메뉴 건너뛰기




Volumn 16, Issue 2, 2015, Pages 85-97

Methods of integrating data to uncover genotype-phenotype interactions

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER; HIGH DENSITY LIPOPROTEIN CHOLESTEROL; MICRORNA; PROTEOME; TRANSCRIPTOME;

EID: 84925031191     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg3868     Document Type: Review
Times cited : (797)

References (100)
  • 1
    • 72849144434 scopus 로고    scopus 로고
    • Sequencing technologies-the next generation
    • Metzker, M. L. Sequencing technologies-the next generation. Nature Rev. Genet. 11, 31-46 (2010).
    • (2010) Nature Rev. Genet. , vol.11 , pp. 31-46
    • Metzker, M.L.1
  • 2
    • 78751570979 scopus 로고    scopus 로고
    • RNA sequencing: Advances, challenges and opportunities
    • Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nature Rev. Genet. 12, 87-98 (2011).
    • (2011) Nature Rev. Genet. , vol.12 , pp. 87-98
    • Ozsolak, F.1    Milos, P.M.2
  • 3
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57-63 (2009).
    • (2009) Nature Rev. Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 4
    • 77249137168 scopus 로고    scopus 로고
    • Principles and challenges of genome-wide DNA methylation analysis
    • Laird, P. W. Principles and challenges of genome-wide DNA methylation analysis. Nature Rev. Genet. 11, 191-203 (2010).
    • (2010) Nature Rev. Genet. , vol.11 , pp. 191-203
    • Laird, P.W.1
  • 5
    • 70349312354 scopus 로고    scopus 로고
    • ChIP-seq: Advantages and challenges of a maturing technology
    • Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669-680 (2009).
    • (2009) Nature Rev. Genet. , vol.10 , pp. 669-680
    • Park, P.J.1
  • 6
    • 84871297843 scopus 로고    scopus 로고
    • Next-generation proteomics: Towards an integrative view of proteome dynamics
    • Altelaar, A. F. M., Munoz, J. & Heck, A. J. R. Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Rev. Genet. 14, 35-48 (2013).
    • (2013) Nature Rev. Genet. , vol.14 , pp. 35-48
    • Altelaar, A.F.M.1    Munoz, J.2    Heck, A.J.R.3
  • 7
    • 33748468414 scopus 로고    scopus 로고
    • Metabolomics technology and bioinformatics
    • Shulaev, V. Metabolomics technology and bioinformatics. Brief. Bioinform. 7, 128-139 (2006).
    • (2006) Brief. Bioinform. , vol.7 , pp. 128-139
    • Shulaev, V.1
  • 8
    • 84882455458 scopus 로고    scopus 로고
    • Single-cell sequencing-based technologies will revolutionize whole-organism science
    • Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Rev. Genet. 14, 618-630 (2013).
    • (2013) Nature Rev. Genet. , vol.14 , pp. 618-630
    • Shapiro, E.1    Biezuner, T.2    Linnarsson, S.3
  • 9
    • 0031966959 scopus 로고    scopus 로고
    • Multipoint quantitative-trait linkage analysis in general pedigrees
    • Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198-1211 (1998).
    • (1998) Am. J. Hum. Genet. , vol.62 , pp. 1198-1211
    • Almasy, L.1    Blangero, J.2
  • 10
    • 0035055544 scopus 로고    scopus 로고
    • The family based association test method: Strategies for studying general genotype-phenotype associations
    • Horvath, S., Xu, X. & Laird, N. M. The family based association test method: strategies for studying general genotype-phenotype associations. Eur. J. Hum. Genet. 9, 301-306 (2001).
    • (2001) Eur. J. Hum. Genet. , vol.9 , pp. 301-306
    • Horvath, S.1    Xu, X.2    Laird, N.M.3
  • 11
    • 0035191044 scopus 로고    scopus 로고
    • Unbiased methods for population-based association studies
    • Devlin, B., Roeder, K. & Bacanu, S. A. Unbiased methods for population-based association studies. Genet. Epidemiol. 21, 273-284 (2001).
    • (2001) Genet. Epidemiol. , vol.21 , pp. 273-284
    • Devlin, B.1    Roeder, K.2    Bacanu, S.A.3
  • 12
    • 12844275916 scopus 로고    scopus 로고
    • Integrated analysis of genetic, genomic and proteomic data
    • Reif, D. M., White, B. C. & Moore, J. H. Integrated analysis of genetic, genomic and proteomic data. Expert Rev. Proteomics 1, 67-75 (2004).
    • (2004) Expert Rev. Proteomics , vol.1 , pp. 67-75
    • Reif, D.M.1    White, B.C.2    Moore, J.H.3
  • 13
    • 77955725963 scopus 로고    scopus 로고
    • Data integration in genetics and genomics: Methods and challenges
    • Hamid, J. S. et al. Data integration in genetics and genomics: methods and challenges. Hum. Genomics Proteomics 2009, 869093 (2009).
    • (2009) Hum. Genomics Proteomics , vol.2009 , pp. 869093
    • Hamid, J.S.1
  • 14
    • 34548427938 scopus 로고    scopus 로고
    • Moving toward a system genetics view of disease
    • Sieberts, S. K. & Schadt, E. E. Moving toward a system genetics view of disease. Mamm. Genome 18, 389-401 (2007).
    • (2007) Mamm. Genome , vol.18 , pp. 389-401
    • Sieberts, S.K.1    Schadt, E.E.2
  • 15
    • 77953808473 scopus 로고    scopus 로고
    • Next-generation genomics: An integrative approach
    • Hawkins, R. D., Hon, G. C. & Ren, B. Next-generation genomics: an integrative approach. Nature Rev. Genet. 11, 476-486 (2010).
    • (2010) Nature Rev. Genet. , vol.11 , pp. 476-486
    • Hawkins, R.D.1    Hon, G.C.2    Ren, B.3
  • 16
    • 84855945426 scopus 로고    scopus 로고
    • Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies
    • Holzinger, E. R. & Ritchie, M. D. Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies. Pharmacogenomics 13, 213-222 (2012).
    • (2012) Pharmacogenomics , vol.13 , pp. 213-222
    • Holzinger, E.R.1    Ritchie, M.D.2
  • 18
    • 84891437816 scopus 로고    scopus 로고
    • ATHENA: A tool for meta-dimensional analysis applied to genotypes and gene expression data to predict HDL cholesterol levels
    • Holzinger, E. R. et al. ATHENA: a tool for meta-dimensional analysis applied to genotypes and gene expression data to predict HDL cholesterol levels. Pac. Symp. Biocomput. 385-396 (2013).
    • (2013) Pac. Symp. Biocomput. , pp. 385-396
    • Holzinger, E.R.1
  • 19
    • 77954526823 scopus 로고    scopus 로고
    • The case for cloud computing in genome informatics
    • Stein, L. D. The case for cloud computing in genome informatics. Genome Biol. 11, 207 (2010).
    • (2010) Genome Biol. , vol.11 , pp. 207
    • Stein, L.D.1
  • 20
    • 84880729337 scopus 로고    scopus 로고
    • GobyWeb: Simplified management and analysis of gene expression and DNA methylation sequencing data
    • Dorff, K. C. et al. GobyWeb: simplified management and analysis of gene expression and DNA methylation sequencing data. PLoS ONE 8, e69666 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e69666
    • Dorff, K.C.1
  • 21
    • 84893024407 scopus 로고    scopus 로고
    • Launching genomics into the cloud: Deployment of Mercury, a next generation sequence analysis pipeline
    • Reid, J. G. et al. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline. BMC Bioinformatics 15, 30 (2014).
    • (2014) BMC Bioinformatics , vol.15 , pp. 30
    • Reid, J.G.1
  • 22
    • 84893702985 scopus 로고    scopus 로고
    • Bionimbus: A cloud for managing, analyzing and sharing large genomics datasets
    • Heath, A. P. et al. Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets. J. Am. Med. Inform. Assoc. 21, 969-975 (2014).
    • (2014) J. Am. Med. Inform. Assoc. , vol.21 , pp. 969-975
    • Heath, A.P.1
  • 23
    • 79953165427 scopus 로고    scopus 로고
    • Quality control procedures for genome-wide association studies
    • Turner, S. et al. Quality control procedures for genome-wide association studies. Curr. Protoc. Hum. Genet. 68, 1.19.1-1.19.18 (2011).
    • (2011) Curr. Protoc. Hum. Genet. , vol.68 , pp. 1191-11918
    • Turner, S.1
  • 24
    • 82355161508 scopus 로고    scopus 로고
    • Pitfalls of merging GWAS data: Lessons learned in the eMERGE network and quality control procedures to maintain high data quality
    • Zuvich, R. L. et al. Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality. Genet. Epidemiol. 35, 887-898 (2011).
    • (2011) Genet. Epidemiol. , vol.35 , pp. 887-898
    • Zuvich, R.L.1
  • 25
    • 77956242566 scopus 로고    scopus 로고
    • Quality control and quality assurance in genotypic data for genome-wide association studies
    • Laurie, C. C. et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet. Epidemiol. 34, 591-602 (2010).
    • (2010) Genet. Epidemiol. , vol.34 , pp. 591-602
    • Laurie, C.C.1
  • 26
    • 77956295988 scopus 로고    scopus 로고
    • The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
    • McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303 (2010).
    • (2010) Genome Res. , vol.20 , pp. 1297-1303
    • McKenna, A.1
  • 27
    • 75649135574 scopus 로고    scopus 로고
    • RNA-seq: From technology to biology
    • Marguerat, S. & Bähler, J. RNA-seq: from technology to biology. Cell. Mol. Life Sci. 67, 569-579 (2010).
    • (2010) Cell. Mol. Life Sci. , vol.67 , pp. 569-579
    • Marguerat, S.1    Bähler, J.2
  • 28
    • 79955025118 scopus 로고    scopus 로고
    • Next generation sequencing based approaches to epigenomics
    • Hirst, M. & Marra, M. A. Next generation sequencing based approaches to epigenomics. Briefings Funct. Genom. 9, 455-465 (2010).
    • (2010) Briefings Funct. Genom. , vol.9 , pp. 455-465
    • Hirst, M.1    Marra, M.A.2
  • 29
    • 73349131388 scopus 로고    scopus 로고
    • Statistical challenges of high-dimensional data
    • Johnstone, I. M. & Titterington, D. M. Statistical challenges of high-dimensional data. Phil. Trans. R. Soc. A. 367, 4237-4253 (2009).
    • (2009) Phil. Trans. R. Soc. A. , vol.367 , pp. 4237-4253
    • Johnstone, I.M.1    Titterington, D.M.2
  • 31
    • 61949417042 scopus 로고    scopus 로고
    • Biofilter: A knowledge-integration system for the multi-locus analysis of genome-wide association studies
    • Bush, W. S., Dudek, S. M. & Ritchie, M. D. Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac. Symp. Biocomput. 368-379 (2009).
    • (2009) Pac. Symp. Biocomput. , pp. 368-379
    • Bush, W.S.1    Dudek, S.M.2    Ritchie, M.D.3
  • 32
    • 69449088874 scopus 로고    scopus 로고
    • Spatially uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions
    • Greene, C. S., Penrod, N. M., Kiralis, J. & Moore, J. H. Spatially uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min. 2, 5 (2009).
    • (2009) BioData Min. , vol.2 , pp. 5
    • Greene, C.S.1    Penrod, N.M.2    Kiralis, J.3    Moore, J.H.4
  • 35
    • 0026988817 scopus 로고
    • Genetic algorithms
    • Holland, J. H. Genetic algorithms. Sci. Am. 267, 66-72 (1992).
    • (1992) Sci. Am. , vol.267 , pp. 66-72
    • Holland, J.H.1
  • 36
    • 84871345504 scopus 로고    scopus 로고
    • The nature of confounding in genome-wide association studies
    • Vilhjálmsson, B. J. & Nordborg, M. The nature of confounding in genome-wide association studies. Nature Rev. Genet. 14, 1-2 (2013).
    • (2013) Nature Rev. Genet. , vol.14 , pp. 1-2
    • Vilhjálmsson, B.J.1    Nordborg, M.2
  • 37
    • 84897954264 scopus 로고    scopus 로고
    • Efficient multivariate linear mixed model algorithms for genome-wide association studies
    • Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nature Methods 11, 407-409 (2014).
    • (2014) Nature Methods , vol.11 , pp. 407-409
    • Zhou, X.1    Stephens, M.2
  • 38
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet. 38, 904-909 (2006).
    • (2006) Nature Genet. , vol.38 , pp. 904-909
    • Price, A.L.1
  • 39
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, e161 (2007).
    • (2007) PLoS Genet. , vol.3 , pp. e161
    • Leek, J.T.1    Storey, J.D.2
  • 40
    • 63849194095 scopus 로고    scopus 로고
    • Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity
    • Hartford, C. M. et al. Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood 113, 2145-2153 (2009).
    • (2009) Blood , vol.113 , pp. 2145-2153
    • Hartford, C.M.1
  • 41
    • 34547438105 scopus 로고    scopus 로고
    • A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity
    • Huang, R. S. et al. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc. Natl Acad. Sci. USA 104, 9758-9763 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 9758-9763
    • Huang, R.S.1
  • 42
    • 54049083902 scopus 로고    scopus 로고
    • Genetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans
    • Huang, R. S., Duan, S., Kistner, E. O., Hartford, C. M. & Dolan, M. E. Genetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans. Mol. Cancer Ther. 7, 3038-3046 (2008).
    • (2008) Mol. Cancer Ther. , vol.7 , pp. 3038-3046
    • Huang, R.S.1    Duan, S.2    Kistner, E.O.3    Hartford, C.M.4    Dolan, M.E.5
  • 43
    • 22844446947 scopus 로고    scopus 로고
    • An integrative genomics approach to infer causal associations between gene expression and disease
    • Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet. 37, 710-717 (2005).
    • (2005) Nature Genet. , vol.37 , pp. 710-717
    • Schadt, E.E.1
  • 44
    • 84873576566 scopus 로고    scopus 로고
    • Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis
    • Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nature Biotech. 31, 142-147 (2013).
    • (2013) Nature Biotech. , vol.31 , pp. 142-147
    • Liu, Y.1
  • 45
    • 84868275675 scopus 로고    scopus 로고
    • Quantitative measurement of allele-specific protein expression in a diploid yeast hybrid by LC-MS
    • Khan, Z. et al. Quantitative measurement of allele-specific protein expression in a diploid yeast hybrid by LC-MS. Mol. Syst. Biol. 8, 602 (2012).
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 602
    • Khan, Z.1
  • 46
    • 84883464223 scopus 로고    scopus 로고
    • A computational workflow to identify allele-specific expression and epigenetic modification in maize
    • Wei, X. & Wang, X. A computational workflow to identify allele-specific expression and epigenetic modification in maize. Genomics Proteomics Bioinformatics 11, 247-252 (2013).
    • (2013) Genomics Proteomics Bioinformatics , vol.11 , pp. 247-252
    • Wei, X.1    Wang, X.2
  • 47
    • 84885645853 scopus 로고    scopus 로고
    • Transcriptome and genome sequencing uncovers functional variation in humans
    • Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506-511 (2013).
    • (2013) Nature , vol.501 , pp. 506-511
    • Lappalainen, T.1
  • 48
    • 41449117097 scopus 로고    scopus 로고
    • Genome-wide mapping of allele-specific protein-DNA interactions in human cells
    • Maynard, N. D., Chen, J., Stuart, R. K., Fan, J.-B. & Ren, B. Genome-wide mapping of allele-specific protein-DNA interactions in human cells. Nature Methods 5, 307-309 (2008).
    • (2008) Nature Methods , vol.5 , pp. 307-309
    • Maynard, N.D.1    Chen, J.2    Stuart, R.K.3    Fan, J.-B.4    Ren, B.5
  • 49
    • 84887320760 scopus 로고    scopus 로고
    • Extensive variation in chromatin states across humans
    • Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 750-752 (2013).
    • (2013) Science , vol.342 , pp. 750-752
    • Kasowski, M.1
  • 50
    • 84887322043 scopus 로고    scopus 로고
    • Identification of genetic variants that affect histone modifications in human cells
    • McVicker, G. et al. Identification of genetic variants that affect histone modifications in human cells. Science 342, 747-749 (2013).
    • (2013) Science , vol.342 , pp. 747-749
    • McVicker, G.1
  • 51
    • 7444260846 scopus 로고    scopus 로고
    • The ENCODE (ENCyclopedia of DNA Elements) Project
    • Encode Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636-640 (2004).
    • (2004) Science , vol.306 , pp. 636-640
  • 52
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30 (2000).
    • (2000) Nucleic Acids Res. , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 53
    • 84869875323 scopus 로고    scopus 로고
    • Synergistic effect of different levels of genomic data for cancer clinical outcome prediction
    • Kim, D., Shin, H., Song, Y. S. & Kim, J. H. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J. Biomed. Inform. 45, 1191-1198 (2012).
    • (2012) J. Biomed. Inform. , vol.45 , pp. 1191-1198
    • Kim, D.1    Shin, H.2    Song, Y.S.3    Kim, J.H.4
  • 54
    • 84860345395 scopus 로고    scopus 로고
    • Bayesian integrative genomic model for pathway analysis of complex traits
    • Fridley, B. L., Lund, S., Jenkins, G. D. & Wang, L. A. Bayesian integrative genomic model for pathway analysis of complex traits. Genet. Epidemiol. 36, 352-359 (2012).
    • (2012) Genet. Epidemiol. , vol.36 , pp. 352-359
    • Fridley, B.L.1    Lund, S.2    Jenkins, G.D.3    Wang, L.A.4
  • 55
    • 80455125871 scopus 로고    scopus 로고
    • Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles
    • Mankoo, P. K., Shen, R., Schultz, N., Levine, D. A. & Sander, C. Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. PLoS ONE 6, e24709 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e24709
    • Mankoo, P.K.1    Shen, R.2    Schultz, N.3    Levine, D.A.4    Sander, C.5
  • 56
  • 57
    • 84890485602 scopus 로고    scopus 로고
    • ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
    • Kim, D., Li, R., Dudek, S. M. & Ritchie, M. D. ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 6, 23 (2013).
    • (2013) BioData Min. , vol.6 , pp. 23
    • Kim, D.1    Li, R.2    Dudek, S.M.3    Ritchie, M.D.4
  • 58
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
    • Clarke, R. et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nature Rev. Cancer 8, 37-49 (2008).
    • (2008) Nature Rev. Cancer , vol.8 , pp. 37-49
    • Clarke, R.1
  • 60
    • 33745771638 scopus 로고    scopus 로고
    • Protein function prediction via graph kernels
    • Borgwardt, K. M. et al. Protein function prediction via graph kernels. Bioinformatics 21, i47-i56 (2005).
    • (2005) Bioinformatics , vol.21 , pp. i47-i56
    • Borgwardt, K.M.1
  • 61
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • Tsuda, K., Shin, H. & Schölkopf, B. Fast protein classification with multiple networks. Bioinformatics 21, ii59-ii65 (2005).
    • (2005) Bioinformatics , vol.21 , pp. ii59-ii65
    • Tsuda, K.1    Shin, H.2    Schölkopf, B.3
  • 62
    • 36549013593 scopus 로고    scopus 로고
    • Graph sharpening plus graph integration: A synergy that improves protein functional classification
    • Shin, H., Lisewski, A. M. & Lichtarge, O. Graph sharpening plus graph integration: a synergy that improves protein functional classification. Bioinformatics 23, 3217-3224 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 3217-3224
    • Shin, H.1    Lisewski, A.M.2    Lichtarge, O.3
  • 63
    • 77957171378 scopus 로고    scopus 로고
    • ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait loci
    • Turner, S. D., Dudek, S. M. & Ritchie, M. D. ATHENA: a knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait loci. BioData Min. 3, 5 (2010).
    • (2010) BioData Min. , vol.3 , pp. 5
    • Turner, S.D.1    Dudek, S.M.2    Ritchie, M.D.3
  • 64
    • 0037248697 scopus 로고    scopus 로고
    • Predicting HIV drug resistance with neural networks
    • Draghici, S. & Potter, R. B. Predicting HIV drug resistance with neural networks. Bioinformatics 19, 98-107 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 98-107
    • Draghici, S.1    Potter, R.B.2
  • 65
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen, H.-B. & Chou, K.-C. Ensemble classifier for protein fold pattern recognition. Bioinformatics 22, 1717-1722 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 1717-1722
    • Shen, H.-B.1    Chou, K.-C.2
  • 66
    • 78649976005 scopus 로고    scopus 로고
    • An integrated approach to uncover drivers of cancer
    • Akavia, U. D. et al. An integrated approach to uncover drivers of cancer. Cell 143, 1005-1017 (2010).
    • (2010) Cell , vol.143 , pp. 1005-1017
    • Akavia, U.D.1
  • 67
    • 84859959092 scopus 로고    scopus 로고
    • Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation
    • Zhu, J. et al. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol. 10, e1001301 (2012).
    • (2012) PLoS Biol. , vol.10 , pp. e1001301
    • Zhu, J.1
  • 68
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu, J. et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genet. 40, 854-861 (2008).
    • (2008) Nature Genet. , vol.40 , pp. 854-861
    • Zhu, J.1
  • 69
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz, D. & Maclin, R. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169-198 (1999).
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 70
    • 84859992638 scopus 로고    scopus 로고
    • Integrative subtype discovery in glioblastoma using iCluster
    • Shen, R. et al. Integrative subtype discovery in glioblastoma using iCluster. PLoS ONE 7, e35236 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e35236
    • Shen, R.1
  • 72
    • 84885617335 scopus 로고    scopus 로고
    • Bayesian consensus clustering
    • Lock, E. F. & Dunson, D. B. Bayesian consensus clustering. Bioinformatics 29, 2610-2616 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 2610-2616
    • Lock, E.F.1    Dunson, D.B.2
  • 73
    • 0025215247 scopus 로고
    • Power and sample size calculations. A review and computer program
    • Dupont, W. D. & Plummer, W. D. Power and sample size calculations. A review and computer program. Control Clin. Trials 11, 116-128 (1990).
    • (1990) Control Clin. Trials , vol.11 , pp. 116-128
    • Dupont, W.D.1    Plummer, W.D.2
  • 74
    • 34249997024 scopus 로고    scopus 로고
    • Replicating genotype-phenotype associations
    • NCI-NHGRI Working Group on Replication in Association Studies. Replicating genotype-phenotype associations. Nature 447, 655-660 (2007).
    • (2007) Nature , vol.447 , pp. 655-660
  • 75
    • 66849097781 scopus 로고    scopus 로고
    • Failure to replicate a genetic association may provide important clues about genetic architecture
    • Greene, C. S., Penrod, N. M., Williams, S. M. & Moore, J. H. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS ONE 4, e5639 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e5639
    • Greene, C.S.1    Penrod, N.M.2    Williams, S.M.3    Moore, J.H.4
  • 76
    • 84903357135 scopus 로고    scopus 로고
    • Diverse convergent evidence in the genetic analysis of complex disease: Coordinating omic, informatic, and experimental evidence to better identify and validate risk factors
    • Ciesielski, T. et al. Diverse convergent evidence in the genetic analysis of complex disease: Coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 7, 10 (2014).
    • (2014) BioData Min. , vol.7 , pp. 10
    • Ciesielski, T.1
  • 77
    • 84860576820 scopus 로고    scopus 로고
    • Experimental validation of in silico predicted KCNA1, KCNA2, KCNA6 and KCNQ2 genes for association studies of peripheral nerve hyperexcitability syndrome in Jack Russell Terriers
    • Van Poucke, M., Vanhaesebrouck, A. E., Peelman, L. J. & Van Ham, L. Experimental validation of in silico predicted KCNA1, KCNA2, KCNA6 and KCNQ2 genes for association studies of peripheral nerve hyperexcitability syndrome in Jack Russell Terriers. Neuromuscul. Disord. 22, 558-565 (2012).
    • (2012) Neuromuscul. Disord. , vol.22 , pp. 558-565
    • Van Poucke, M.1    Vanhaesebrouck, A.E.2    Peelman, L.J.3    Van Ham, L.4
  • 78
    • 78651543827 scopus 로고    scopus 로고
    • Computational prediction and experimental validation associating FABP-1 and pancreatic adenocarcinoma with diabetes
    • Sharaf, R. N. et al. Computational prediction and experimental validation associating FABP-1 and pancreatic adenocarcinoma with diabetes. BMC Gastroenterol. 11, 5 (2011).
    • (2011) BMC Gastroenterol. , vol.11 , pp. 5
    • Sharaf, R.N.1
  • 79
    • 67651205715 scopus 로고    scopus 로고
    • Identifying relationships among genomic disease regions: Predicting genes at pathogenic SNP associations and rare deletions
    • Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).
    • (2009) PLoS Genet. , vol.5 , pp. e1000534
    • Raychaudhuri, S.1
  • 80
    • 33749320658 scopus 로고    scopus 로고
    • Estrogens, enzyme variants, and breast cancer: A risk model
    • Crooke, P. S. et al. Estrogens, enzyme variants, and breast cancer: a risk model. Cancer Epidemiol. Biomarkers Prev. 15, 1620-1629 (2006).
    • (2006) Cancer Epidemiol. Biomarkers Prev. , vol.15 , pp. 1620-1629
    • Crooke, P.S.1
  • 81
    • 0002313891 scopus 로고
    • Multicollinearity in regression analysis: The problem revisited
    • Farrar, D. E. & Glauber, R. R. Multicollinearity in regression analysis: the problem revisited. Rev. Econ. Stat. 49, 92 (1967).
    • (1967) Rev. Econ. Stat. , vol.49 , pp. 92
    • Farrar, D.E.1    Glauber, R.R.2
  • 82
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861-874 (2006).
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 84
    • 43449135303 scopus 로고    scopus 로고
    • Pareto-based multiobjective machine learn: An overview case studies
    • Jin, Y. & Sendhoff, B. Pareto-based multiobjective machine learn: an overview case studies. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 38, 397-415 (2008).
    • (2008) IEEE Trans. Syst. Man Cybern. C Appl. Rev. , vol.38 , pp. 397-415
    • Jin, Y.1    Sendhoff, B.2
  • 85
    • 0034068827 scopus 로고    scopus 로고
    • Molecular epidemiology of breast cancer: Genetic variation in steroid hormone metabolism
    • Kristensen, V. N. & Borresen-Dale, A. L. Molecular epidemiology of breast cancer: genetic variation in steroid hormone metabolism. Mutat. Res. 462, 323-333 (2000).
    • (2000) Mutat. Res. , vol.462 , pp. 323-333
    • Kristensen, V.N.1    Borresen-Dale, A.L.2
  • 86
    • 0035731104 scopus 로고    scopus 로고
    • Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer
    • Mitrunen, K. et al. Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol. Biomarkers Prev. 10, 229-236 (2001).
    • (2001) Cancer Epidemiol. Biomarkers Prev. , vol.10 , pp. 229-236
    • Mitrunen, K.1
  • 87
    • 84858204909 scopus 로고    scopus 로고
    • A genome-wide association study identifies locus at 10q22 associated with clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese
    • Kiyotani, K. et al. A genome-wide association study identifies locus at 10q22 associated with clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese. Hum. Mol. Genet. 21, 1665-1672 (2012).
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 1665-1672
    • Kiyotani, K.1
  • 88
    • 84875701351 scopus 로고    scopus 로고
    • Genome-wide association studies identify four ER negative-specific breast cancer risk loci
    • 398e1-2
    • Garcia-Closas, M. et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nature Genet. 45, 392-398, 398e1-2 (2013).
    • (2013) Nature Genet. , vol.45 , pp. 392-398
    • Garcia-Closas, M.1
  • 89
    • 84875703379 scopus 로고    scopus 로고
    • Large-scale genotyping identifies 41 new loci associated with breast cancer risk
    • 361e1-2
    • Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genet. 45, 353-361, 361e1-2 (2013).
    • (2013) Nature Genet. , vol.45 , pp. 353-361
    • Michailidou, K.1
  • 90
    • 84878508496 scopus 로고    scopus 로고
    • Common genetic determinants of breast-cancer risk in East Asian women: A collaborative study of 23 637 breast cancer cases and 25 579 controls
    • Zheng, W. et al. Common genetic determinants of breast-cancer risk in East Asian women: a collaborative study of 23 637 breast cancer cases and 25 579 controls. Hum. Mol. Genet. 22, 2539-2550 (2013).
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 2539-2550
    • Zheng, W.1
  • 91
    • 84926167229 scopus 로고    scopus 로고
    • PathAct: A novel method for pathway analysis using gene expression profiles
    • Mogushi, K. & Tanaka, H. PathAct: a novel method for pathway analysis using gene expression profiles. Bioinformation 9, 394-400 (2013).
    • (2013) Bioinformation , vol.9 , pp. 394-400
    • Mogushi, K.1    Tanaka, H.2
  • 92
    • 84860631518 scopus 로고    scopus 로고
    • A two-stage random forest-based pathway analysis method
    • Chung, R.-H. & Chen, Y.-E. A two-stage random forest-based pathway analysis method. PLoS ONE 7, e36662 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e36662
    • Chung, R.-H.1    Chen, Y.-E.2
  • 93
    • 0032533859 scopus 로고    scopus 로고
    • Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer
    • Bailey, L. R., Roodi, N., Dupont, W. D. & Parl, F. F. Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. Cancer Res. 58, 5038-5041 (1998).
    • (1998) Cancer Res. , vol.58 , pp. 5038-5041
    • Bailey, L.R.1    Roodi, N.2    Dupont, W.D.3    Parl, F.F.4
  • 94
    • 84861153094 scopus 로고    scopus 로고
    • Matrix eQTL: Ultra fast eQTL analysis via large matrix operations
    • Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353-1358 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 1353-1358
    • Shabalin, A.A.1
  • 95
    • 0033909546 scopus 로고    scopus 로고
    • A general test of association for quantitative traits in nuclear families
    • Abecasis, G. R., Cardon, L. R. & Cookson, W. O. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66, 279-292 (2000).
    • (2000) Am. J. Hum. Genet. , vol.66 , pp. 279-292
    • Abecasis, G.R.1    Cardon, L.R.2    Cookson, W.O.3
  • 96
    • 80051489977 scopus 로고    scopus 로고
    • AlleleSeq: Analysis of allele-specific expression and binding in a network framework
    • Rozowsky, J. et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol. Syst. Biol. 7, 522 (2011).
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 522
    • Rozowsky, J.1
  • 97
    • 77956534324 scopus 로고    scopus 로고
    • ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data
    • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. e164
    • Wang, K.1    Li, M.2    Hakonarson, H.3
  • 98
    • 84858779229 scopus 로고    scopus 로고
    • HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants
    • Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930-D934 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. D930-D934
    • Ward, L.D.1    Kellis, M.2
  • 99
    • 84865712382 scopus 로고    scopus 로고
    • Annotation of functional variation in personal genomes using RegulomeDB
    • Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790-1797 (2012).
    • (2012) Genome Res. , vol.22 , pp. 1790-1797
    • Boyle, A.P.1
  • 100
    • 41349095280 scopus 로고    scopus 로고
    • Genetics of gene expression and its effect on disease
    • Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423-428 (2008).
    • (2008) Nature , vol.452 , pp. 423-428
    • Emilsson, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.