164125 scopus 로고    scopus 로고
    • Formulating genome-scale kinetic models in the post-genome era
    • Jamshidi N, Palsson BØ (2008) Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 4:171
    • (2008) Mol Syst Biol , vol.4 , pp. 171
    • Jamshidi, N.1    Palsson, B.Ø.2
  • 21
    • 84864258618 scopus 로고    scopus 로고
    • A whole-cell computational model predicts phenotype from genotype
    • Karr JR, Sanghvi JC, MacKlin DN, Gutschow M, Jacobs JM et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401
    • (2012) Cell , vol.150 , pp. 389-401
    • Karr, J.R.1    Sanghvi, J.C.2    Macklin, D.N.3    Gutschow, M.4    Jacobs, J.M.5
  • 22
    • 85007015976 scopus 로고    scopus 로고
    • A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains
    • Khodayari A, Maranas CD (2016) A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun 7:13806
    • (2016) Nat Commun , vol.7
    • Khodayari, A.1    Maranas, C.D.2
  • 23
    • 84864843180 scopus 로고    scopus 로고
    • In silico method for modelling metabolism and gene product expression at genome scale
    • Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929
    • (2012) Nat Commun , vol.3
    • Lerman, J.A.1    Hyduke, D.R.2    Latif, H.3    Portnoy, V.A.4    Lewis, N.E.5
  • 24
    • 77957556494 scopus 로고    scopus 로고
    • Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines
    • Li L, Zhou X, Ching W-K, Wang P (2010) Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines. BMC Bioinformatics 11:501
    • (2010) BMC Bioinformatics , vol.11
    • Li, L.1    Zhou, X.2    Ching, W.-K.3    Wang, P.4
  • 25
    • 85030725050 scopus 로고    scopus 로고
    • COBRAme: A computational framework for building and manipulating models of metabolism and gene expression
    • Lloyd CJ, Ebrahim A, Yang L, King ZA, Catoiu E et al (2017) COBRAme: a computational framework for building and manipulating models of metabolism and gene expression. bioRxiv 106559. https://doi.org/10.1101/106559
    • (2017) Biorxiv 106559
    • Lloyd, C.J.1    Ebrahim, A.2    Yang, L.3    King, Z.A.4    Catoiu, E.5
  • 26
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10:e1003580
    • (2014) Plos Comput Biol , vol.10
    • Machado, D.1    Herrgård, M.2
  • 27
    • 84883787394 scopus 로고    scopus 로고
    • Integration of clinical data with a genome-scale metabolic model of the human adipocyte
    • Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I et al (2014) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol 9:649–649
    • (2014) Mol Syst Biol , vol.9 , pp. 649-649
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Nookaew, I.5
  • 28
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661
    • (2013) Mol Syst Biol , vol.9 , pp. 661
    • McCloskey, D.1    Palsson, B.Ø.2    Feist, A.M.3
  • 30
    • 84885367114 scopus 로고    scopus 로고
    • Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction
    • O’Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9:693–693
    • (2013) Mol Syst Biol , vol.9 , pp. 693-693
    • O’Brien, E.J.1    Lerman, J.A.2    Chang, R.L.3    Hyduke, D.R.4    Palsson, B.O.5
  • 31
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987
    • (2015) Cell , vol.161 , pp. 971-987
    • O’Brien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 32
    • 41149163825 scopus 로고    scopus 로고
    • Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1
    • Oberhardt MA, Puchałka J, Fryer KE, Martins Dos Santos VAP, Papin JA (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190:2790–2803
    • (2008) J Bacteriol , vol.190 , pp. 2790-2803
    • Oberhardt, M.A.1    Puchałka, J.2    Fryer, K.E.3    Martins Dos Santos, V.A.P.4    Papin, J.A.5
  • 34
    • 51049105047 scopus 로고    scopus 로고
    • Machine learning based analyses on metabolic networks supports high-throughput knockout screens
    • Plaimas K, Mallm J-P, Oswald M, Svara F, Sourjik V et al (2008) Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst Biol 2:67
    • (2008) BMC Syst Biol , vol.2 , pp. 67
    • Plaimas, K.1    Mallm, J.-P.2    Oswald, M.3    Svara, F.4    Sourjik, V.5
  • 35
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: Evaluating the consequences of constraints
    • Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897
    • (2004) Nat Rev Microbiol , vol.2 , pp. 886-897
    • Price, N.D.1    Reed, J.L.2    Palsson, B.Ø.3
  • 36
    • 85029661882 scopus 로고    scopus 로고
    • Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks
    • Saa PA, Nielsen LK (2017) Formulation, construction and analysis of kinetic models of metabolism: a review of modelling frameworks. Biotechnol Adv 35:981–1003
    • (2017) Biotechnol Adv , vol.35 , pp. 981-1003
    • Saa, P.A.1    Nielsen, L.K.2
  • 37
    • 85028309923 scopus 로고    scopus 로고
    • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
    • Sánchez BJ, Zhang C, Nilsson A, Lahtvee P, Kerkhoven EJ et al (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol 13:935
    • (2017) Mol Syst Biol , vol.13 , pp. 935
    • Sánchez, B.J.1    Zhang, C.2    Nilsson, A.3    Lahtvee, P.4    Kerkhoven, E.J.5
  • 38
    • 33846061120 scopus 로고    scopus 로고
    • Metabolic networks in motion: 13C-based flux analysis
    • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:1–10
    • (2006) Mol Syst Biol , vol.2 , pp. 1-10
    • Sauer, U.1
  • 39
    • 0034615788 scopus 로고    scopus 로고
    • Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis
    • Schilling CH, Palsson BØ (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol 203:249–283
    • (2000) J Theor Biol , vol.203 , pp. 249-283
    • Schilling, C.H.1    Palsson, B.Ø.2
  • 42
    • 79953661070 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the warburg effect
    • Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E (2011) Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the warburg effect. PLoS Comput Biol 7:1–8
    • (2011) Plos Comput Biol , vol.7 , pp. 1-8
    • Shlomi, T.1    Benyamini, T.2    Gottlieb, E.3    Sharan, R.4    Ruppin, E.5
  • 43
    • 84883389182 scopus 로고    scopus 로고
    • Understanding the interactions between bacteria in the human gut through metabolic modeling
    • Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S et al (2013) Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci Rep 3:2532
    • (2013) Sci Rep , vol.3
    • Shoaie, S.1    Karlsson, F.2    Mardinoglu, A.3    Nookaew, I.4    Bordel, S.5
  • 44
    • 84921865747 scopus 로고    scopus 로고
    • Constraining the flux space using thermodynamics and integration of metabolomics data
    • Krömer JO, Nielsen LK, Blank LM, Springer, New York, pp
    • Soh KC, Hatzimanikatis V (2014) Constraining the flux space using thermodynamics and integration of metabolomics data. In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis: methods and protocols. Springer, New York, pp 49–63
    • (2014) Metabolic Flux Analysis: Methods and Protocols , pp. 49-63
    • Soh, K.C.1    Hatzimanikatis, V.2
  • 45
    • 84857052437 scopus 로고    scopus 로고
    • From network models to network responses: Integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks
    • Soh KC, Miskovic L, Hatzimanikatis V (2012) From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 12:129–143
    • (2012) FEMS Yeast Res , vol.12 , pp. 129-143
    • Soh, K.C.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 46
    • 84940557767 scopus 로고    scopus 로고
    • Constructing kinetic models of metabolism at genome-scales: A review
    • Srinivasan S, Cluett WR, Mahadevan R (2015) Constructing kinetic models of metabolism at genome-scales: a review. Biotechnol J 10:1345–1359
    • (2015) Biotechnol J , vol.10 , pp. 1345-1359
    • Srinivasan, S.1    Cluett, W.R.2    Mahadevan, R.3
  • 47
    • 0032600888 scopus 로고    scopus 로고
    • Metabolic fluxes and metabolic engineering
    • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11
    • (1999) Metab Eng , vol.1 , pp. 1-11
    • Stephanopoulos, G.1
  • 48
    • 0033857139 scopus 로고    scopus 로고
    • Can yeast glycolysis be understood terms of vitro kinetics of the constituent enzymes? Testing biochemistry
    • Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van Der Weijden CC et al (2000) Can yeast glycolysis be understood terms of vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329
    • (2000) Eur J Biochem , vol.267 , pp. 5313-5329
    • Teusink, B.1    Passarge, J.2    Reijenga, C.A.3    Esgalhado, E.4    van Der Weijden, C.C.5
  • 49
    • 63549148162 scopus 로고    scopus 로고
    • Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: A knowledge base, its mathematical formulation, and its functional characterization
    • Thiele I, Jamshidi N, Fleming RMT, Palsson BO (2009) Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 5:e1000312
    • (2009) Plos Comput Biol , vol.5
    • Thiele, I.1    Jamshidi, N.2    Fleming, R.M.T.3    Palsson, B.O.4
  • 50
    • 84866975246 scopus 로고    scopus 로고
    • Multiscale modeling of metabolism and macromolecular synthesis in E. Coli and its application to the evolution of codon usage
    • Thiele I, Fleming RMT, Que R, Bordbar A, Diep D et al (2012) Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage. PLoS One 7:e45635
    • (2012) Plos One , vol.7
    • Thiele, I.1    Fleming, R.M.T.2    Que, R.3    Bordbar, A.4    Diep, D.5
  • 51
    • 84922979961 scopus 로고    scopus 로고
    • Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance
    • Thomas A, Rahmanian S, Bordbar A, Palsson BØ, Jamshidi N (2015) Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance. Sci Rep 4:3925
    • (2015) Sci Rep , vol.4
    • Thomas, A.1    Rahmanian, S.2    Bordbar, A.3    Palsson, B.Ø.4    Jamshidi, N.5
  • 52
    • 85006768050 scopus 로고
    • The metabolism of tumors in the body
    • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530
    • (1927) J Gen Physiol , vol.8 , pp. 519-530
    • Warburg, O.1    Wind, F.2    Negelein, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.