메뉴 건너뛰기




Volumn 17, Issue 4, 2016, Pages 628-641

Dimension reduction techniques for the integrative analysis of multi-omics data

Author keywords

Dimension reduction; Exploratory data analysis; Integrative genomics; Multi assay; Multi omics data integration; Multivariate analysis

Indexed keywords

GENOMICS; HIGH THROUGHPUT SEQUENCING;

EID: 84991380039     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbv108     Document Type: Article
Times cited : (291)

References (94)
  • 1
    • 23844444564 scopus 로고    scopus 로고
    • Algorithms for gene expression analysis
    • Jorde LB, Little PFR, Dunn MJ, Subramaniam S (eds). London: John Wiley & Sons
    • Brazma A, Culhane AC. Algorithms for gene expression analysis. In: Jorde LB, Little PFR, Dunn MJ, Subramaniam S (eds). Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. London: John Wiley & Sons, 2005, 3148-59.
    • (2005) Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics , pp. 3148-3159
    • Brazma, A.1    Culhane, A.C.2
  • 2
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010;11:733-9.
    • (2010) Nat Rev Genet , vol.11 , pp. 733-739
    • Leek, J.T.1    Scharpf, R.B.2    Bravo, H.C.3
  • 4
    • 84912071423 scopus 로고    scopus 로고
    • Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes
    • Biton A, Bernard-Pierrot I, Lou Y, et al. Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. Cell Rep 2014, 9:1235-45.
    • (2014) Cell Rep , vol.9 , pp. 1235-1245
    • Biton, A.1    Bernard-Pierrot, I.2    Lou, Y.3
  • 5
    • 84908460595 scopus 로고    scopus 로고
    • Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin
    • Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014;158:929-44.
    • (2014) Cell , vol.158 , pp. 929-944
    • Hoadley, K.A.1    Yau, C.2    Wolf, D.M.3
  • 6
    • 84873862912 scopus 로고    scopus 로고
    • Prognostically relevant gene signatures of high-grade serous ovarian carcinoma
    • Verhaak RG, Tamayo P, Yang JY, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 2013;123:517-25.
    • (2013) J Clin Invest , vol.123 , pp. 517-525
    • Verhaak, R.G.1    Tamayo, P.2    Yang, J.Y.3
  • 7
    • 84906713390 scopus 로고    scopus 로고
    • Critical limitations of consensus clustering in class discovery
    • Senbabaoglu Y, Michailidis G, Li JZ. Critical limitations of consensus clustering in class discovery. Sci Rep 2014;4:6207.
    • (2014) Sci Rep , vol.4 , pp. 6207
    • Senbabaoglu, Y.1    Michailidis, G.2    Li, J.Z.3
  • 8
    • 84867307317 scopus 로고    scopus 로고
    • iBBiG: iterative binary bi-clustering of gene sets
    • Gusenleitner D, Howe EA, Bentink S, et al. iBBiG: iterative binary bi-clustering of gene sets. Bioinformatics 2012;28: 2484-92.
    • (2012) Bioinformatics , vol.28 , pp. 2484-2492
    • Gusenleitner, D.1    Howe, E.A.2    Bentink, S.3
  • 9
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philos Magazine Series 1901;6(2):559-72.
    • (1901) Philos Magazine Series , vol.6 , Issue.2 , pp. 559-572
    • Pearson, K.1
  • 10
    • 0001710505 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol 1933;24:417.
    • (1933) J Educ Psychol , vol.24 , pp. 417
    • Hotelling, H.1
  • 13
    • 1342287627 scopus 로고    scopus 로고
    • Co-inertia analysis and the linking of ecological data tables
    • Dray S, Chessel D, Thioulouse J. Co-inertia analysis and the linking of ecological data tables. Ecology 2003;84:3078-89.
    • (2003) Ecology , vol.84 , pp. 3078-3089
    • Dray, S.1    Chessel, D.2    Thioulouse, J.3
  • 16
    • 84885726676 scopus 로고    scopus 로고
    • Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration
    • McShane LM, Cavenagh MM, Lively TG, et al. Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration. BMC Med 2013;11:220.
    • (2013) BMC Med , vol.11 , pp. 220
    • McShane, L.M.1    Cavenagh, M.M.2    Lively, T.G.3
  • 17
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-82.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 19
    • 34547859216 scopus 로고    scopus 로고
    • Boca Raton: Chapman & Hall/CRC Press; 1st edition
    • Hogben L. Handbook of Linear Algebra, Boca Raton: Chapman & Hall/CRC Press; 1st edition. 2007, 20.
    • (2007) Handbook of Linear Algebra , pp. 20
    • Hogben, L.1
  • 20
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • Ringner M. What is principal component analysis? Nat Biotechnol 2008;26:303-4.
    • (2008) Nat Biotechnol , vol.26 , pp. 303-304
    • Ringner, M.1
  • 21
    • 34248197149 scopus 로고    scopus 로고
    • Singular value decomposition and principal component analysis.A Practical Approach to Microarray
    • Berrar, D.P., Dubitzky, W., Granzow, M. (eds) Norwell, MA: Kluwer
    • Wall ME, Rechtsteiner A, Rocha LM. (2003) Singular value decomposition and principal component analysis. In: A Practical Approach to Microarray. Data Analysis. Berrar, D.P., Dubitzky, W., Granzow, M. (eds) Norwell, MA: Kluwer, 2003, 91-109.
    • (2003) Data Analysis , vol.2003 , pp. 91-109
    • Wall, M.E.1    Rechtsteiner, A.2    Rocha, L.M.3
  • 22
    • 70350070108 scopus 로고
    • A theory of gradient analysis.Adv. Ecol
    • terBraak CJF, Prentice IC. A theory of gradient analysis. Adv. Ecol. Res. 1988;18:271-313.
    • (1988) Res , vol.18 , pp. 271-313
    • terBraak, C.J.F.1    Prentice, I.C.2
  • 25
    • 35948933029 scopus 로고    scopus 로고
    • On the number of principal components: a test of dimensionality based on measurements of similarity between matrices
    • Dray S. On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput Stat Data Anal 2008;52:2228-37.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 2228-2237
    • Dray, S.1
  • 26
    • 0347994074 scopus 로고    scopus 로고
    • Graphical exploration of gene expression data: a comparative study of three multivariate methods
    • Wouters L, Gohlmann HW, Bijnens L, et al. Graphical exploration of gene expression data: a comparative study of three multivariate methods. Biometrics 2003;59:1131-9.
    • (2003) Biometrics , vol.59 , pp. 1131-1139
    • Wouters, L.1    Gohlmann, H.W.2    Bijnens, L.3
  • 29
    • 0000850970 scopus 로고
    • A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes
    • Fasham MJR. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology 1977;58:551-61.
    • (1977) Ecology , vol.58 , pp. 551-561
    • Fasham, M.J.R.1
  • 32
    • 34447555632 scopus 로고    scopus 로고
    • A multivariate analysis approach to the integration of proteomic and gene expression data
    • Fagan A, Culhane AC, Higgins DG. A multivariate analysis approach to the integration of proteomic and gene expression data. Proteomics 2007;7:2162-71.
    • (2007) Proteomics , vol.7 , pp. 2162-2171
    • Fagan, A.1    Culhane, A.C.2    Higgins, D.G.3
  • 33
    • 0035845501 scopus 로고    scopus 로고
    • Correspondence analysis applied to microarray data
    • Fellenberg K, Hauser NC, Brors B, et al. Correspondence analysis applied to microarray data. Proc Natl Acad Sci USA 2001;98:10781-6.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 10781-10786
    • Fellenberg, K.1    Hauser, N.C.2    Brors, B.3
  • 34
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee DD, Seung HS. Learning the parts of objects by nonnegative matrix factorization. Nature 1999;401:788-91.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 35
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept? Signal Processing 1994;36:287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 36
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2009;10:515-34.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 37
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • Shen H, Huang JZ. Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal 2008;99:1015-34.
    • (2008) J Multivar Anal , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.Z.2
  • 38
    • 84860340862 scopus 로고    scopus 로고
    • Sparse principal component analysis for identifying ancestry-informative markers in genome-wide association studies
    • Lee S, Epstein MP, Duncan R, et al. Sparse principal component analysis for identifying ancestry-informative markers in genome-wide association studies. Genet Epidemiol 2012;36:293-302.
    • (2012) Genet Epidemiol , vol.36 , pp. 293-302
    • Lee, S.1    Epstein, M.P.2    Duncan, R.3
  • 39
    • 84939536998 scopus 로고    scopus 로고
    • Applying stability selection to consistently estimate sparse principal components in highdimensional molecular data
    • Sill M, Saadati M, Benner A. Applying stability selection to consistently estimate sparse principal components in highdimensional molecular data. Bioinformatics 2015;31:2683-90.
    • (2015) Bioinformatics , vol.31 , pp. 2683-2690
    • Sill, M.1    Saadati, M.2    Benner, A.3
  • 40
    • 84907203415 scopus 로고    scopus 로고
    • Efficient model selection for mixtures of probabilistic PCA via hierarchical BIC
    • Zhao J. Efficient model selection for mixtures of probabilistic PCA via hierarchical BIC. IEEE Trans Cybern 2014;44:1871-83.
    • (2014) IEEE Trans Cybern , vol.44 , pp. 1871-1883
    • Zhao, J.1
  • 41
    • 84919463849 scopus 로고    scopus 로고
    • Integrative analysis of '-omics' data using penalty functions
    • Zhao Q, Shi X, Huang J, et al. Integrative analysis of '-omics' data using penalty functions. Wiley Interdiscip Rev Comput Stat 2015;7:10.
    • (2015) Wiley Interdiscip Rev Comput Stat , vol.7 , pp. 10
    • Zhao, Q.1    Shi, X.2    Huang, J.3
  • 42
    • 0037452966 scopus 로고    scopus 로고
    • Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms
    • Alter O, Brown PO, Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci USA 2003;100:3351-6.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 3351-3356
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 43
    • 2942577836 scopus 로고    scopus 로고
    • Cross-platform comparison and visualisation of gene expression data using coinertia analysis
    • Culhane AC, Perriere G, Higgins DG. Cross-platform comparison and visualisation of gene expression data using coinertia analysis. BMC Bioinformatics 2003;4:59.
    • (2003) BMC Bioinformatics , vol.4 , pp. 59
    • Culhane, A.C.1    Perriere, G.2    Higgins, D.G.3
  • 44
    • 84963871930 scopus 로고    scopus 로고
    • Analysing a pair of tables: coinertia analysis and duality diagrams
    • Blasius J, Greenacre M (eds), Boca Raton: CRC Press
    • Dray S. Analysing a pair of tables: coinertia analysis and duality diagrams. In: Blasius J, Greenacre M (eds). Visualization and verbalization of data, Boca Raton: CRC Press, 2014; 289-300.
    • (2014) Visualization and verbalization of data , pp. 289-300
    • Dray, S.1
  • 45
    • 60849113429 scopus 로고    scopus 로고
    • Sparse canonical methods for biological data integration: application to a cross-platform study
    • Le Cao KA, Martin PG, Robert-Granie C, et al. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics 2009;10:34.
    • (2009) BMC Bioinformatics , vol.10 , pp. 34
    • Le Cao, K.A.1    Martin, P.G.2    Robert-Granie, C.3
  • 46
    • 0022843649 scopus 로고
    • Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis
    • Braak CJF. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 1986;67:1167-79.
    • (1986) Ecology , vol.67 , pp. 1167-1179
    • Braak, C.J.F.1
  • 47
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling H. Relations between two sets of variates. Biometrika 1936;28:321-77.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 49
    • 84856717443 scopus 로고    scopus 로고
    • Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods
    • Thioulouse J. Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. Ann Appl Stat 2011;5:2300-25.
    • (2011) Ann Appl Stat , vol.5 , pp. 2300-2325
    • Thioulouse, J.1
  • 50
    • 84877249559 scopus 로고    scopus 로고
    • Canonical correlation analysis for RNA-seq co-expression networks
    • Hong S, Chen X, Jin L, et al. Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res 2013;41:e95.
    • (2013) Nucleic Acids Res , vol.41
    • Hong, S.1    Chen, X.2    Jin, L.3
  • 51
    • 0003607151 scopus 로고
    • London, New York, NY, Toronto, Sydney, San Francisco, CA: Academic Press
    • Mardia KV, Kent JT, Bibby JM. Multivariate Analysis. London, New York, NY, Toronto, Sydney, San Francisco, CA: Academic Press, 1979.
    • (1979) Multivariate Analysis
    • Mardia, K.V.1    Kent, J.T.2    Bibby, J.M.3
  • 52
    • 70449408310 scopus 로고    scopus 로고
    • Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks
    • Waaijenborg S, Zwinderman AH. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks. BMC Bioinformatics 2009;10:315.
    • (2009) BMC Bioinformatics , vol.10 , pp. 315
    • Waaijenborg, S.1    Zwinderman, A.H.2
  • 53
    • 62449336277 scopus 로고    scopus 로고
    • Sparse canonical correlation analysis with application to genomic data integration
    • Parkhomenko E, Tritchler D, Beyene J. Sparse canonical correlation analysis with application to genomic data integration. Stat Appl Genet Mol Biol 2009;8:article 1.
    • (2009) Stat Appl Genet Mol Biol , vol.8
    • Parkhomenko, E.1    Tritchler, D.2    Beyene, J.3
  • 54
    • 68249115586 scopus 로고    scopus 로고
    • Extensions of sparse canonical correlation analysis with applications to genomic data
    • Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat Appl Genet Mol Biol 2009;8:article 28.
    • (2009) Stat Appl Genet Mol Biol , vol.8
    • Witten, D.M.1    Tibshirani, R.J.2
  • 55
    • 84881181566 scopus 로고    scopus 로고
    • Group sparse canonical correlation analysis for genomic data integration
    • Lin D, Zhang J, Li J, et al. Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics 2013;14:245.
    • (2013) BMC Bioinformatics , vol.14 , pp. 245
    • Lin, D.1    Zhang, J.2    Li, J.3
  • 56
    • 79959258968 scopus 로고    scopus 로고
    • Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems
    • Le Cao KA, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform 2011; 12:253.
    • (2011) BMC Bioinform , vol.12 , pp. 253
    • Le Cao, K.A.1    Boitard, S.2    Besse, P.3
  • 57
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: a versatile tool for the analysis of high-dimensional genomic data
    • Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform 2007;8:32-44.
    • (2007) Brief Bioinform , vol.8 , pp. 32-44
    • Boulesteix, A.L.1    Strimmer, K.2
  • 58
    • 84977421344 scopus 로고
    • Co-inertia analysis: an alternative method for studying species-environment relationships
    • Dolédec S, Chessel D. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biol 1994;31:277-94.
    • (1994) Freshwater Biol , vol.31 , pp. 277-294
    • Dolédec, S.1    Chessel, D.2
  • 59
    • 84055207495 scopus 로고    scopus 로고
    • A higherorder generalized singular value decomposition for comparison of global mRNA expression from multiple organisms
    • Ponnapalli SP, Saunders MA, Van Loan CF, et al. A higherorder generalized singular value decomposition for comparison of global mRNA expression from multiple organisms. PLoS One 2011;6:e28072.
    • (2011) PLoS One , vol.6
    • Ponnapalli, S.P.1    Saunders, M.A.2    Van Loan, C.F.3
  • 60
    • 84902257693 scopus 로고    scopus 로고
    • A multivariate approach to the integration of multi-omics datasets
    • Meng C, Kuster B, Culhane AC, et al. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 2014;15:162.
    • (2014) BMC Bioinformatics , vol.15 , pp. 162
    • Meng, C.1    Kuster, B.2    Culhane, A.C.3
  • 61
    • 60549111873 scopus 로고    scopus 로고
    • Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: multiple factor analysis approach
    • de Tayrac M, Le S, Aubry M, et al. Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: multiple factor analysis approach. BMC Genomics 2009;10:32.
    • (2009) BMC Genomics , vol.10 , pp. 32
    • de Tayrac, M.1    Le, S.2    Aubry, M.3
  • 62
    • 84856764188 scopus 로고    scopus 로고
    • Statis and Distatis: Optimum Multitable Principal Component Analysis and Three Way Metric Multidimensional Scaling
    • Abdi H, Williams LJ, Valentin D. Statis and Distatis: Optimum Multitable Principal Component Analysis and Three Way Metric Multidimensional Scaling. Wiley Interdisciplinary, 2012;4: 124-67.
    • (2012) Wiley Interdisciplinary , vol.4 , pp. 124-167
    • Abdi, H.1    Williams, L.J.2    Valentin, D.3
  • 64
    • 84857793609 scopus 로고    scopus 로고
    • Analyzing multiset data by the power STATIS-ACT method
    • Bénasséni J, Dosse MB. Analyzing multiset data by the power STATIS-ACT method. Adv Data Anal Classification 2012;6: 49-65.
    • (2012) Adv Data Anal Classification , vol.6 , pp. 49-65
    • Bénasséni, J.1    Dosse, M.B.2
  • 65
    • 0023471507 scopus 로고
    • The duality diagram: a means for better practical applications
    • Escoufier Y. The duality diagram: a means for better practical applications. Devel Num Ecol 1987;14:139-56.
    • (1987) Devel Num Ecol , vol.14 , pp. 139-156
    • Escoufier, Y.1
  • 67
    • 77955134219 scopus 로고    scopus 로고
    • Spatio-temporal multiway decompositions using principal tensor analysis on k-modes: the R package PTAk
    • Leibovici DG. Spatio-temporal multiway decompositions using principal tensor analysis on k-modes: the R package PTAk. J Stat Software 2010;34(10):1-34
    • (2010) J Stat Software , vol.34 , Issue.10 , pp. 1-34
    • Leibovici, D.G.1
  • 68
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev 2009;51:455-500.
    • (2009) SIAM Rev , vol.51 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 69
    • 84901666983 scopus 로고    scopus 로고
    • Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis
    • Tenenhaus A, Tenenhaus M. Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis. Eur J Oper Res 2014;238:391-403.
    • (2014) Eur J Oper Res , vol.238 , pp. 391-403
    • Tenenhaus, A.1    Tenenhaus, M.2
  • 70
    • 0002037744 scopus 로고    scopus 로고
    • Analyses de la co-inertie de K nuages de points
    • Chessel D, Hanafi M. Analyses de la co-inertie de K nuages de points. Rev Stat Appl 1996;44:35-60.
    • (1996) Rev Stat Appl , vol.44 , pp. 35-60
    • Chessel, D.1    Hanafi, M.2
  • 71
    • 79952442447 scopus 로고    scopus 로고
    • Connections between multiple co-inertia analysis and consensus principal component analysis
    • Hanafi M, Kohler A, Qannari EM. Connections between multiple co-inertia analysis and consensus principal component analysis. Chemometrics and Intelligent Laboratory, 2011;106(1):37-40.
    • (2011) Chemometrics and Intelligent Laboratory , vol.106 , Issue.1 , pp. 37-40
    • Hanafi, M.1    Kohler, A.2    Qannari, E.M.3
  • 72
    • 0003019333 scopus 로고
    • Generalization of canonical correlation analysis to three or more sets of variable
    • Carroll JD. Generalization of canonical correlation analysis to three or more sets of variables. Proc. 76th Convent. Am. Psych. Assoc. 1968;3:227-8.
    • (1968) Proc. 76th Convent. Am Psych. Assoc , vol.3 , pp. 227-228
    • Carroll, J.D.1
  • 73
    • 63049094833 scopus 로고    scopus 로고
    • Regularized multiple-set canonical correlation analysis
    • Takane Y, Hwang H, Abdi H. Regularized multiple-set canonical correlation analysis. Psychometrika 2008;73:753-75.
    • (2008) Psychometrika , vol.73 , pp. 753-775
    • Takane, Y.1    Hwang, H.2    Abdi, H.3
  • 74
    • 79954628374 scopus 로고    scopus 로고
    • Regularized generalized canonical correlation analysis
    • Tenenhaus A, Tenenhaus M. Regularized generalized canonical correlation analysis. Psychometrika 2011;76:257-84.
    • (2011) Psychometrika , vol.76 , pp. 257-284
    • Tenenhaus, A.1    Tenenhaus, M.2
  • 76
    • 84902252378 scopus 로고    scopus 로고
    • Variable selection for generalized canonical correlation analysis
    • Tenenhaus A, Philippe C, Guillemot V, et al. Variable selection for generalized canonical correlation analysis. Biostatistics 2014;15:569-83.
    • (2014) Biostatistics , vol.15 , pp. 569-583
    • Tenenhaus, A.1    Philippe, C.2    Guillemot, V.3
  • 77
    • 84878122541 scopus 로고    scopus 로고
    • Higher order partial least squares (HOPLS): a generalized multilinear regression method
    • Zhao Q, Caiafa CF, Mandic DP, et al. Higher order partial least squares (HOPLS): a generalized multilinear regression method. IEEE Trans Pattern Anal Mach Intell 2013;35:1660-73.
    • (2013) IEEE Trans Pattern Anal Mach Intell , vol.35 , pp. 1660-1673
    • Zhao, Q.1    Caiafa, C.F.2    Mandic, D.P.3
  • 79
    • 48249100881 scopus 로고    scopus 로고
    • Algorithms for sparse nonnegative Tucker decompositions
    • MorupM, Hansen LK, Arnfred SM. Algorithms for sparse nonnegative Tucker decompositions. Neural Comput 2008;20:2112-31.
    • (2008) Neural Comput , vol.20 , pp. 2112-2131
    • Morup, M.1    Hansen, L.K.2    Arnfred, S.M.3
  • 80
    • 84928981583 scopus 로고    scopus 로고
    • jNMFMA: a joint non-negative matrix factorization meta-analysis of transcriptomics data
    • Wang HQ, Zheng CH, Zhao XM. jNMFMA: a joint non-negative matrix factorization meta-analysis of transcriptomics data. Bioinformatics 2015;31:572-80.
    • (2015) Bioinformatics , vol.31 , pp. 572-580
    • Wang, H.Q.1    Zheng, C.H.2    Zhao, X.M.3
  • 81
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang S, Liu CC, Li W, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012;40:9379-91.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9379-9391
    • Zhang, S.1    Liu, C.C.2    Li, W.3
  • 82
    • 84859643687 scopus 로고    scopus 로고
    • An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-alpha and cAMP/PKA pathways
    • Lv M, Zhang X, Jia H, et al. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-alpha and cAMP/PKA pathways. Leukemia 2012;26:769-77.
    • (2012) Leukemia , vol.26 , pp. 769-777
    • Lv, M.1    Zhang, X.2    Jia, H.3
  • 83
    • 77950354353 scopus 로고    scopus 로고
    • Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia
    • Pulikkan JA, Dengler V, Peramangalam PS, et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010;115:1768-78.
    • (2010) Blood , vol.115 , pp. 1768-1778
    • Pulikkan, J.A.1    Dengler, V.2    Peramangalam, P.S.3
  • 84
    • 59549100948 scopus 로고    scopus 로고
    • Matrix correlations for high-dimensional data: the modified RV-coefficient
    • Smilde AK, Kiers HA, Bijlsma S, et al. Matrix correlations for high-dimensional data: the modified RV-coefficient. Bioinformatics 2009;25:401-5.
    • (2009) Bioinformatics , vol.25 , pp. 401-405
    • Smilde, A.K.1    Kiers, H.A.2    Bijlsma, S.3
  • 85
    • 84860395749 scopus 로고    scopus 로고
    • A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth
    • Streicher KL, Zhu W, Lehmann KP, et al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 2012;31:1558-70.
    • (2012) Oncogene , vol.31 , pp. 1558-1570
    • Streicher, K.L.1    Zhu, W.2    Lehmann, K.P.3
  • 86
    • 77954522198 scopus 로고    scopus 로고
    • Gene expression profiling identifies a subset of adult T-cell acute lymphoblastic leukemia with myeloid-like gene features and overexpression of miR-223
    • Chiaretti S, Messina M, Tavolaro S, et al. Gene expression profiling identifies a subset of adult T-cell acute lymphoblastic leukemia with myeloid-like gene features and overexpression of miR-223. Haematologica 2010;95:1114-21.
    • (2010) Haematologica , vol.95 , pp. 1114-1121
    • Chiaretti, S.1    Messina, M.2    Tavolaro, S.3
  • 87
    • 84880438477 scopus 로고    scopus 로고
    • Expression and prognostic significance of hsa-miR-142-3p in acute leukemias
    • Dahlhaus M, Roolf C, Ruck S, et al. Expression and prognostic significance of hsa-miR-142-3p in acute leukemias. Neoplasma 2013;60:432-8.
    • (2013) Neoplasma , vol.60 , pp. 432-438
    • Dahlhaus, M.1    Roolf, C.2    Ruck, S.3
  • 88
    • 77950076454 scopus 로고    scopus 로고
    • Complexity of miR-223 regulation by CEBPA in human AML
    • Eyholzer M, Schmid S, Schardt JA, et al. Complexity of miR-223 regulation by CEBPA in human AML. Leuk Res 2010;34:672-6.
    • (2010) Leuk Res , vol.34 , pp. 672-676
    • Eyholzer, M.1    Schmid, S.2    Schardt, J.A.3
  • 89
    • 84925282873 scopus 로고    scopus 로고
    • Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia
    • Kumar V, Palermo R, Talora C, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia 2014;28:2324-35.
    • (2014) Leukemia , vol.28 , pp. 2324-2335
    • Kumar, V.1    Palermo, R.2    Talora, C.3
  • 90
    • 84919765231 scopus 로고    scopus 로고
    • miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer
    • Josson S, Gururajan M, Hu P, et al. miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res 2014;20:4636-46.
    • (2014) Clin Cancer Res , vol.20 , pp. 4636-4646
    • Josson, S.1    Gururajan, M.2    Hu, P.3
  • 91
    • 84938799837 scopus 로고    scopus 로고
    • Toward understanding and exploiting tumor heterogeneity
    • Alizadeh AA, Aranda V, Bardelli A, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med 2015;21: 846-53.
    • (2015) Nat Med , vol.21 , pp. 846-853
    • Alizadeh, A.A.1    Aranda, V.2    Bardelli, A.3
  • 92
    • 84884994218 scopus 로고    scopus 로고
    • The Cancer Genome Atlas Pan-Cancer analysis project
    • Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013;45:1113-20.
    • (2013) Nat Genet , vol.45 , pp. 1113-1120
    • Weinstein, J.N.1    Collisson, E.A.2    Mills, G.B.3
  • 93
    • 77951942959 scopus 로고    scopus 로고
    • Cross-species common regulatory network inference without requirement for prior gene affiliation
    • Gholami AM, Fellenberg K. Cross-species common regulatory network inference without requirement for prior gene affiliation. Bioinformatics 2010;26(8):1082-90.
    • (2010) Bioinformatics , vol.26 , Issue.8 , pp. 1082-1090
    • Gholami, A.M.1    Fellenberg, K.2
  • 94
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: an R package for weighted correlation network analysis
    • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.