메뉴 건너뛰기




Volumn 17, Issue 5, 2016, Pages 891-901

Transcriptomic and metabolomic data integration

Author keywords

Data integration; Metabolomics; Study design; Transcriptomics

Indexed keywords

DATA ANALYSIS; METABOLOMICS; STATISTICAL ANALYSIS; STUDY DESIGN; TRANSCRIPTOMICS; HUMAN;

EID: 84995810932     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbv090     Document Type: Article
Times cited : (203)

References (66)
  • 1
    • 33748491517 scopus 로고    scopus 로고
    • The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements
    • Shi L, Reid LH, Jones WD, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006; 24: 1151-61.
    • (2006) Nat Biotechnol , vol.24 , pp. 1151-1161
    • Shi, L.1    Reid, L.H.2    Jones, W.D.3
  • 2
    • 18344396568 scopus 로고    scopus 로고
    • Minimum information about a microarray experiment (MIAME)-toward standards for microarray data
    • Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29: 365-71.
    • (2001) Nat Genet , vol.29 , pp. 365-371
    • Brazma, A.1    Hingamp, P.2    Quackenbush, J.3
  • 3
    • 34748838949 scopus 로고    scopus 로고
    • The metabolomics standards initiative (MSI)
    • Fiehn O, Robertson D, Griffin J, et al. The metabolomics standards initiative (MSI). Metabolomics 2007; 3: 175-8.
    • (2007) Metabolomics , vol.3 , pp. 175-178
    • Fiehn, O.1    Robertson, D.2    Griffin, J.3
  • 4
    • 78650735473 scopus 로고    scopus 로고
    • The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
    • Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 2010; 28: 827-38.
    • (2010) Nat Biotechnol , vol.28 , pp. 827-838
    • Shi, L.1    Campbell, G.2    Jones, W.D.3
  • 5
    • 0033016717 scopus 로고    scopus 로고
    • Correlation between protein and mRNA abundance in yeast
    • Gygi SP, Rochon Y, Franza BR, et al. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19: 1720-30.
    • (1999) Mol Cell Biol , vol.19 , pp. 1720-1730
    • Gygi, S.P.1    Rochon, Y.2    Franza, B.R.3
  • 6
    • 0036549767 scopus 로고    scopus 로고
    • Discordant protein and mRNA expression in Lung Adenocarcinomas
    • Chen G. Discordant protein and mRNA expression in Lung Adenocarcinomas. Mol Cell Proteomics 2002; 1: 304-13.
    • (2002) Mol Cell Proteomics , vol.1 , pp. 304-313
    • Chen, G.1
  • 7
    • 77958460555 scopus 로고    scopus 로고
    • The challenges of integrating multiomics data sets
    • Palsson BO, Zengler K. The challenges of integrating multiomics data sets. Nat Chem Biol 2010; 6: 787-98.
    • (2010) Nat Chem Biol , vol.6 , pp. 787-798
    • Palsson, B.O.1    Zengler, K.2
  • 8
    • 77955434923 scopus 로고    scopus 로고
    • Microarrays in the clinic
    • Tillinghast GW. Microarrays in the clinic. Nat Biotechnol 2010; 28: 810-2.
    • (2010) Nat Biotechnol , vol.28 , pp. 810-812
    • Tillinghast, G.W.1
  • 9
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Reu Genet 2010; 11: 733-9.
    • (2010) Nat Reu Genet , vol.11 , pp. 733-739
    • Leek, J.T.1    Scharpf, R.B.2    Bravo, H.C.3
  • 10
    • 79953663708 scopus 로고    scopus 로고
    • Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells
    • Cavill R, Kamburov A, Ellis JK, et al. Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 2011; 7: 12.
    • (2011) PLoS Comput Biol , vol.7 , pp. 12
    • Cavill, R.1    Kamburov, A.2    Ellis, J.K.3
  • 11
    • 70349816735 scopus 로고    scopus 로고
    • Bioinformatic methods in NMR-based metabolic profiling
    • Ebbels TMD, Cavill R. Bioinformatic methods in NMR-based metabolic profiling. Prog Nucl Magn Reson Spectrosc 2009; 55: 361-74.
    • (2009) Prog Nucl Magn Reson Spectrosc , vol.55 , pp. 361-374
    • Ebbels, T.M.D.1    Cavill, R.2
  • 12
    • 77954611323 scopus 로고    scopus 로고
    • A combined Metabonomic and Transcriptomic approach to investigate metabolism during development in the Chick Chorioallantoic Membrane research articles
    • Cavill R, Sidhu JK, Kilarski W, et al. A combined Metabonomic and Transcriptomic approach to investigate metabolism during development in the Chick Chorioallantoic Membrane research articles. J Proteome Res 2010; 9: 3126-34.
    • (2010) J Proteome Res , vol.9 , pp. 3126-3134
    • Cavill, R.1    Sidhu, J.K.2    Kilarski, W.3
  • 13
    • 33745437095 scopus 로고    scopus 로고
    • Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells
    • Fan TWM, Bandura LL, Higashi RM, et al. Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics 2005; 1: 325-39.
    • (2005) Metabolomics , vol.1 , pp. 325-339
    • Fan, T.W.M.1    Bandura, L.L.2    Higashi, R.M.3
  • 14
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27-30.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 15
    • 68149137101 scopus 로고    scopus 로고
    • Mining biological pathways using WikiPathways web services
    • Kelder T, Pico AR, Hanspers K, et al. Mining biological pathways using WikiPathways web services. PLoS One 2009; 4: e6447.
    • (2009) PLoS One , vol.4 , pp. e6447
    • Kelder, T.1    Pico, A.R.2    Hanspers, K.3
  • 16
    • 30744463069 scopus 로고    scopus 로고
    • Integration of genomic and metabonomic data in systems biology-are we 'there' yet
    • Thomas CE, Ganji G. Integration of genomic and metabonomic data in systems biology-are we 'there' yet? Curr Opin Drug Discou Deuel 2006; 9: 92-100.
    • (2006) Curr Opin Drug Discou Deuel , vol.9 , pp. 92-100
    • Thomas, C.E.1    Ganji, G.2
  • 17
    • 0242607632 scopus 로고    scopus 로고
    • Parallel analysis of transcript and metabolic profiles: A new approach in systems biology
    • Urbanczyk-Wochniak E, Luedemann A, Kopka J, et al. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 2003; 4: 989-93.
    • (2003) EMBO Rep , vol.4 , pp. 989-993
    • Urbanczyk-Wochniak, E.1    Luedemann, A.2    Kopka, J.3
  • 18
    • 77951125481 scopus 로고    scopus 로고
    • Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity
    • Fendt SM, Buescher JM, Rudroff F, et al. Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Mol Syst Biol 2010; 6: 356.
    • (2010) Mol Syst Biol , vol.6 , pp. 356
    • Fendt, S.M.1    Buescher, J.M.2    Rudroff, F.3
  • 19
    • 0035816464 scopus 로고    scopus 로고
    • Transcriptome meets metabolome: Hierarchical and metabolic regulation of the glycolytic pathway
    • Ter Kuile BH, Westerhoff HV. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 2001; 500: 169-71.
    • (2001) FEBS Lett , vol.500 , pp. 169-171
    • Ter Kuile, B.H.1    Westerhoff, H.V.2
  • 20
    • 66149122278 scopus 로고    scopus 로고
    • Linking highresolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p
    • Moxley JF, Jewett MC, Antoniewicz MR, et al. Linking highresolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 2009; 106: 6477-82.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 6477-6482
    • Moxley, J.F.1    Jewett, M.C.2    Antoniewicz, M.R.3
  • 21
    • 59149103774 scopus 로고    scopus 로고
    • Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae
    • Bradley PH, Brauer MJ, Rabinowitz JD, et al. Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Comput Biol 2009; 5: e1000270.
    • (2009) PLoS Comput Biol , vol.5 , pp. e1000270
    • Bradley, P.H.1    Brauer, M.J.2    Rabinowitz, J.D.3
  • 22
    • 0037316031 scopus 로고    scopus 로고
    • Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains
    • Askenazi M, Driggers EM, Holtzman DA, et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 2003; 21: 150-6.
    • (2003) Nat Biotechnol , vol.21 , pp. 150-156
    • Askenazi, M.1    Driggers, E.M.2    Holtzman, D.A.3
  • 23
    • 84920273178 scopus 로고    scopus 로고
    • Integrative transcriptomic and metabonomic molecular profiling of colonic mucosal biopsies indicates a unique molecular phenotype for ulcerative colitis
    • Rantalainen MJ, Bjerrum JT, Olsen J, et al. Integrative transcriptomic and metabonomic molecular profiling of colonic mucosal biopsies indicates a unique molecular phenotype for ulcerative colitis. J Proteome Res 2014; 14: 479-90.
    • (2014) J Proteome Res , vol.14 , pp. 479-490
    • Rantalainen, M.J.1    Bjerrum, J.T.2    Olsen, J.3
  • 24
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • De la Fuente A, Bing N, Hoeschele I, et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinform 2004; 20: 3565-74.
    • (2004) Bioinform , vol.20 , pp. 3565-3574
    • De la Fuente, A.1    Bing, N.2    Hoeschele, I.3
  • 25
    • 84881166432 scopus 로고    scopus 로고
    • Multi-omics approach for estimating metabolic networks using low-order partial correlations
    • Kayano M, Imoto S, Yamaguchi RUI, et al. Multi-omics approach for estimating metabolic networks using low-order partial correlations. J Comput Biol 2013; 20: 571-82.
    • (2013) J Comput Biol , vol.20 , pp. 571-582
    • Kayano, M.1    Imoto, S.2    Yamaguchi, R.U.I.3
  • 27
    • 82855167170 scopus 로고    scopus 로고
    • Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice
    • Lu Y, Boekschoten MV, Wopereis S, et al. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol Genomics 2011; 43: 1307-18.
    • (2011) Physiol Genomics , vol.43 , pp. 1307-1318
    • Lu, Y.1    Boekschoten, M.V.2    Wopereis, S.3
  • 28
    • 3042750616 scopus 로고    scopus 로고
    • Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana
    • Hirai MY, Yano M, Goodenowe DB, et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 2004; 101: 10205-10.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 10205-10210
    • Hirai, M.Y.1    Yano, M.2    Goodenowe, D.B.3
  • 29
    • 21844472259 scopus 로고    scopus 로고
    • Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics
    • Hirai MY, Klein M, Fujikawa Y, et al. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 2005; 280: 25590-5.
    • (2005) J Biol Chem , vol.280 , pp. 25590-25595
    • Hirai, M.Y.1    Klein, M.2    Fujikawa, Y.3
  • 30
    • 77952279419 scopus 로고    scopus 로고
    • Metabolomic and transcriptomic stress response of Escherichia coli
    • Jozefczuk S, Klie S, Catchpole G, et al. Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 2010; 6: 364.
    • (2010) Mol Syst Biol , vol.6 , pp. 364
    • Jozefczuk, S.1    Klie, S.2    Catchpole, G.3
  • 31
    • 80053385449 scopus 로고    scopus 로고
    • Data integration and network reconstruction with ~ omics data using random forest regression in potato
    • Acharjee A, Kloosterman B, de Vos RCH, et al. Data integration and network reconstruction with ~ omics data using random forest regression in potato. Anal Chim Acta 2011; 705: 56-63.
    • (2011) Anal Chim Acta , vol.705 , pp. 56-63
    • Acharjee, A.1    Kloosterman, B.2    Vos, R.C.H.3
  • 32
    • 0344464731 scopus 로고    scopus 로고
    • MetaGeneAlyse: Analysis of integrated transcriptional and metabolite data
    • Daub CO, Kloska S, Selbig J. MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 2003; 19: 2332-3.
    • (2003) Bioinformatics , vol.19 , pp. 2332-2333
    • Daub, C.O.1    Kloska, S.2    Selbig, J.3
  • 33
    • 40949149421 scopus 로고    scopus 로고
    • Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation
    • Spicker JS, Brunak S, Frederiksen KS, et al. Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation. Toxicol Sci 2008; 102: 444-54.
    • (2008) Toxicol Sci , vol.102 , pp. 444-454
    • Spicker, J.S.1    Brunak, S.2    Frederiksen, K.S.3
  • 34
    • 84859992638 scopus 로고    scopus 로고
    • Integrative subtype discovery in glioblastoma using iCluster
    • Shen R, Mo Q, Schultz N, et al. Integrative subtype discovery in glioblastoma using iCluster. PLoS One 2012; 7: e35236.
    • (2012) PLoS One , vol.7 , pp. e35236
    • Shen, R.1    Mo, Q.2    Schultz, N.3
  • 35
    • 0035796127 scopus 로고    scopus 로고
    • Pattern recognition methods and applications in biomedical magnetic resonance
    • Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc 2001; 39: 1-40.
    • (2001) Prog Nucl Magn Reson Spectrosc , vol.39 , pp. 1-40
    • Lindon, J.C.1    Holmes, E.2    Nicholson, J.K.3
  • 36
    • 3142661160 scopus 로고    scopus 로고
    • An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver
    • Griffin JL, Bonney SA, Mann C, et al. An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver. Physiol Genomics 2004; 17: 140-9.
    • (2004) Physiol Genomics , vol.17 , pp. 140-149
    • Griffin, J.L.1    Bonney, S.A.2    Mann, C.3
  • 37
    • 77249115351 scopus 로고    scopus 로고
    • An integrated functional genomic study of acute phenobarbital exposure in the rat
    • Waterman CL, Currie RA, Cottrell LA, et al. An integrated functional genomic study of acute phenobarbital exposure in the rat. BMC Genomics 2010; 11: 9.
    • (2010) BMC Genomics , vol.11 , pp. 9
    • Waterman, C.L.1    Currie, R.A.2    Cottrell, L.A.3
  • 38
    • 33745323053 scopus 로고    scopus 로고
    • Integrative investigation of metabolic and transcriptomic data
    • Pir P, Kirdar B, Hayes A, et al. Integrative investigation of metabolic and transcriptomic data. BMC Bioinformatics 2006; 7: 203.
    • (2006) BMC Bioinformatics , vol.7 , pp. 203
    • Pir, P.1    Kirdar, B.2    Hayes, A.3
  • 39
    • 3042692962 scopus 로고    scopus 로고
    • Integrating gene expression and metabolic profiles
    • Li Z, Chan C. Integrating gene expression and metabolic profiles. J Biol Chem 2004; 279: 27124-37.
    • (2004) J Biol Chem , vol.279 , pp. 27124-27137
    • Li, Z.1    Chan, C.2
  • 40
    • 84866418066 scopus 로고    scopus 로고
    • Transcriptional and metabolic data integration and modeling for identification of active pathways
    • Jauhiainen A, Nerman O, Michailidis G, et al. Transcriptional and metabolic data integration and modeling for identification of active pathways. Biostatistics 2012; 13: 748-61.
    • (2012) Biostatistics , vol.13 , pp. 748-761
    • Jauhiainen, A.1    Nerman, O.2    Michailidis, G.3
  • 41
    • 33750093232 scopus 로고    scopus 로고
    • Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice
    • Rantalainen M, Cloarec O, Beckonert O, et al. Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. J Proteome Res 2006; 5: 2642-55.
    • (2006) J Proteome Res , vol.5 , pp. 2642-2655
    • Rantalainen, M.1    Cloarec, O.2    Beckonert, O.3
  • 42
    • 63949086443 scopus 로고    scopus 로고
    • Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach
    • Eveillard A, Lasserre F, de Tayrac M, et al. Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach. Toxicol Appl Pharmacol 2009; 236: 282-92.
    • (2009) Toxicol Appl Pharmacol , vol.236 , pp. 282-292
    • Eveillard, A.1    Lasserre, F.2    de Tayrac, M.3
  • 43
    • 77949524119 scopus 로고    scopus 로고
    • VitisNet: 'Omics' integration through grapevine molecular networks
    • Grimplet J, Cramer GR, Dickerson JA, et al. VitisNet: 'Omics' integration through grapevine molecular networks. PLoS One 2009; 4: e8365.
    • (2009) PLoS One , vol.4 , pp. e8365
    • Grimplet, J.1    Cramer, G.R.2    Dickerson, J.A.3
  • 44
    • 36949021555 scopus 로고    scopus 로고
    • Data integration in plant biology: The O2PLS method for combined modeling of transcript and metabolite data
    • Bylesjö M, Eriksson D, Kusano M, et al. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J 2007; 52: 1181-91.
    • (2007) Plant J , vol.52 , pp. 1181-1191
    • Bylesjö, M.1    Eriksson, D.2    Kusano, M.3
  • 45
    • 60849098774 scopus 로고    scopus 로고
    • Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen
    • Bylesjö M, Nilsson R, Srivastava V, et al. Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. J Proteome Res 2009; 8: 199-210.
    • (2009) J Proteome Res , vol.8 , pp. 199-210
    • Bylesjö, M.1    Nilsson, R.2    Srivastava, V.3
  • 46
    • 22244464275 scopus 로고    scopus 로고
    • Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis
    • Heijne WHM, Lamers RJAN, van Bladeren PJ, et al. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol Pathol 2005; 33: 425-33.
    • (2005) Toxicol Pathol , vol.33 , pp. 425-433
    • Heijne, W.H.M.1    Lamers, R.J.A.N.2    van Bladeren, P.J.3
  • 47
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • Westerhuis JA., Kourti T, MacGregor JF. Analysis of multiblock and hierarchical PCA and PLS models. J Chemom 1998; 12: 301-21.
    • (1998) J Chemom , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    McGregor, J.F.3
  • 48
    • 78650178785 scopus 로고    scopus 로고
    • Analysis of -omics data: Graphical interpretation- and validation tools in multiblock methods
    • Hassani S, Martens H, Qannari EM, et al. Analysis of -omics data: graphical interpretation- and validation tools in multiblock methods. Chemom Intell Lab Syst 2010; 104: 140-53.
    • (2010) Chemom Intell Lab Syst , vol.104 , pp. 140-153
    • Hassani, S.1    Martens, H.2    Qannari, E.M.3
  • 49
    • 79956373394 scopus 로고    scopus 로고
    • Systems biology for identifying liver toxicity pathways
    • Li Z, Chan C. Systems biology for identifying liver toxicity pathways. BMC Proc 2009; 3(S2): S2.
    • (2009) BMC Proc , vol.3 , pp. S2
    • Li, Z.1    Chan, C.2
  • 50
    • 84874994171 scopus 로고    scopus 로고
    • A consensus OPLS-DA strategy for multiblock Omics data fusion
    • Boccard J, Rutledge DN. A consensus OPLS-DA strategy for multiblock Omics data fusion. Anal Chim Acta 2013; 769: 30-9.
    • (2013) Anal Chim Acta , vol.769 , pp. 30-39
    • Boccard, J.1    Rutledge, D.N.2
  • 51
    • 78650172248 scopus 로고    scopus 로고
    • A multi-way approach to data integration in systems biology based on Tucker3 and N-PLS
    • Conesa A, Prats-Montalban JM, Tarazona S, et al. A multi-way approach to data integration in systems biology based on Tucker3 and N-PLS. Chemom Intell Lab Syst 2010; 104: 101-11.
    • (2010) Chemom Intell Lab Syst , vol.104 , pp. 101-111
    • Conesa, A.1    Prats-Montalban, J.M.2    Tarazona, S.3
  • 52
    • 70350694448 scopus 로고    scopus 로고
    • IntegrOmics: An R package to unravel relationships between two omics datasets
    • Lê Cao KA, González I, Dèjean S. IntegrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics 2009; 25: 2855-6.
    • (2009) Bioinformatics , vol.25 , pp. 2855-2856
    • Lê Cao, K.A.1    González, I.2    Dèjean, S.3
  • 53
    • 77954256613 scopus 로고    scopus 로고
    • MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data
    • Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 2010; 38: W71-7.
    • (2010) Nucleic Acids Res , vol.38 , pp. W71-W77
    • Xia, J.1    Wishart, D.S.2
  • 54
    • 78651335912 scopus 로고    scopus 로고
    • ConsensusPathDB: Toward a more complete picture of cell biology
    • Kamburov A, Pentchev K, Galicka H, et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 2011; 39: D712-7.
    • (2011) Nucleic Acids Res , vol.39 , pp. D712-D717
    • Kamburov, A.1    Pentchev, K.2    Galicka, H.3
  • 55
    • 80053976986 scopus 로고    scopus 로고
    • Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA
    • Kamburov A, Cavill R, Ebbels T, et al. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 2011; 27: 2917-8.
    • (2011) Bioinformatics , vol.27 , pp. 2917-2918
    • Kamburov, A.1    Cavill, R.2    Ebbels, T.3
  • 56
    • 0003493777 scopus 로고
    • Statistical methods for research workers
    • Chapter 4, Eleventh revised edition
    • Fisher RA. Statistical methods for research workers. Biological Monographs and Manuals, Chapter 4, Eleventh revised edition 1950, pp. 99-100.
    • (1950) Biological Monographs and Manuals , pp. 99-100
    • Fisher, R.A.1
  • 57
    • 84896525804 scopus 로고    scopus 로고
    • Meta-analysis of pathway enrichment: Combining independent and dependent omics data sets
    • Kaever A, Landesfeind M, Feussner K, et al. Meta-analysis of pathway enrichment: combining independent and dependent omics data sets. PLoS One 2014; 9: e89297.
    • (2014) PLoS One , vol.9 , pp. e89297
    • Kaever, A.1    Landesfeind, M.2    Feussner, K.3
  • 58
    • 84939884526 scopus 로고    scopus 로고
    • MarVis-Pathway: Integrative and exploratory pathway analysis of non-targeted metabolomics data
    • Kaever A, Landesfeind M, Feussner K, et al. MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics 2014; 11: 764-77.
    • (2014) Metabolomics , vol.11 , pp. 764-777
    • Kaever, A.1    Landesfeind, M.2    Feussner, K.3
  • 59
    • 80052178654 scopus 로고    scopus 로고
    • Integrating transcriptomics and metabonomics to unravel modes-of-action of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) in HepG2 cells
    • Jennen D, Ruiz-Aracama A, Magkoufopoulou C, et al. Integrating transcriptomics and metabonomics to unravel modes-of-action of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) in HepG2 cells. BMC Syst Biol 2011; 5: 139.
    • (2011) BMC Syst Biol , vol.5 , pp. 139
    • Jennen, D.1    Ruiz-Aracama, A.2    Magkoufopoulou, C.3
  • 60
    • 51449105863 scopus 로고    scopus 로고
    • Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants
    • Xu EY, Perlina A, Vu H, et al. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. Chem Res Toxicol 2008; 21: 1548-61.
    • (2008) Chem Res Toxicol , vol.21 , pp. 1548-1561
    • Xu, E.Y.1    Perlina, A.2    Vu, H.3
  • 61
    • 44049089850 scopus 로고    scopus 로고
    • Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: A combined transcriptomics and metabolomics analysis
    • Kleemann R, Verschuren L, van Erk MJ, et al. Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis. Genome Biol 2007; 8: R200.
    • (2007) Genome Biol , vol.8 , pp. R200
    • Kleemann, R.1    Verschuren, L.2    van Erk, M.J.3
  • 62
    • 54249091564 scopus 로고    scopus 로고
    • Presenting and exploring biological pathways with PathVisio
    • Van Iersel MP, Kelder T, Pico AR, et al. Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 2008; 9: 399.
    • (2008) BMC Bioinformatics , vol.9 , pp. 399
    • Van Iersel, M.P.1    Kelder, T.2    Pico, A.R.3
  • 63
    • 78650572031 scopus 로고    scopus 로고
    • Paintomics: A web based tool for the joint visualization of transcriptomics and metabolomics data
    • García-Alcalde F, García-López F, Dopazo J, et al. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 2011; 27: 137-9.
    • (2011) Bioinformatics , vol.27 , pp. 137-139
    • García-Alcalde, F.1    García-López, F.2    Dopazo, J.3
  • 64
    • 84904701965 scopus 로고    scopus 로고
    • Integrated enrichment analysis and pathway-centeredvisualization of metabolomics, proteomics, transcriptomics, andgenomics data by using the InCroMAP software
    • Eichner J, Rosenbaum L, Wrzodek C, et al. Integrated enrichment analysis and pathway-centeredvisualization of metabolomics, proteomics, transcriptomics, andgenomics data by using the InCroMAP software. J Chromatogr B 2014; 966: 77-82.
    • (2014) J Chromatogr B , vol.966 , pp. 77-82
    • Eichner, J.1    Rosenbaum, L.2    Wrzodek, C.3
  • 65
    • 84883580836 scopus 로고    scopus 로고
    • INMEX-a web-based tool for integrative meta-analysis of expression data
    • Xia J, Fjell CD, Mayer ML, et al. INMEX-a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res 2013; 41: W63-70.
    • (2013) Nucleic Acids Res , vol.41 , pp. W63-W70
    • Xia, J.1    Fjell, C.D.2    Mayer, M.L.3
  • 66
    • 84859711290 scopus 로고    scopus 로고
    • L(+) and D(-) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of L(+) and D(-) lactate by reversed-phase liquid chromatography tandem mass spectrometry
    • Scheijen JLJM, Hanssen NMJ, Van De Waarenburg MPH, et al. L(+) and D(-) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of L(+) and D(-) lactate by reversed-phase liquid chromatography tandem mass spectrometry. Exp Diabetes Res 2012; 2012: 234812.
    • (2012) Exp Diabetes Res , vol.2012 , pp. 234812
    • Scheijen, J.L.J.M.1    Hanssen, N.M.J.2    De Waarenburg, V.M.P.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.