메뉴 건너뛰기




Volumn 16, Issue 2, 2015, Pages 183-192

Kernel methods for large-scale genomic data analysis

Author keywords

Association test; Kernel logistic regression; Kernel methods; Lasso; Machine learning; Prediction; Structured mapping

Indexed keywords

BIOLOGY; GENOME-WIDE ASSOCIATION STUDY; GENOMICS; HUMAN; MACHINE LEARNING; SINGLE NUCLEOTIDE POLYMORPHISM; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; SUPPORT VECTOR MACHINE;

EID: 84925409378     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbu024     Document Type: Article
Times cited : (37)

References (54)
  • 1
    • 80051499915 scopus 로고    scopus 로고
    • Rare-variant association testing for sequencing data with the sequence kernel association test
    • Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. AmJHum Genet 2011;89:82-93.
    • (2011) AmJHum Genet , vol.89 , pp. 82-93
    • Wu, M.C.1    Lee, S.2    Cai, T.3
  • 2
    • 33751114975 scopus 로고    scopus 로고
    • Generalized genomic distance-based regression methodology for multilocus association analysis
    • Wessel J, Schork NJ. Generalized genomic distance-based regression methodology for multilocus association analysis. AmJHum Genet 2006;79:792-806.
    • (2006) AmJHum Genet , vol.79 , pp. 792-806
    • Wessel, J.1    Schork, N.J.2
  • 3
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • Hofmann T, Schölkopf B, Smola A. Kernel methods in machine learning. Ann Stat 2008;36:1171-220.
    • (2008) Ann Stat , vol.36 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.3
  • 6
    • 1642338802 scopus 로고    scopus 로고
    • Marginalized kernels for biological sequences
    • Tsuda K, Kin T, Asai K. Marginalized kernels for biological sequences. Bioinformatics 2002;18(Suppl 1):S268-75.
    • (2002) Bioinformatics , vol.18 , pp. S268-S275
    • Tsuda, K.1    Kin, T.2    Asai, K.3
  • 7
    • 77954187925 scopus 로고    scopus 로고
    • Genomic similarity and kernel methods II: Methods for genomic information
    • Schaid D. Genomic similarity and kernel methods II: Methods for genomic information. Hum Hered 2010;70: 132-40.
    • (2010) Hum Hered , vol.70 , pp. 132-140
    • Schaid, D.1
  • 8
    • 0001330098 scopus 로고
    • A general coefficient of similarity and some of its properties
    • Gower J. A general coefficient of similarity and some of its properties. Biometrics 1971;27:857-74.
    • (1971) Biometrics , vol.27 , pp. 857-874
    • Gower, J.1
  • 9
    • 77954207265 scopus 로고    scopus 로고
    • Genomic similarity and kernel methods I: Advancements by building on mathematical and statistical foundations
    • Schaid D. Genomic similarity and kernel methods I: Advancements by building on mathematical and statistical foundations. HumHered 2010;70:109-31.
    • (2010) HumHered , vol.70 , pp. 109-131
    • Schaid, D.1
  • 10
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
    • Gianola D, van Kaam JB. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 2008;178:2289-303.
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    van Kaam, J.B.2
  • 11
    • 84862649398 scopus 로고    scopus 로고
    • Reproducing kernel hilbert spaces for penalized regression: a tutorial
    • Nosedal-Sancheza A, Storlieb C, Lee T, et al. Reproducing kernel hilbert spaces for penalized regression: a tutorial. Am Stat 2012;66:50-60.
    • (2012) Am Stat , vol.66 , pp. 50-60
    • Nosedal-Sancheza, A.1    Storlieb, C.2    Lee, T.3
  • 12
    • 36749013671 scopus 로고    scopus 로고
    • Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models
    • Liu D, Lin X, Ghosh D. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 2007; 63:1079-88.
    • (2007) Biometrics , vol.63 , pp. 1079-1088
    • Liu, D.1    Lin, X.2    Ghosh, D.3
  • 13
    • 40749104728 scopus 로고    scopus 로고
    • A powerful and flexible multilocus association test for quantitative traits
    • Kwee LC, Liu D, Lin X, et al. A powerful and flexible multilocus association test for quantitative traits. AmJ Hum Genet 2008;82:386-97.
    • (2008) AmJ Hum Genet , vol.82 , pp. 386-397
    • Kwee, L.C.1    Liu, D.2    Lin, X.3
  • 15
    • 78650856517 scopus 로고    scopus 로고
    • GCTA: a tool for genome-wide complex trait analysis
    • Yang J, Lee SH, Goddard ME, et al. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82.
    • (2011) Am J Hum Genet , vol.88 , pp. 76-82
    • Yang, J.1    Lee, S.H.2    Goddard, M.E.3
  • 16
    • 33845933043 scopus 로고    scopus 로고
    • Simple methods for assessing haplotype-environment interactions in case-only and case-control studies
    • Kwee LC, Epstein MP, Manatunga AK, et al. Simple methods for assessing haplotype-environment interactions in case-only and case-control studies. Genet Epidemiol 2007; 31:75-90.
    • (2007) Genet Epidemiol , vol.31 , pp. 75-90
    • Kwee, L.C.1    Epstein, M.P.2    Manatunga, A.K.3
  • 17
    • 77953121307 scopus 로고    scopus 로고
    • Powerful SNP-set analysis for case-control genome-wide association studies
    • Wu MC, Kraft P, Epstein MP, et al. Powerful SNP-set analysis for case-control genome-wide association studies. AmJHum Genet 2010;86:929-42.
    • (2010) AmJHum Genet , vol.86 , pp. 929-942
    • Wu, M.C.1    Kraft, P.2    Epstein, M.P.3
  • 18
    • 84872380261 scopus 로고    scopus 로고
    • Sequence kernel association test for quantitative traits in family samples
    • Chen H, Meigs J, Dupuis J. Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 2012;37:196-204.
    • (2012) Genet Epidemiol , vol.37 , pp. 196-204
    • Chen, H.1    Meigs, J.2    Dupuis, J.3
  • 19
    • 84864953892 scopus 로고    scopus 로고
    • Optimal tests for rare variant effects in sequencing association studies
    • Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 2012;13: 762-75.
    • (2012) Biostatistics , vol.13 , pp. 762-775
    • Lee, S.1    Wu, M.C.2    Lin, X.3
  • 20
    • 84885840888 scopus 로고    scopus 로고
    • A kernel regression approach to gene-gene interaction detection for case-control studies
    • Larson NB, Schaid DJ. A kernel regression approach to gene-gene interaction detection for case-control studies. Genet Epidemiol 2013;37:695-703.
    • (2013) Genet Epidemiol , vol.37 , pp. 695-703
    • Larson, N.B.1    Schaid, D.J.2
  • 21
    • 84867793980 scopus 로고    scopus 로고
    • Gene-centric gene-gene interaction: a modelbased kernel machine method
    • Li S, Cui Y. Gene-centric gene-gene interaction: a modelbased kernel machine method. AnnApplStat 2012;6:1134-61.
    • (2012) AnnApplStat , vol.6 , pp. 1134-1161
    • Li, S.1    Cui, Y.2
  • 23
    • 84879128720 scopus 로고    scopus 로고
    • Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data
    • Schaid DJ, McDonnell SK, Sinnwell JP, et al. Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data. Genet Epidemiol 2013;37:409-18.
    • (2013) Genet Epidemiol , vol.37 , pp. 409-418
    • Schaid, D.J.1    McDonnell, S.K.2    Sinnwell, J.P.3
  • 24
    • 84862134307 scopus 로고    scopus 로고
    • Inclusion of genegene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases
    • Aschard H, Chen J, Cornelis MC, et al. Inclusion of genegene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases. AmJHum Genet 2012;90:962-72.
    • (2012) AmJHum Genet , vol.90 , pp. 962-972
    • Aschard, H.1    Chen, J.2    Cornelis, M.C.3
  • 25
    • 73449129712 scopus 로고    scopus 로고
    • From disease association to risk assessment: an optimistic view from genome-wide association studies on type1 diabetes
    • Wei Z, Wang K, Qu H-Q, et al. From disease association to risk assessment: an optimistic view from genome-wide association studies on type1 diabetes. PLoS Genet 2009;5: e1000678.
    • (2009) PLoS Genet , vol.5 , pp. e1000678
    • Wei, Z.1    Wang, K.2    Qu, H.-Q.3
  • 26
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu J, Hastie T. Kernel logistic regression and the import vector machine. JCompGraph Stat 2005;14:185-205.
    • (2005) JCompGraph Stat , vol.14 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 27
    • 48249142391 scopus 로고    scopus 로고
    • Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models
    • Liu D, Ghosh D, Lin X. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC Bioinformatics 2008;9:292.
    • (2008) BMC Bioinformatics , vol.9 , pp. 292
    • Liu, D.1    Ghosh, D.2    Lin, X.3
  • 30
    • 80052818040 scopus 로고    scopus 로고
    • Kernel machine approach to testing the significance of multiple genetic markers for risk prediction
    • Cai T, Tonini G, Lin X. Kernel machine approach to testing the significance of multiple genetic markers for risk prediction. Biometrics 2011;67:975-86.
    • (2011) Biometrics , vol.67 , pp. 975-986
    • Cai, T.1    Tonini, G.2    Lin, X.3
  • 31
    • 84880802650 scopus 로고    scopus 로고
    • Prediction of complex human traits using the genomic best linear unbiased predictor
    • de los Campos G, Vazquez AI, Fernando R, et al. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet 2013;9:e1003608.
    • (2013) PLoS Genet , vol.9 , pp. e1003608
    • De Los Campos, G.1    Vazquez, A.I.2    Fernando, R.3
  • 32
    • 79960171497 scopus 로고    scopus 로고
    • Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data
    • Ober U, Erbe M, Long N, et al. Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data. Genetics 2011;188:695-708.
    • (2011) Genetics , vol.188 , pp. 695-708
    • Ober, U.1    Erbe, M.2    Long, N.3
  • 33
    • 84878817787 scopus 로고    scopus 로고
    • Predicting complex traits using a difusion kernel on genetic markers with an application to dairy cattle and wheat data
    • Morota G, Koyama M, Rosa GJ, et al. Predicting complex traits using a difusion kernel on genetic markers with an application to dairy cattle and wheat data. Genet Sel Evol 2013;45:17.
    • (2013) Genet Sel Evol , vol.45 , pp. 17
    • Morota, G.1    Koyama, M.2    Rosa, G.J.3
  • 36
    • 84897864232 scopus 로고    scopus 로고
    • A pathway-based data integration framework for prediction of disease progression
    • Seoane JA, Day INM, Gaunt TR, et al. A pathway-based data integration framework for prediction of disease progression. Bioinformatics 2014;30:838-45.
    • (2014) Bioinformatics , vol.30 , pp. 838-845
    • Seoane, J.A.1    Day, I.N.M.2    Gaunt, T.R.3
  • 37
    • 84925442200 scopus 로고    scopus 로고
    • Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA
    • Zhao Q, Shi X, Xie Y, et al. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform 2015;16:291-303.
    • (2015) Brief Bioinform , vol.16 , pp. 291-303
    • Zhao, Q.1    Shi, X.2    Xie, Y.3
  • 38
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • Lanckriet GR, De Bie T, Cristianini N, et al. A statistical framework for genomic data fusion. Bioinformatics 2004;20: 2626-35.
    • (2004) Bioinformatics , vol.20 , pp. 2626-2635
    • Lanckriet, G.R.1    De Bie, T.2    Cristianini, N.3
  • 40
    • 84883746688 scopus 로고    scopus 로고
    • Machine learning and genome annotation: a match meant to be?
    • Yip KY, Cheng C, Gerstein M. Machine learning and genome annotation: a match meant to be? Genome Biol 2013;14:1-40.
    • (2013) Genome Biol , vol.14 , pp. 1-40
    • Yip, K.Y.1    Cheng, C.2    Gerstein, M.3
  • 42
    • 84863505275 scopus 로고    scopus 로고
    • Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs
    • Lee S, Xing EP. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs. Bioinformatics 2012;28:i137-46.
    • (2012) Bioinformatics , vol.28 , pp. i137-i146
    • Lee, S.1    Xing, E.P.2
  • 44
    • 33846006923 scopus 로고    scopus 로고
    • Population structure and eigenanalysis
    • Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet 2006;2:e190.
    • (2006) PLoS Genet , vol.2 , pp. e190
    • Patterson, N.1    Price, A.L.2    Reich, D.3
  • 45
    • 85162048536 scopus 로고    scopus 로고
    • Adaptive multi-task lasso: with application to eQTL detection
    • Red Hook, New York: Curran Associates, Inc.
    • Lee S, Zhu J, Xing EP. Adaptive multi-task lasso: with application to eQTL detection. Advances in Neural Information Processing Systems. Red Hook, New York: Curran Associates, Inc., 2010;1306-14.
    • (2010) Advances in Neural Information Processing Systems , pp. 1306-1314
    • Lee, S.1    Zhu, J.2    Xing, E.P.3
  • 46
    • 70149098541 scopus 로고    scopus 로고
    • Statistical estimation of correlated genome associations to a quantitative trait network
    • Kim S, Xing EP. Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genet 2009;5:e1000587.
    • (2009) PLoS Genet , vol.5 , pp. e1000587
    • Kim, S.1    Xing, E.P.2
  • 47
    • 84870038047 scopus 로고    scopus 로고
    • Tree-guided group lasso for multiresponse regression with structured sparsity, with an application to eQTL mapping
    • Kim S, Xing EP. Tree-guided group lasso for multiresponse regression with structured sparsity, with an application to eQTL mapping. Ann Appl Stat 2012;6:1095-17.
    • (2012) Ann Appl Stat , vol.6 , pp. 1095-1117
    • Kim, S.1    Xing, E.P.2
  • 51
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • Bach FR. Consistency of the group lasso and multiple kernel learning. JMach Learn Res 2008;9:1179-225.
    • (2008) JMach Learn Res , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 53
    • 29244453931 scopus 로고    scopus 로고
    • On the Nyström method for approximating a Gram matrix for improved kernel-based learning
    • Drineas P, Mahoney MW. On the Nyström method for approximating a Gram matrix for improved kernel-based learning. JMach LearnRes 2005;6:2153-75.
    • (2005) JMach LearnRes , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 54
    • 84897707239 scopus 로고    scopus 로고
    • Ensemble learning prediction of protein-protein interactions using proteins functional annotations
    • Saha I, Zubek J, Klingstrom T, et al. Ensemble learning prediction of protein-protein interactions using proteins functional annotations. Mol Biosyst 2014;10:820-30.
    • (2014) Mol Biosyst , vol.10 , pp. 820-830
    • Saha, I.1    Zubek, J.2    Klingstrom, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.