-
1
-
-
85015625394
-
Biofuel blending reduces particle emissions from aircraft engines at cruise conditions
-
Moore, R.H., et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 543 (2017), 411–415.
-
(2017)
Nature
, vol.543
, pp. 411-415
-
-
Moore, R.H.1
-
2
-
-
84876784070
-
High-level semi-synthetic production of the potent antimalarial artemisinin
-
Paddon, C.J., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
-
(2013)
Nature
, vol.496
, pp. 528-532
-
-
Paddon, C.J.1
-
3
-
-
84941346066
-
Complete biosynthesis of opioids in yeast
-
Galanie, S., et al. Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100.
-
(2015)
Science
, vol.349
, pp. 1095-1100
-
-
Galanie, S.1
-
4
-
-
84960460639
-
Engineering cellular metabolism
-
Nielsen, J., Keasling, J.D., Engineering cellular metabolism. Cell 164 (2016), 1185–1197.
-
(2016)
Cell
, vol.164
, pp. 1185-1197
-
-
Nielsen, J.1
Keasling, J.D.2
-
5
-
-
85021651714
-
Systems biology of metabolism
-
Nielsen, J., Systems biology of metabolism. Annu. Rev. Biochem. 86 (2017), 245–275.
-
(2017)
Annu. Rev. Biochem.
, vol.86
, pp. 245-275
-
-
Nielsen, J.1
-
6
-
-
84899052707
-
Engineering synergy in biotechnology
-
Nielsen, J., et al. Engineering synergy in biotechnology. Nat. Chem. Biol. 10 (2014), 319–322.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 319-322
-
-
Nielsen, J.1
-
7
-
-
84980022887
-
Bioinformatics for the synthetic biology of natural products: integrating across the design–build–test cycle
-
Carbonell, P., et al. Bioinformatics for the synthetic biology of natural products: integrating across the design–build–test cycle. Nat. Prod. Rep. 33 (2016), 925–932.
-
(2016)
Nat. Prod. Rep.
, vol.33
, pp. 925-932
-
-
Carbonell, P.1
-
8
-
-
84940206768
-
Advancing metabolic engineering through systems biology of industrial microorganisms
-
Dai, Z., Nielsen, J., Advancing metabolic engineering through systems biology of industrial microorganisms. Curr. Opin. Biotechnol. 36 (2015), 8–15.
-
(2015)
Curr. Opin. Biotechnol.
, vol.36
, pp. 8-15
-
-
Dai, Z.1
Nielsen, J.2
-
9
-
-
47249096975
-
Application of systems biology for bioprocess development
-
Park, J.H., et al. Application of systems biology for bioprocess development. Trends Biotechnol. 26 (2008), 404–412.
-
(2008)
Trends Biotechnol.
, vol.26
, pp. 404-412
-
-
Park, J.H.1
-
10
-
-
79960414910
-
Systems metabolic engineering for chemicals and materials
-
Lee, J.W., et al. Systems metabolic engineering for chemicals and materials. Trends Biotechnol. 29 (2011), 370–378.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 370-378
-
-
Lee, J.W.1
-
11
-
-
85028550972
-
Synthetic and systems biology for microbial production of commodity chemicals
-
Chubukov, V., et al. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst. Biol. Appl., 2, 2016, 16009.
-
(2016)
NPJ Syst. Biol. Appl.
, vol.2
, pp. 16009
-
-
Chubukov, V.1
-
12
-
-
85015323705
-
Systems biology solutions for biochemical production challenges
-
Hansen, A.S.L., et al. Systems biology solutions for biochemical production challenges. Curr. Opin. Biotechnol. 45 (2017), 85–91.
-
(2017)
Curr. Opin. Biotechnol.
, vol.45
, pp. 85-91
-
-
Hansen, A.S.L.1
-
14
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
Peralta-Yahya, P.P., et al. Microbial engineering for the production of advanced biofuels. Nature 488 (2012), 320–328.
-
(2012)
Nature
, vol.488
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
-
16
-
-
66749182798
-
13C-based metabolic flux analysis
-
13C-based metabolic flux analysis. Nat. Protoc. 4 (2009), 878–892.
-
(2009)
Nat. Protoc.
, vol.4
, pp. 878-892
-
-
Zamboni, N.1
-
17
-
-
84929457709
-
One-hour proteome analysis in yeast
-
Richards, A.L., et al. One-hour proteome analysis in yeast. Nat. Protoc. 10 (2015), 701–714.
-
(2015)
Nat. Protoc.
, vol.10
, pp. 701-714
-
-
Richards, A.L.1
-
18
-
-
85014805071
-
Design of a synthetic yeast genome
-
Richardson, S.M., et al. Design of a synthetic yeast genome. Science 355 (2017), 1040–1044.
-
(2017)
Science
, vol.355
, pp. 1040-1044
-
-
Richardson, S.M.1
-
19
-
-
84961115730
-
Biosensor-based engineering of biosynthetic pathways
-
Rogers, J.K., et al. Biosensor-based engineering of biosynthetic pathways. Curr. Opin. Biotechnol. 42 (2016), 84–91.
-
(2016)
Curr. Opin. Biotechnol.
, vol.42
, pp. 84-91
-
-
Rogers, J.K.1
-
20
-
-
84917705874
-
Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium
-
LaCroix, R.A., et al. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81 (2015), 17–30.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 17-30
-
-
LaCroix, R.A.1
-
21
-
-
84907483760
-
Altered sterol composition renders yeast thermotolerant
-
Caspeta, L., et al. Altered sterol composition renders yeast thermotolerant. Science 346 (2014), 75–78.
-
(2014)
Science
, vol.346
, pp. 75-78
-
-
Caspeta, L.1
-
22
-
-
85017393597
-
CRISPR-Cas: adapting to change
-
Jackson, S.A., et al. CRISPR-Cas: adapting to change. Science, 356, 2017, eaal5056.
-
(2017)
Science
, vol.356
, pp. eaal5056
-
-
Jackson, S.A.1
-
23
-
-
84979746885
-
EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9
-
Jessop-Fabre, M.M., et al. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol. J. 11 (2016), 1110–1117.
-
(2016)
Biotechnol. J.
, vol.11
, pp. 1110-1117
-
-
Jessop-Fabre, M.M.1
-
24
-
-
84988353386
-
Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast
-
Skjoedt, M.L., et al. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat. Chem. Biol. 12 (2016), 951–958.
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 951-958
-
-
Skjoedt, M.L.1
-
25
-
-
85000786739
-
Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition
-
Zhou, Y.J., et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J. Am. Chem. Soc. 138 (2016), 15368–15377.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 15368-15377
-
-
Zhou, Y.J.1
-
26
-
-
85016928653
-
Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species
-
Nielsen, J.C., et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat. Microbiol., 2, 2017, 17044.
-
(2017)
Nat. Microbiol.
, vol.2
, pp. 17044
-
-
Nielsen, J.C.1
-
27
-
-
84991244043
-
Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica
-
Kerkhoven, E.J., et al. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Syst. Biol. Appl., 2, 2016, 16005.
-
(2016)
NPJ Syst. Biol. Appl.
, vol.2
, pp. 16005
-
-
Kerkhoven, E.J.1
-
28
-
-
84951292012
-
Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials
-
Wi, S.G., et al. Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol. Biofuels, 8, 2015, 228.
-
(2015)
Biotechnol. Biofuels
, vol.8
, pp. 228
-
-
Wi, S.G.1
-
29
-
-
85008699086
-
Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass
-
Poudel, S., et al. Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnol. Biofuels, 10, 2017, 14.
-
(2017)
Biotechnol. Biofuels
, vol.10
, pp. 14
-
-
Poudel, S.1
-
30
-
-
84956572000
-
Pretreatment and saccharification of red macroalgae to produce fermentable sugars
-
Yun, E.J., et al. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour. Technol. 199 (2016), 311–318.
-
(2016)
Bioresour. Technol.
, vol.199
, pp. 311-318
-
-
Yun, E.J.1
-
31
-
-
84928288752
-
The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium
-
Yun, E.J., et al. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17 (2015), 1677–1688.
-
(2015)
Environ. Microbiol.
, vol.17
, pp. 1677-1688
-
-
Yun, E.J.1
-
32
-
-
84979085378
-
Yeast metabolic chassis designs for diverse biotechnological products
-
Jouhten, P., et al. Yeast metabolic chassis designs for diverse biotechnological products. Sci. Rep., 6, 2016, 29694.
-
(2016)
Sci. Rep.
, vol.6
, pp. 29694
-
-
Jouhten, P.1
-
33
-
-
84875279038
-
Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
-
Chen, Y., et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab. Eng. 15 (2013), 48–54.
-
(2013)
Metab. Eng.
, vol.15
, pp. 48-54
-
-
Chen, Y.1
-
34
-
-
85011355677
-
Systematic analysis of transcriptional and post-transcriptional regulation of metabolism in yeast
-
Gonçalves, E., et al. Systematic analysis of transcriptional and post-transcriptional regulation of metabolism in yeast. PLoS Comput. Biol., 13, 2017, e1005297.
-
(2017)
PLoS Comput. Biol.
, vol.13
, pp. e1005297
-
-
Gonçalves, E.1
-
35
-
-
85010886942
-
Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli
-
Kochanowski, K., et al. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. Mol. Syst. Biol., 13, 2017, 903.
-
(2017)
Mol. Syst. Biol.
, vol.13
, pp. 903
-
-
Kochanowski, K.1
-
36
-
-
84994140656
-
Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors
-
Österlund, T., et al. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr. Biol. 7 (2015), 560–568.
-
(2015)
Integr. Biol.
, vol.7
, pp. 560-568
-
-
Österlund, T.1
-
37
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
O'Brien, E.J., et al. Using genome-scale models to predict biological capabilities. Cell 161 (2015), 971–987.
-
(2015)
Cell
, vol.161
, pp. 971-987
-
-
O'Brien, E.J.1
-
38
-
-
84979849215
-
Genome scale models of yeast: towards standardized evaluation and consistent omic integration
-
Sánchez, B.J., Nielsen, J., Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 7 (2015), 846–858.
-
(2015)
Integr. Biol.
, vol.7
, pp. 846-858
-
-
Sánchez, B.J.1
Nielsen, J.2
-
39
-
-
84992648219
-
Multi-omic data integration enables discovery of hidden biological regularities
-
Ebrahim, A., et al. Multi-omic data integration enables discovery of hidden biological regularities. Nat. Commun., 7, 2016, 13091.
-
(2016)
Nat. Commun.
, vol.7
, pp. 13091
-
-
Ebrahim, A.1
-
40
-
-
85023208659
-
The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization
-
Alam, M.T., et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun., 8, 2017, 16018.
-
(2017)
Nat. Commun.
, vol.8
, pp. 16018
-
-
Alam, M.T.1
-
41
-
-
84879002382
-
Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
-
661–661
-
McCloskey, D., et al. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol., 9, 2013 661–661.
-
(2013)
Mol. Syst. Biol.
, vol.9
-
-
McCloskey, D.1
-
42
-
-
85028309923
-
Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
-
Sánchez, B.J., et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13, 2017, 935.
-
(2017)
Mol. Syst. Biol.
, vol.13
, pp. 935
-
-
Sánchez, B.J.1
-
43
-
-
84892788440
-
Constraint-based models predict metabolic and associated cellular functions
-
Bordbar, A., et al. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15 (2014), 107–120.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 107-120
-
-
Bordbar, A.1
-
44
-
-
85033687968
-
Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data
-
Sriyudthsak, K., et al. Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Front. Mol. Biosci., 3, 2016, 15.
-
(2016)
Front. Mol. Biosci.
, vol.3
, pp. 15
-
-
Sriyudthsak, K.1
-
45
-
-
84966348806
-
Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology
-
Aretz, I., Meierhofer, D., Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int. J. Mol. Sci., 17, 2016, 632.
-
(2016)
Int. J. Mol. Sci.
, vol.17
, pp. 632
-
-
Aretz, I.1
Meierhofer, D.2
-
46
-
-
84990961064
-
Functional metabolomics describes the yeast biosynthetic regulome
-
Mülleder, M., et al. Functional metabolomics describes the yeast biosynthetic regulome. Cell 167 (2016), 553–565.
-
(2016)
Cell
, vol.167
, pp. 553-565
-
-
Mülleder, M.1
-
47
-
-
85010842085
-
Genomewide landscape of gene-metabolome associations in Escherichia coli
-
Fuhrer, T., et al. Genomewide landscape of gene-metabolome associations in Escherichia coli. Mol. Syst. Biol., 13, 2017, 907.
-
(2017)
Mol. Syst. Biol.
, vol.13
, pp. 907
-
-
Fuhrer, T.1
-
48
-
-
84920896587
-
Next-generation genome-scale models for metabolic engineering
-
King, Z.A., et al. Next-generation genome-scale models for metabolic engineering. Curr. Opin. Biotechnol. 35 (2015), 23–29.
-
(2015)
Curr. Opin. Biotechnol.
, vol.35
, pp. 23-29
-
-
King, Z.A.1
-
49
-
-
79959610766
-
Economics of membrane occupancy and respiro-fermentation
-
Zhuang, K., et al. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol., 7, 2011, 500.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 500
-
-
Zhuang, K.1
-
50
-
-
84959560542
-
Metabolic trade-offs in yeast are caused by F1F0-ATP synthase
-
Nilsson, A., et al. Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci. Rep., 6, 2016, 22264.
-
(2016)
Sci. Rep.
, vol.6
, pp. 22264
-
-
Nilsson, A.1
-
51
-
-
84858439602
-
Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
-
Lewis, N.E., et al. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10 (2012), 291–305.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 291-305
-
-
Lewis, N.E.1
-
52
-
-
84960384531
-
Systems biology of the structural proteome
-
Brunk, E., et al. Systems biology of the structural proteome. BMC Syst. Biol., 10, 2016, 26.
-
(2016)
BMC Syst. Biol.
, vol.10
, pp. 26
-
-
Brunk, E.1
-
53
-
-
84878756325
-
Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli
-
Chang, R.L., et al. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340 (2013), 1220–1223.
-
(2013)
Science
, vol.340
, pp. 1220-1223
-
-
Chang, R.L.1
-
54
-
-
84939450442
-
An algorithm for the reduction of genome-scale metabolic network models to meaningful core models
-
Erdrich, P., et al. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. BMC Syst. Biol., 9, 2015, 48.
-
(2015)
BMC Syst. Biol.
, vol.9
, pp. 48
-
-
Erdrich, P.1
-
55
-
-
84978119941
-
Biopharmaceutical protein production by Saccharomyces cerevisiae: current state and future prospects
-
Huang, M., et al. Biopharmaceutical protein production by Saccharomyces cerevisiae: current state and future prospects. Pharm. Bioprocess 2 (2014), 167–182.
-
(2014)
Pharm. Bioprocess
, vol.2
, pp. 167-182
-
-
Huang, M.1
-
56
-
-
84877119088
-
Genome-scale modeling of the protein secretory machinery in yeast
-
Feizi, A., et al. Genome-scale modeling of the protein secretory machinery in yeast. PLoS One, 8, 2013, e63284.
-
(2013)
PLoS One
, vol.8
, pp. e63284
-
-
Feizi, A.1
-
57
-
-
84940521020
-
Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast
-
Huang, M., et al. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), E4689–E4696.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. E4689-E4696
-
-
Huang, M.1
-
58
-
-
85032290095
-
Efficient protein production by yeast requires global tuning of metabolism
-
Huang, M., et al. Efficient protein production by yeast requires global tuning of metabolism. Nat. Commun., 2017, 10.1038/s41467-017-00999-2.
-
(2017)
Nat. Commun.
-
-
Huang, M.1
-
59
-
-
84978861815
-
Quantification and classification of E. coli proteome utilization and unused protein costs across environments
-
O'Brien, E.J., et al. Quantification and classification of E. coli proteome utilization and unused protein costs across environments. PLoS Comput. Biol., 12, 2016, e1004998.
-
(2016)
PLoS Comput. Biol.
, vol.12
, pp. e1004998
-
-
O'Brien, E.J.1
-
60
-
-
84899550455
-
Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources
-
Li, G.-W., et al. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157 (2014), 624–635.
-
(2014)
Cell
, vol.157
, pp. 624-635
-
-
Li, G.-W.1
-
61
-
-
84978808486
-
Lean-proteome strains – next step in metabolic engineering
-
Valgepea, K., et al. Lean-proteome strains – next step in metabolic engineering. Front. Bioeng. Biotechnol., 3, 2015, 11.
-
(2015)
Front. Bioeng. Biotechnol.
, vol.3
, pp. 11
-
-
Valgepea, K.1
-
62
-
-
84948799348
-
Advances and practices of bioprocess scale-up
-
Xia, J., et al. Advances and practices of bioprocess scale-up. Adv. Biochem. Eng. Biotechnol. 152 (2016), 137–151.
-
(2016)
Adv. Biochem. Eng. Biotechnol.
, vol.152
, pp. 137-151
-
-
Xia, J.1
-
63
-
-
84920253032
-
Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses
-
Wang, G., et al. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses. Eng. Life Sci. 15 (2015), 20–29.
-
(2015)
Eng. Life Sci.
, vol.15
, pp. 20-29
-
-
Wang, G.1
-
65
-
-
84907350970
-
Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path
-
Campodonico, M.A., et al. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab. Eng. 25 (2014), 140–158.
-
(2014)
Metab. Eng.
, vol.25
, pp. 140-158
-
-
Campodonico, M.A.1
-
66
-
-
85019747118
-
Longevity of major coenzymes allows minimal de novo synthesis in microorganisms
-
Hartl, J., et al. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat. Microbiol., 2, 2017, 17073.
-
(2017)
Nat. Microbiol.
, vol.2
, pp. 17073
-
-
Hartl, J.1
-
67
-
-
84907855507
-
Prelude to rational scale-up of penicillin production: a scale-down study
-
Wang, G., et al. Prelude to rational scale-up of penicillin production: a scale-down study. Appl. Microbiol. Biotechnol. 98 (2014), 2359–2369.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 2359-2369
-
-
Wang, G.1
-
68
-
-
84987617623
-
Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: an analysis of organism lifelines
-
Haringa, C., et al. Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: an analysis of organism lifelines. Eng. Life Sci. 16 (2016), 652–663.
-
(2016)
Eng. Life Sci.
, vol.16
, pp. 652-663
-
-
Haringa, C.1
-
69
-
-
84925494179
-
Metabolic engineering of strains: from industrial-scale to lab-scale chemical production
-
Sun, J., Alper, H.S., Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. J. Ind. Microbiol. Biotechnol. 42 (2015), 423–436.
-
(2015)
J. Ind. Microbiol. Biotechnol.
, vol.42
, pp. 423-436
-
-
Sun, J.1
Alper, H.S.2
-
70
-
-
84968648928
-
The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass
-
Biddy, M.J., et al. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain. Chem. Eng. 4 (2016), 3196–3211.
-
(2016)
ACS Sustain. Chem. Eng.
, vol.4
, pp. 3196-3211
-
-
Biddy, M.J.1
-
71
-
-
84875247710
-
Transcriptomics in the RNA-seq era
-
McGettigan, P.A., Transcriptomics in the RNA-seq era. Curr. Opin. Chem. Biol. 17 (2013), 4–11.
-
(2013)
Curr. Opin. Chem. Biol.
, vol.17
, pp. 4-11
-
-
McGettigan, P.A.1
-
72
-
-
84953737483
-
The quantitative and condition-dependent Escherichia coli proteome
-
Schmidt, A., et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34 (2015), 104–110.
-
(2015)
Nat. Biotechnol.
, vol.34
, pp. 104-110
-
-
Schmidt, A.1
-
73
-
-
84995579544
-
Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry
-
Zhou, J., Yin, Y., Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 141 (2016), 6362–6373.
-
(2016)
Analyst
, vol.141
, pp. 6362-6373
-
-
Zhou, J.1
Yin, Y.2
-
74
-
-
57749195712
-
RNA-Seq: a revolutionary tool for transcriptomics
-
Wang, Z., et al. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10 (2009), 57–63.
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 57-63
-
-
Wang, Z.1
-
75
-
-
84956858710
-
Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers
-
Yugi, K., et al. Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol. 34 (2016), 276–290.
-
(2016)
Trends Biotechnol.
, vol.34
, pp. 276-290
-
-
Yugi, K.1
-
76
-
-
85016638812
-
Absolute quantification of protein and mRNA abundances demonstrate variability in gene-specific translation efficiency in yeast
-
Lahtvee, P.-J., et al. Absolute quantification of protein and mRNA abundances demonstrate variability in gene-specific translation efficiency in yeast. Cell Syst. 4 (2017), 495–504.
-
(2017)
Cell Syst.
, vol.4
, pp. 495-504
-
-
Lahtvee, P.-J.1
-
77
-
-
84868028972
-
Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
-
Marguerat, S., et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151 (2012), 671–683.
-
(2012)
Cell
, vol.151
, pp. 671-683
-
-
Marguerat, S.1
-
78
-
-
84959876975
-
Frontiers in microbial 1-butanol and isobutanol production
-
Chen, C.-T., Liao, J.C., Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol. Lett., 363, 2016, fnw020.
-
(2016)
FEMS Microbiol. Lett.
, vol.363
, pp. fnw020
-
-
Chen, C.-T.1
Liao, J.C.2
-
79
-
-
84984885397
-
Second generation bioethanol
-
C.R. Soccol Springer International
-
Sigoillot, J.-C., Faulds, C., et al. Second generation bioethanol. Soccol, C.R., (eds.) Green Fuels Techology: Biofuels, 2016, Springer International, 213–239.
-
(2016)
Green Fuels Techology: Biofuels
, pp. 213-239
-
-
Sigoillot, J.-C.1
Faulds, C.2
-
80
-
-
84992406246
-
Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides
-
Xin, F., et al. Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides. Biotechnol. Biofuels, 9, 2016, 220.
-
(2016)
Biotechnol. Biofuels
, vol.9
, pp. 220
-
-
Xin, F.1
-
81
-
-
84903058443
-
Feedstocks for advanced biodiesel production
-
R. Luque J.A. Melero Woodhead Publishing
-
Pinzi, S., Pilar Dorado, M., Feedstocks for advanced biodiesel production. Luque, R., Melero, J.A., (eds.) Advances in Biodiesel Production: Processes and Technologies, 2012, Woodhead Publishing, 69–90.
-
(2012)
Advances in Biodiesel Production: Processes and Technologies
, pp. 69-90
-
-
Pinzi, S.1
Pilar Dorado, M.2
-
82
-
-
84899982297
-
Isopropanol production with engineered Cupriavidus necator as bioproduction platform
-
Grousseau, E., et al. Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 98 (2014), 4277–4290.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 4277-4290
-
-
Grousseau, E.1
-
83
-
-
84969351865
-
Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models
-
Andreozzi, S., et al. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab. Eng. 35 (2016), 148–159.
-
(2016)
Metab. Eng.
, vol.35
, pp. 148-159
-
-
Andreozzi, S.1
-
84
-
-
84896297653
-
Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
-
Lian, J., et al. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng. 23 (2014), 92–99.
-
(2014)
Metab. Eng.
, vol.23
, pp. 92-99
-
-
Lian, J.1
-
85
-
-
84979000373
-
Fermentation of mixed substrates by Clostridium pasteurianum and its physiological, metabolic and proteomic characterizations
-
Sabra, W., et al. Fermentation of mixed substrates by Clostridium pasteurianum and its physiological, metabolic and proteomic characterizations. Microb. Cell Fact., 15, 2016, 114.
-
(2016)
Microb. Cell Fact.
, vol.15
, pp. 114
-
-
Sabra, W.1
-
86
-
-
84971350787
-
High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism
-
Li, Y., et al. High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci. Rep., 6, 2016, 26932.
-
(2016)
Sci. Rep.
, vol.6
, pp. 26932
-
-
Li, Y.1
-
87
-
-
69949136867
-
Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus
-
Okabe, M., et al. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84 (2009), 597–606.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 597-606
-
-
Okabe, M.1
-
88
-
-
85006922958
-
Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts
-
Kim, J.-H., et al. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb. Cell Fact., 15, 2016, 214.
-
(2016)
Microb. Cell Fact.
, vol.15
, pp. 214
-
-
Kim, J.-H.1
-
89
-
-
84989852376
-
Rewriting yeast central carbon metabolism for industrial isoprenoid production
-
Meadows, A.L., et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537 (2016), 694–697.
-
(2016)
Nature
, vol.537
, pp. 694-697
-
-
Meadows, A.L.1
-
90
-
-
84994427154
-
Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production
-
Li, Z.-J., et al. Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production. J. Ind. Microbiol. Biotechnol. 44 (2017), 605–612.
-
(2017)
J. Ind. Microbiol. Biotechnol.
, vol.44
, pp. 605-612
-
-
Li, Z.-J.1
-
91
-
-
85010189217
-
Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl coenzyme A-isomerizing enzymes
-
Rohde, M.-T., et al. Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl coenzyme A-isomerizing enzymes. Appl. Environ. Microbiol. 83 (2017), e02622–16.
-
(2017)
Appl. Environ. Microbiol.
, vol.83
, pp. e02622-16
-
-
Rohde, M.-T.1
-
92
-
-
84905366023
-
From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum
-
Kind, S., et al. From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 25 (2014), 113–123.
-
(2014)
Metab. Eng.
, vol.25
, pp. 113-123
-
-
Kind, S.1
-
93
-
-
85027997650
-
Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae
-
Published online March 10, 2017
-
Leavitt, J.M., et al. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J., 2017, 10.1002/biot.201600687 Published online March 10, 2017.
-
(2017)
Biotechnol. J.
-
-
Leavitt, J.M.1
-
94
-
-
85020018556
-
Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli
-
Luo, Z.W., Lee, S.Y., Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun., 8, 2017, 15689.
-
(2017)
Nat. Commun.
, vol.8
, pp. 15689
-
-
Luo, Z.W.1
Lee, S.Y.2
-
95
-
-
84963502701
-
High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum
-
Cheng, F., et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11 (2016), 574–584.
-
(2016)
Biotechnol. J.
, vol.11
, pp. 574-584
-
-
Cheng, F.1
-
96
-
-
85017112778
-
Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams
-
Chae, T.U., et al. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 41 (2017), 82–91.
-
(2017)
Metab. Eng.
, vol.41
, pp. 82-91
-
-
Chae, T.U.1
-
97
-
-
84923874240
-
Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes
-
Gottlieb, K., et al. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb. Cell Fact., 13, 2014, 96.
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 96
-
-
Gottlieb, K.1
-
98
-
-
84986294149
-
Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration
-
Chen, L., Zeng, A.-P., Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl. Microbiol. Biotechnol. 101 (2017), 559–568.
-
(2017)
Appl. Microbiol. Biotechnol.
, vol.101
, pp. 559-568
-
-
Chen, L.1
Zeng, A.-P.2
-
99
-
-
84992084086
-
A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose
-
Jorge, J.M.P., et al. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 48 (2016), 2519–2531.
-
(2016)
Amino Acids
, vol.48
, pp. 2519-2531
-
-
Jorge, J.M.P.1
-
100
-
-
84929048816
-
Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum
-
Zhang, Y., Vadlani, P.V., Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J. Biosci. Bioeng. 119 (2015), 694–699.
-
(2015)
J. Biosci. Bioeng.
, vol.119
, pp. 694-699
-
-
Zhang, Y.1
Vadlani, P.V.2
-
101
-
-
84924040608
-
Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli
-
Vargas-Tah, A., et al. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microb. Cell Fact., 14, 2015, 6.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 6
-
-
Vargas-Tah, A.1
-
102
-
-
84941962714
-
De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
-
Li, M., et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32 (2015), 1–11.
-
(2015)
Metab. Eng.
, vol.32
, pp. 1-11
-
-
Li, M.1
-
103
-
-
84925153777
-
Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid
-
Gallage, N.J., Møller, B.L., Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol. Plant 8 (2015), 40–57.
-
(2015)
Mol. Plant
, vol.8
, pp. 40-57
-
-
Gallage, N.J.1
Møller, B.L.2
-
104
-
-
84865545171
-
Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae
-
Scalcinati, G., et al. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microb. Cell Fact., 11, 2012, 117.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 117
-
-
Scalcinati, G.1
-
105
-
-
79551478567
-
Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes
-
Albertsen, L., et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl. Environ. Microbiol. 77 (2011), 1033–1040.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 1033-1040
-
-
Albertsen, L.1
-
106
-
-
84974601942
-
Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase
-
Bae, S.-J., et al. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci. Rep., 6, 2016, 27667.
-
(2016)
Sci. Rep.
, vol.6
, pp. 27667
-
-
Bae, S.-J.1
-
107
-
-
84913599401
-
Cell factories for insulin production
-
Baeshen, N.A., et al. Cell factories for insulin production. Microb. Cell Fact., 13, 2014, 141.
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 141
-
-
Baeshen, N.A.1
-
108
-
-
84892785219
-
Bioengineering virus-like particles as vaccines
-
Lua, L.H.L., et al. Bioengineering virus-like particles as vaccines. Biotechnol. Bioeng. 111 (2014), 425–440.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 425-440
-
-
Lua, L.H.L.1
-
109
-
-
84924238487
-
A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale
-
Schiffer, L., et al. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microb. Cell Fact., 14, 2015, 25.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 25
-
-
Schiffer, L.1
-
110
-
-
85006253687
-
Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35
-
Lee, J.H., et al. Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35. Lett. Appl. Microbiol. 64 (2017), 66–72.
-
(2017)
Lett. Appl. Microbiol.
, vol.64
, pp. 66-72
-
-
Lee, J.H.1
|