-
1
-
-
80051499915
-
Rare-variant association testing for sequencing data with the sequence kernel association test
-
Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. AmJHum Genet 2011;89:82-93.
-
(2011)
AmJHum Genet
, vol.89
, pp. 82-93
-
-
Wu, M.C.1
Lee, S.2
Cai, T.3
-
2
-
-
33751114975
-
Generalized genomic distance-based regression methodology for multilocus association analysis
-
Wessel J, Schork NJ. Generalized genomic distance-based regression methodology for multilocus association analysis. AmJHum Genet 2006;79:792-806.
-
(2006)
AmJHum Genet
, vol.79
, pp. 792-806
-
-
Wessel, J.1
Schork, N.J.2
-
3
-
-
51049096780
-
Kernel methods in machine learning
-
Hofmann T, Schölkopf B, Smola A. Kernel methods in machine learning. Ann Stat 2008;36:1171-220.
-
(2008)
Ann Stat
, vol.36
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.3
-
4
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
Schölkopf B, Smola A. Learning with Kernels: SupportVector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.
-
(2002)
Learning with Kernels: SupportVector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
6
-
-
1642338802
-
Marginalized kernels for biological sequences
-
Tsuda K, Kin T, Asai K. Marginalized kernels for biological sequences. Bioinformatics 2002;18(Suppl 1):S268-75.
-
(2002)
Bioinformatics
, vol.18
, pp. S268-S275
-
-
Tsuda, K.1
Kin, T.2
Asai, K.3
-
7
-
-
77954187925
-
Genomic similarity and kernel methods II: Methods for genomic information
-
Schaid D. Genomic similarity and kernel methods II: Methods for genomic information. Hum Hered 2010;70: 132-40.
-
(2010)
Hum Hered
, vol.70
, pp. 132-140
-
-
Schaid, D.1
-
8
-
-
0001330098
-
A general coefficient of similarity and some of its properties
-
Gower J. A general coefficient of similarity and some of its properties. Biometrics 1971;27:857-74.
-
(1971)
Biometrics
, vol.27
, pp. 857-874
-
-
Gower, J.1
-
9
-
-
77954207265
-
Genomic similarity and kernel methods I: Advancements by building on mathematical and statistical foundations
-
Schaid D. Genomic similarity and kernel methods I: Advancements by building on mathematical and statistical foundations. HumHered 2010;70:109-31.
-
(2010)
HumHered
, vol.70
, pp. 109-131
-
-
Schaid, D.1
-
10
-
-
45849117254
-
Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
-
Gianola D, van Kaam JB. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 2008;178:2289-303.
-
(2008)
Genetics
, vol.178
, pp. 2289-2303
-
-
Gianola, D.1
van Kaam, J.B.2
-
11
-
-
84862649398
-
Reproducing kernel hilbert spaces for penalized regression: a tutorial
-
Nosedal-Sancheza A, Storlieb C, Lee T, et al. Reproducing kernel hilbert spaces for penalized regression: a tutorial. Am Stat 2012;66:50-60.
-
(2012)
Am Stat
, vol.66
, pp. 50-60
-
-
Nosedal-Sancheza, A.1
Storlieb, C.2
Lee, T.3
-
12
-
-
36749013671
-
Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models
-
Liu D, Lin X, Ghosh D. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 2007; 63:1079-88.
-
(2007)
Biometrics
, vol.63
, pp. 1079-1088
-
-
Liu, D.1
Lin, X.2
Ghosh, D.3
-
13
-
-
40749104728
-
A powerful and flexible multilocus association test for quantitative traits
-
Kwee LC, Liu D, Lin X, et al. A powerful and flexible multilocus association test for quantitative traits. AmJ Hum Genet 2008;82:386-97.
-
(2008)
AmJ Hum Genet
, vol.82
, pp. 386-397
-
-
Kwee, L.C.1
Liu, D.2
Lin, X.3
-
14
-
-
0003684449
-
-
New York, NY: Springer
-
Hastie T, Tibshirani R, Friedman J. TheElements ofStatistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer, 2001.
-
(2001)
TheElements ofStatistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
15
-
-
78650856517
-
GCTA: a tool for genome-wide complex trait analysis
-
Yang J, Lee SH, Goddard ME, et al. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82.
-
(2011)
Am J Hum Genet
, vol.88
, pp. 76-82
-
-
Yang, J.1
Lee, S.H.2
Goddard, M.E.3
-
16
-
-
33845933043
-
Simple methods for assessing haplotype-environment interactions in case-only and case-control studies
-
Kwee LC, Epstein MP, Manatunga AK, et al. Simple methods for assessing haplotype-environment interactions in case-only and case-control studies. Genet Epidemiol 2007; 31:75-90.
-
(2007)
Genet Epidemiol
, vol.31
, pp. 75-90
-
-
Kwee, L.C.1
Epstein, M.P.2
Manatunga, A.K.3
-
17
-
-
77953121307
-
Powerful SNP-set analysis for case-control genome-wide association studies
-
Wu MC, Kraft P, Epstein MP, et al. Powerful SNP-set analysis for case-control genome-wide association studies. AmJHum Genet 2010;86:929-42.
-
(2010)
AmJHum Genet
, vol.86
, pp. 929-942
-
-
Wu, M.C.1
Kraft, P.2
Epstein, M.P.3
-
18
-
-
84872380261
-
Sequence kernel association test for quantitative traits in family samples
-
Chen H, Meigs J, Dupuis J. Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 2012;37:196-204.
-
(2012)
Genet Epidemiol
, vol.37
, pp. 196-204
-
-
Chen, H.1
Meigs, J.2
Dupuis, J.3
-
19
-
-
84864953892
-
Optimal tests for rare variant effects in sequencing association studies
-
Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 2012;13: 762-75.
-
(2012)
Biostatistics
, vol.13
, pp. 762-775
-
-
Lee, S.1
Wu, M.C.2
Lin, X.3
-
20
-
-
84885840888
-
A kernel regression approach to gene-gene interaction detection for case-control studies
-
Larson NB, Schaid DJ. A kernel regression approach to gene-gene interaction detection for case-control studies. Genet Epidemiol 2013;37:695-703.
-
(2013)
Genet Epidemiol
, vol.37
, pp. 695-703
-
-
Larson, N.B.1
Schaid, D.J.2
-
21
-
-
84867793980
-
Gene-centric gene-gene interaction: a modelbased kernel machine method
-
Li S, Cui Y. Gene-centric gene-gene interaction: a modelbased kernel machine method. AnnApplStat 2012;6:1134-61.
-
(2012)
AnnApplStat
, vol.6
, pp. 1134-1161
-
-
Li, S.1
Cui, Y.2
-
23
-
-
84879128720
-
Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data
-
Schaid DJ, McDonnell SK, Sinnwell JP, et al. Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data. Genet Epidemiol 2013;37:409-18.
-
(2013)
Genet Epidemiol
, vol.37
, pp. 409-418
-
-
Schaid, D.J.1
McDonnell, S.K.2
Sinnwell, J.P.3
-
24
-
-
84862134307
-
Inclusion of genegene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases
-
Aschard H, Chen J, Cornelis MC, et al. Inclusion of genegene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases. AmJHum Genet 2012;90:962-72.
-
(2012)
AmJHum Genet
, vol.90
, pp. 962-972
-
-
Aschard, H.1
Chen, J.2
Cornelis, M.C.3
-
25
-
-
73449129712
-
From disease association to risk assessment: an optimistic view from genome-wide association studies on type1 diabetes
-
Wei Z, Wang K, Qu H-Q, et al. From disease association to risk assessment: an optimistic view from genome-wide association studies on type1 diabetes. PLoS Genet 2009;5: e1000678.
-
(2009)
PLoS Genet
, vol.5
, pp. e1000678
-
-
Wei, Z.1
Wang, K.2
Qu, H.-Q.3
-
26
-
-
15944424353
-
Kernel logistic regression and the import vector machine
-
Zhu J, Hastie T. Kernel logistic regression and the import vector machine. JCompGraph Stat 2005;14:185-205.
-
(2005)
JCompGraph Stat
, vol.14
, pp. 185-205
-
-
Zhu, J.1
Hastie, T.2
-
27
-
-
48249142391
-
Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models
-
Liu D, Ghosh D, Lin X. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC Bioinformatics 2008;9:292.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 292
-
-
Liu, D.1
Ghosh, D.2
Lin, X.3
-
28
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
ACM, New York
-
Bach FR, Lanckriet GR, Jordan MI. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-First International Conference on Machine Learning 2004, Vol. 6. ACM, New York.
-
(2004)
Proceedings of the Twenty-First International Conference on Machine Learning
, vol.6
-
-
Bach, F.R.1
Lanckriet, G.R.2
Jordan, M.I.3
-
30
-
-
80052818040
-
Kernel machine approach to testing the significance of multiple genetic markers for risk prediction
-
Cai T, Tonini G, Lin X. Kernel machine approach to testing the significance of multiple genetic markers for risk prediction. Biometrics 2011;67:975-86.
-
(2011)
Biometrics
, vol.67
, pp. 975-986
-
-
Cai, T.1
Tonini, G.2
Lin, X.3
-
31
-
-
84880802650
-
Prediction of complex human traits using the genomic best linear unbiased predictor
-
de los Campos G, Vazquez AI, Fernando R, et al. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet 2013;9:e1003608.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003608
-
-
De Los Campos, G.1
Vazquez, A.I.2
Fernando, R.3
-
32
-
-
79960171497
-
Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data
-
Ober U, Erbe M, Long N, et al. Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data. Genetics 2011;188:695-708.
-
(2011)
Genetics
, vol.188
, pp. 695-708
-
-
Ober, U.1
Erbe, M.2
Long, N.3
-
33
-
-
84878817787
-
Predicting complex traits using a difusion kernel on genetic markers with an application to dairy cattle and wheat data
-
Morota G, Koyama M, Rosa GJ, et al. Predicting complex traits using a difusion kernel on genetic markers with an application to dairy cattle and wheat data. Genet Sel Evol 2013;45:17.
-
(2013)
Genet Sel Evol
, vol.45
, pp. 17
-
-
Morota, G.1
Koyama, M.2
Rosa, G.J.3
-
36
-
-
84897864232
-
A pathway-based data integration framework for prediction of disease progression
-
Seoane JA, Day INM, Gaunt TR, et al. A pathway-based data integration framework for prediction of disease progression. Bioinformatics 2014;30:838-45.
-
(2014)
Bioinformatics
, vol.30
, pp. 838-845
-
-
Seoane, J.A.1
Day, I.N.M.2
Gaunt, T.R.3
-
37
-
-
84925442200
-
Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA
-
Zhao Q, Shi X, Xie Y, et al. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform 2015;16:291-303.
-
(2015)
Brief Bioinform
, vol.16
, pp. 291-303
-
-
Zhao, Q.1
Shi, X.2
Xie, Y.3
-
40
-
-
84883746688
-
Machine learning and genome annotation: a match meant to be?
-
Yip KY, Cheng C, Gerstein M. Machine learning and genome annotation: a match meant to be? Genome Biol 2013;14:1-40.
-
(2013)
Genome Biol
, vol.14
, pp. 1-40
-
-
Yip, K.Y.1
Cheng, C.2
Gerstein, M.3
-
42
-
-
84863505275
-
Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs
-
Lee S, Xing EP. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs. Bioinformatics 2012;28:i137-46.
-
(2012)
Bioinformatics
, vol.28
, pp. i137-i146
-
-
Lee, S.1
Xing, E.P.2
-
45
-
-
85162048536
-
Adaptive multi-task lasso: with application to eQTL detection
-
Red Hook, New York: Curran Associates, Inc.
-
Lee S, Zhu J, Xing EP. Adaptive multi-task lasso: with application to eQTL detection. Advances in Neural Information Processing Systems. Red Hook, New York: Curran Associates, Inc., 2010;1306-14.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 1306-1314
-
-
Lee, S.1
Zhu, J.2
Xing, E.P.3
-
46
-
-
70149098541
-
Statistical estimation of correlated genome associations to a quantitative trait network
-
Kim S, Xing EP. Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genet 2009;5:e1000587.
-
(2009)
PLoS Genet
, vol.5
, pp. e1000587
-
-
Kim, S.1
Xing, E.P.2
-
47
-
-
84870038047
-
Tree-guided group lasso for multiresponse regression with structured sparsity, with an application to eQTL mapping
-
Kim S, Xing EP. Tree-guided group lasso for multiresponse regression with structured sparsity, with an application to eQTL mapping. Ann Appl Stat 2012;6:1095-17.
-
(2012)
Ann Appl Stat
, vol.6
, pp. 1095-1117
-
-
Kim, S.1
Xing, E.P.2
-
51
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
Bach FR. Consistency of the group lasso and multiple kernel learning. JMach Learn Res 2008;9:1179-225.
-
(2008)
JMach Learn Res
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
53
-
-
29244453931
-
On the Nyström method for approximating a Gram matrix for improved kernel-based learning
-
Drineas P, Mahoney MW. On the Nyström method for approximating a Gram matrix for improved kernel-based learning. JMach LearnRes 2005;6:2153-75.
-
(2005)
JMach LearnRes
, vol.6
, pp. 2153-2175
-
-
Drineas, P.1
Mahoney, M.W.2
-
54
-
-
84897707239
-
Ensemble learning prediction of protein-protein interactions using proteins functional annotations
-
Saha I, Zubek J, Klingstrom T, et al. Ensemble learning prediction of protein-protein interactions using proteins functional annotations. Mol Biosyst 2014;10:820-30.
-
(2014)
Mol Biosyst
, vol.10
, pp. 820-830
-
-
Saha, I.1
Zubek, J.2
Klingstrom, T.3
|