메뉴 건너뛰기




Volumn 35, Issue 12, 2017, Pages 1156-1168

The Impact of Systems Biology on Bioprocessing

Author keywords

cell factory; GEMs; metabolism; omics; systems biology

Indexed keywords

COMPUTATIONAL METHODS; CYTOLOGY; DATA HANDLING; DIGITAL STORAGE; FOSSIL FUELS; GEMS; GENES; INFORMATION ANALYSIS; LEARNING SYSTEMS; METABOLISM; PHYSIOLOGY;

EID: 85030540936     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2017.08.011     Document Type: Review
Times cited : (65)

References (110)
  • 1
    • 85015625394 scopus 로고    scopus 로고
    • Biofuel blending reduces particle emissions from aircraft engines at cruise conditions
    • Moore, R.H., et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 543 (2017), 411–415.
    • (2017) Nature , vol.543 , pp. 411-415
    • Moore, R.H.1
  • 2
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin
    • Paddon, C.J., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1
  • 3
    • 84941346066 scopus 로고    scopus 로고
    • Complete biosynthesis of opioids in yeast
    • Galanie, S., et al. Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100.
    • (2015) Science , vol.349 , pp. 1095-1100
    • Galanie, S.1
  • 4
    • 84960460639 scopus 로고    scopus 로고
    • Engineering cellular metabolism
    • Nielsen, J., Keasling, J.D., Engineering cellular metabolism. Cell 164 (2016), 1185–1197.
    • (2016) Cell , vol.164 , pp. 1185-1197
    • Nielsen, J.1    Keasling, J.D.2
  • 5
    • 85021651714 scopus 로고    scopus 로고
    • Systems biology of metabolism
    • Nielsen, J., Systems biology of metabolism. Annu. Rev. Biochem. 86 (2017), 245–275.
    • (2017) Annu. Rev. Biochem. , vol.86 , pp. 245-275
    • Nielsen, J.1
  • 6
    • 84899052707 scopus 로고    scopus 로고
    • Engineering synergy in biotechnology
    • Nielsen, J., et al. Engineering synergy in biotechnology. Nat. Chem. Biol. 10 (2014), 319–322.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 319-322
    • Nielsen, J.1
  • 7
    • 84980022887 scopus 로고    scopus 로고
    • Bioinformatics for the synthetic biology of natural products: integrating across the design–build–test cycle
    • Carbonell, P., et al. Bioinformatics for the synthetic biology of natural products: integrating across the design–build–test cycle. Nat. Prod. Rep. 33 (2016), 925–932.
    • (2016) Nat. Prod. Rep. , vol.33 , pp. 925-932
    • Carbonell, P.1
  • 8
    • 84940206768 scopus 로고    scopus 로고
    • Advancing metabolic engineering through systems biology of industrial microorganisms
    • Dai, Z., Nielsen, J., Advancing metabolic engineering through systems biology of industrial microorganisms. Curr. Opin. Biotechnol. 36 (2015), 8–15.
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 8-15
    • Dai, Z.1    Nielsen, J.2
  • 9
    • 47249096975 scopus 로고    scopus 로고
    • Application of systems biology for bioprocess development
    • Park, J.H., et al. Application of systems biology for bioprocess development. Trends Biotechnol. 26 (2008), 404–412.
    • (2008) Trends Biotechnol. , vol.26 , pp. 404-412
    • Park, J.H.1
  • 10
    • 79960414910 scopus 로고    scopus 로고
    • Systems metabolic engineering for chemicals and materials
    • Lee, J.W., et al. Systems metabolic engineering for chemicals and materials. Trends Biotechnol. 29 (2011), 370–378.
    • (2011) Trends Biotechnol. , vol.29 , pp. 370-378
    • Lee, J.W.1
  • 11
    • 85028550972 scopus 로고    scopus 로고
    • Synthetic and systems biology for microbial production of commodity chemicals
    • Chubukov, V., et al. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst. Biol. Appl., 2, 2016, 16009.
    • (2016) NPJ Syst. Biol. Appl. , vol.2 , pp. 16009
    • Chubukov, V.1
  • 12
    • 85015323705 scopus 로고    scopus 로고
    • Systems biology solutions for biochemical production challenges
    • Hansen, A.S.L., et al. Systems biology solutions for biochemical production challenges. Curr. Opin. Biotechnol. 45 (2017), 85–91.
    • (2017) Curr. Opin. Biotechnol. , vol.45 , pp. 85-91
    • Hansen, A.S.L.1
  • 14
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for the production of advanced biofuels
    • Peralta-Yahya, P.P., et al. Microbial engineering for the production of advanced biofuels. Nature 488 (2012), 320–328.
    • (2012) Nature , vol.488 , pp. 320-328
    • Peralta-Yahya, P.P.1
  • 16
    • 66749182798 scopus 로고    scopus 로고
    • 13C-based metabolic flux analysis
    • 13C-based metabolic flux analysis. Nat. Protoc. 4 (2009), 878–892.
    • (2009) Nat. Protoc. , vol.4 , pp. 878-892
    • Zamboni, N.1
  • 17
    • 84929457709 scopus 로고    scopus 로고
    • One-hour proteome analysis in yeast
    • Richards, A.L., et al. One-hour proteome analysis in yeast. Nat. Protoc. 10 (2015), 701–714.
    • (2015) Nat. Protoc. , vol.10 , pp. 701-714
    • Richards, A.L.1
  • 18
    • 85014805071 scopus 로고    scopus 로고
    • Design of a synthetic yeast genome
    • Richardson, S.M., et al. Design of a synthetic yeast genome. Science 355 (2017), 1040–1044.
    • (2017) Science , vol.355 , pp. 1040-1044
    • Richardson, S.M.1
  • 19
    • 84961115730 scopus 로고    scopus 로고
    • Biosensor-based engineering of biosynthetic pathways
    • Rogers, J.K., et al. Biosensor-based engineering of biosynthetic pathways. Curr. Opin. Biotechnol. 42 (2016), 84–91.
    • (2016) Curr. Opin. Biotechnol. , vol.42 , pp. 84-91
    • Rogers, J.K.1
  • 20
    • 84917705874 scopus 로고    scopus 로고
    • Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium
    • LaCroix, R.A., et al. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81 (2015), 17–30.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 17-30
    • LaCroix, R.A.1
  • 21
    • 84907483760 scopus 로고    scopus 로고
    • Altered sterol composition renders yeast thermotolerant
    • Caspeta, L., et al. Altered sterol composition renders yeast thermotolerant. Science 346 (2014), 75–78.
    • (2014) Science , vol.346 , pp. 75-78
    • Caspeta, L.1
  • 22
    • 85017393597 scopus 로고    scopus 로고
    • CRISPR-Cas: adapting to change
    • Jackson, S.A., et al. CRISPR-Cas: adapting to change. Science, 356, 2017, eaal5056.
    • (2017) Science , vol.356 , pp. eaal5056
    • Jackson, S.A.1
  • 23
    • 84979746885 scopus 로고    scopus 로고
    • EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9
    • Jessop-Fabre, M.M., et al. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol. J. 11 (2016), 1110–1117.
    • (2016) Biotechnol. J. , vol.11 , pp. 1110-1117
    • Jessop-Fabre, M.M.1
  • 24
    • 84988353386 scopus 로고    scopus 로고
    • Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast
    • Skjoedt, M.L., et al. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat. Chem. Biol. 12 (2016), 951–958.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 951-958
    • Skjoedt, M.L.1
  • 25
    • 85000786739 scopus 로고    scopus 로고
    • Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition
    • Zhou, Y.J., et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J. Am. Chem. Soc. 138 (2016), 15368–15377.
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 15368-15377
    • Zhou, Y.J.1
  • 26
    • 85016928653 scopus 로고    scopus 로고
    • Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species
    • Nielsen, J.C., et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat. Microbiol., 2, 2017, 17044.
    • (2017) Nat. Microbiol. , vol.2 , pp. 17044
    • Nielsen, J.C.1
  • 27
    • 84991244043 scopus 로고    scopus 로고
    • Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica
    • Kerkhoven, E.J., et al. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Syst. Biol. Appl., 2, 2016, 16005.
    • (2016) NPJ Syst. Biol. Appl. , vol.2 , pp. 16005
    • Kerkhoven, E.J.1
  • 28
    • 84951292012 scopus 로고    scopus 로고
    • Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials
    • Wi, S.G., et al. Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol. Biofuels, 8, 2015, 228.
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 228
    • Wi, S.G.1
  • 29
    • 85008699086 scopus 로고    scopus 로고
    • Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass
    • Poudel, S., et al. Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnol. Biofuels, 10, 2017, 14.
    • (2017) Biotechnol. Biofuels , vol.10 , pp. 14
    • Poudel, S.1
  • 30
    • 84956572000 scopus 로고    scopus 로고
    • Pretreatment and saccharification of red macroalgae to produce fermentable sugars
    • Yun, E.J., et al. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour. Technol. 199 (2016), 311–318.
    • (2016) Bioresour. Technol. , vol.199 , pp. 311-318
    • Yun, E.J.1
  • 31
    • 84928288752 scopus 로고    scopus 로고
    • The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium
    • Yun, E.J., et al. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17 (2015), 1677–1688.
    • (2015) Environ. Microbiol. , vol.17 , pp. 1677-1688
    • Yun, E.J.1
  • 32
    • 84979085378 scopus 로고    scopus 로고
    • Yeast metabolic chassis designs for diverse biotechnological products
    • Jouhten, P., et al. Yeast metabolic chassis designs for diverse biotechnological products. Sci. Rep., 6, 2016, 29694.
    • (2016) Sci. Rep. , vol.6 , pp. 29694
    • Jouhten, P.1
  • 33
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • Chen, Y., et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab. Eng. 15 (2013), 48–54.
    • (2013) Metab. Eng. , vol.15 , pp. 48-54
    • Chen, Y.1
  • 34
    • 85011355677 scopus 로고    scopus 로고
    • Systematic analysis of transcriptional and post-transcriptional regulation of metabolism in yeast
    • Gonçalves, E., et al. Systematic analysis of transcriptional and post-transcriptional regulation of metabolism in yeast. PLoS Comput. Biol., 13, 2017, e1005297.
    • (2017) PLoS Comput. Biol. , vol.13 , pp. e1005297
    • Gonçalves, E.1
  • 35
    • 85010886942 scopus 로고    scopus 로고
    • Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli
    • Kochanowski, K., et al. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. Mol. Syst. Biol., 13, 2017, 903.
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 903
    • Kochanowski, K.1
  • 36
    • 84994140656 scopus 로고    scopus 로고
    • Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors
    • Österlund, T., et al. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr. Biol. 7 (2015), 560–568.
    • (2015) Integr. Biol. , vol.7 , pp. 560-568
    • Österlund, T.1
  • 37
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O'Brien, E.J., et al. Using genome-scale models to predict biological capabilities. Cell 161 (2015), 971–987.
    • (2015) Cell , vol.161 , pp. 971-987
    • O'Brien, E.J.1
  • 38
    • 84979849215 scopus 로고    scopus 로고
    • Genome scale models of yeast: towards standardized evaluation and consistent omic integration
    • Sánchez, B.J., Nielsen, J., Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 7 (2015), 846–858.
    • (2015) Integr. Biol. , vol.7 , pp. 846-858
    • Sánchez, B.J.1    Nielsen, J.2
  • 39
    • 84992648219 scopus 로고    scopus 로고
    • Multi-omic data integration enables discovery of hidden biological regularities
    • Ebrahim, A., et al. Multi-omic data integration enables discovery of hidden biological regularities. Nat. Commun., 7, 2016, 13091.
    • (2016) Nat. Commun. , vol.7 , pp. 13091
    • Ebrahim, A.1
  • 40
    • 85023208659 scopus 로고    scopus 로고
    • The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization
    • Alam, M.T., et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun., 8, 2017, 16018.
    • (2017) Nat. Commun. , vol.8 , pp. 16018
    • Alam, M.T.1
  • 41
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • 661–661
    • McCloskey, D., et al. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol., 9, 2013 661–661.
    • (2013) Mol. Syst. Biol. , vol.9
    • McCloskey, D.1
  • 42
    • 85028309923 scopus 로고    scopus 로고
    • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
    • Sánchez, B.J., et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13, 2017, 935.
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 935
    • Sánchez, B.J.1
  • 43
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • Bordbar, A., et al. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15 (2014), 107–120.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 107-120
    • Bordbar, A.1
  • 44
    • 85033687968 scopus 로고    scopus 로고
    • Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data
    • Sriyudthsak, K., et al. Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Front. Mol. Biosci., 3, 2016, 15.
    • (2016) Front. Mol. Biosci. , vol.3 , pp. 15
    • Sriyudthsak, K.1
  • 45
    • 84966348806 scopus 로고    scopus 로고
    • Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology
    • Aretz, I., Meierhofer, D., Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int. J. Mol. Sci., 17, 2016, 632.
    • (2016) Int. J. Mol. Sci. , vol.17 , pp. 632
    • Aretz, I.1    Meierhofer, D.2
  • 46
    • 84990961064 scopus 로고    scopus 로고
    • Functional metabolomics describes the yeast biosynthetic regulome
    • Mülleder, M., et al. Functional metabolomics describes the yeast biosynthetic regulome. Cell 167 (2016), 553–565.
    • (2016) Cell , vol.167 , pp. 553-565
    • Mülleder, M.1
  • 47
    • 85010842085 scopus 로고    scopus 로고
    • Genomewide landscape of gene-metabolome associations in Escherichia coli
    • Fuhrer, T., et al. Genomewide landscape of gene-metabolome associations in Escherichia coli. Mol. Syst. Biol., 13, 2017, 907.
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 907
    • Fuhrer, T.1
  • 48
    • 84920896587 scopus 로고    scopus 로고
    • Next-generation genome-scale models for metabolic engineering
    • King, Z.A., et al. Next-generation genome-scale models for metabolic engineering. Curr. Opin. Biotechnol. 35 (2015), 23–29.
    • (2015) Curr. Opin. Biotechnol. , vol.35 , pp. 23-29
    • King, Z.A.1
  • 49
    • 79959610766 scopus 로고    scopus 로고
    • Economics of membrane occupancy and respiro-fermentation
    • Zhuang, K., et al. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol., 7, 2011, 500.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 500
    • Zhuang, K.1
  • 50
    • 84959560542 scopus 로고    scopus 로고
    • Metabolic trade-offs in yeast are caused by F1F0-ATP synthase
    • Nilsson, A., et al. Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci. Rep., 6, 2016, 22264.
    • (2016) Sci. Rep. , vol.6 , pp. 22264
    • Nilsson, A.1
  • 51
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
    • Lewis, N.E., et al. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10 (2012), 291–305.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291-305
    • Lewis, N.E.1
  • 52
    • 84960384531 scopus 로고    scopus 로고
    • Systems biology of the structural proteome
    • Brunk, E., et al. Systems biology of the structural proteome. BMC Syst. Biol., 10, 2016, 26.
    • (2016) BMC Syst. Biol. , vol.10 , pp. 26
    • Brunk, E.1
  • 53
    • 84878756325 scopus 로고    scopus 로고
    • Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli
    • Chang, R.L., et al. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340 (2013), 1220–1223.
    • (2013) Science , vol.340 , pp. 1220-1223
    • Chang, R.L.1
  • 54
    • 84939450442 scopus 로고    scopus 로고
    • An algorithm for the reduction of genome-scale metabolic network models to meaningful core models
    • Erdrich, P., et al. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. BMC Syst. Biol., 9, 2015, 48.
    • (2015) BMC Syst. Biol. , vol.9 , pp. 48
    • Erdrich, P.1
  • 55
    • 84978119941 scopus 로고    scopus 로고
    • Biopharmaceutical protein production by Saccharomyces cerevisiae: current state and future prospects
    • Huang, M., et al. Biopharmaceutical protein production by Saccharomyces cerevisiae: current state and future prospects. Pharm. Bioprocess 2 (2014), 167–182.
    • (2014) Pharm. Bioprocess , vol.2 , pp. 167-182
    • Huang, M.1
  • 56
    • 84877119088 scopus 로고    scopus 로고
    • Genome-scale modeling of the protein secretory machinery in yeast
    • Feizi, A., et al. Genome-scale modeling of the protein secretory machinery in yeast. PLoS One, 8, 2013, e63284.
    • (2013) PLoS One , vol.8 , pp. e63284
    • Feizi, A.1
  • 57
    • 84940521020 scopus 로고    scopus 로고
    • Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast
    • Huang, M., et al. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), E4689–E4696.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. E4689-E4696
    • Huang, M.1
  • 58
    • 85032290095 scopus 로고    scopus 로고
    • Efficient protein production by yeast requires global tuning of metabolism
    • Huang, M., et al. Efficient protein production by yeast requires global tuning of metabolism. Nat. Commun., 2017, 10.1038/s41467-017-00999-2.
    • (2017) Nat. Commun.
    • Huang, M.1
  • 59
    • 84978861815 scopus 로고    scopus 로고
    • Quantification and classification of E. coli proteome utilization and unused protein costs across environments
    • O'Brien, E.J., et al. Quantification and classification of E. coli proteome utilization and unused protein costs across environments. PLoS Comput. Biol., 12, 2016, e1004998.
    • (2016) PLoS Comput. Biol. , vol.12 , pp. e1004998
    • O'Brien, E.J.1
  • 60
    • 84899550455 scopus 로고    scopus 로고
    • Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources
    • Li, G.-W., et al. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157 (2014), 624–635.
    • (2014) Cell , vol.157 , pp. 624-635
    • Li, G.-W.1
  • 61
    • 84978808486 scopus 로고    scopus 로고
    • Lean-proteome strains – next step in metabolic engineering
    • Valgepea, K., et al. Lean-proteome strains – next step in metabolic engineering. Front. Bioeng. Biotechnol., 3, 2015, 11.
    • (2015) Front. Bioeng. Biotechnol. , vol.3 , pp. 11
    • Valgepea, K.1
  • 62
    • 84948799348 scopus 로고    scopus 로고
    • Advances and practices of bioprocess scale-up
    • Xia, J., et al. Advances and practices of bioprocess scale-up. Adv. Biochem. Eng. Biotechnol. 152 (2016), 137–151.
    • (2016) Adv. Biochem. Eng. Biotechnol. , vol.152 , pp. 137-151
    • Xia, J.1
  • 63
    • 84920253032 scopus 로고    scopus 로고
    • Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses
    • Wang, G., et al. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses. Eng. Life Sci. 15 (2015), 20–29.
    • (2015) Eng. Life Sci. , vol.15 , pp. 20-29
    • Wang, G.1
  • 65
    • 84907350970 scopus 로고    scopus 로고
    • Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path
    • Campodonico, M.A., et al. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab. Eng. 25 (2014), 140–158.
    • (2014) Metab. Eng. , vol.25 , pp. 140-158
    • Campodonico, M.A.1
  • 66
    • 85019747118 scopus 로고    scopus 로고
    • Longevity of major coenzymes allows minimal de novo synthesis in microorganisms
    • Hartl, J., et al. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat. Microbiol., 2, 2017, 17073.
    • (2017) Nat. Microbiol. , vol.2 , pp. 17073
    • Hartl, J.1
  • 67
    • 84907855507 scopus 로고    scopus 로고
    • Prelude to rational scale-up of penicillin production: a scale-down study
    • Wang, G., et al. Prelude to rational scale-up of penicillin production: a scale-down study. Appl. Microbiol. Biotechnol. 98 (2014), 2359–2369.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 2359-2369
    • Wang, G.1
  • 68
    • 84987617623 scopus 로고    scopus 로고
    • Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: an analysis of organism lifelines
    • Haringa, C., et al. Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: an analysis of organism lifelines. Eng. Life Sci. 16 (2016), 652–663.
    • (2016) Eng. Life Sci. , vol.16 , pp. 652-663
    • Haringa, C.1
  • 69
    • 84925494179 scopus 로고    scopus 로고
    • Metabolic engineering of strains: from industrial-scale to lab-scale chemical production
    • Sun, J., Alper, H.S., Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. J. Ind. Microbiol. Biotechnol. 42 (2015), 423–436.
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 423-436
    • Sun, J.1    Alper, H.S.2
  • 70
    • 84968648928 scopus 로고    scopus 로고
    • The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass
    • Biddy, M.J., et al. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain. Chem. Eng. 4 (2016), 3196–3211.
    • (2016) ACS Sustain. Chem. Eng. , vol.4 , pp. 3196-3211
    • Biddy, M.J.1
  • 71
    • 84875247710 scopus 로고    scopus 로고
    • Transcriptomics in the RNA-seq era
    • McGettigan, P.A., Transcriptomics in the RNA-seq era. Curr. Opin. Chem. Biol. 17 (2013), 4–11.
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 4-11
    • McGettigan, P.A.1
  • 72
    • 84953737483 scopus 로고    scopus 로고
    • The quantitative and condition-dependent Escherichia coli proteome
    • Schmidt, A., et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34 (2015), 104–110.
    • (2015) Nat. Biotechnol. , vol.34 , pp. 104-110
    • Schmidt, A.1
  • 73
    • 84995579544 scopus 로고    scopus 로고
    • Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry
    • Zhou, J., Yin, Y., Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 141 (2016), 6362–6373.
    • (2016) Analyst , vol.141 , pp. 6362-6373
    • Zhou, J.1    Yin, Y.2
  • 74
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang, Z., et al. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10 (2009), 57–63.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 57-63
    • Wang, Z.1
  • 75
    • 84956858710 scopus 로고    scopus 로고
    • Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers
    • Yugi, K., et al. Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol. 34 (2016), 276–290.
    • (2016) Trends Biotechnol. , vol.34 , pp. 276-290
    • Yugi, K.1
  • 76
    • 85016638812 scopus 로고    scopus 로고
    • Absolute quantification of protein and mRNA abundances demonstrate variability in gene-specific translation efficiency in yeast
    • Lahtvee, P.-J., et al. Absolute quantification of protein and mRNA abundances demonstrate variability in gene-specific translation efficiency in yeast. Cell Syst. 4 (2017), 495–504.
    • (2017) Cell Syst. , vol.4 , pp. 495-504
    • Lahtvee, P.-J.1
  • 77
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
    • Marguerat, S., et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151 (2012), 671–683.
    • (2012) Cell , vol.151 , pp. 671-683
    • Marguerat, S.1
  • 78
    • 84959876975 scopus 로고    scopus 로고
    • Frontiers in microbial 1-butanol and isobutanol production
    • Chen, C.-T., Liao, J.C., Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol. Lett., 363, 2016, fnw020.
    • (2016) FEMS Microbiol. Lett. , vol.363 , pp. fnw020
    • Chen, C.-T.1    Liao, J.C.2
  • 79
    • 84984885397 scopus 로고    scopus 로고
    • Second generation bioethanol
    • C.R. Soccol Springer International
    • Sigoillot, J.-C., Faulds, C., et al. Second generation bioethanol. Soccol, C.R., (eds.) Green Fuels Techology: Biofuels, 2016, Springer International, 213–239.
    • (2016) Green Fuels Techology: Biofuels , pp. 213-239
    • Sigoillot, J.-C.1    Faulds, C.2
  • 80
    • 84992406246 scopus 로고    scopus 로고
    • Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides
    • Xin, F., et al. Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides. Biotechnol. Biofuels, 9, 2016, 220.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 220
    • Xin, F.1
  • 82
    • 84899982297 scopus 로고    scopus 로고
    • Isopropanol production with engineered Cupriavidus necator as bioproduction platform
    • Grousseau, E., et al. Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 98 (2014), 4277–4290.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 4277-4290
    • Grousseau, E.1
  • 83
    • 84969351865 scopus 로고    scopus 로고
    • Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models
    • Andreozzi, S., et al. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab. Eng. 35 (2016), 148–159.
    • (2016) Metab. Eng. , vol.35 , pp. 148-159
    • Andreozzi, S.1
  • 84
    • 84896297653 scopus 로고    scopus 로고
    • Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
    • Lian, J., et al. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng. 23 (2014), 92–99.
    • (2014) Metab. Eng. , vol.23 , pp. 92-99
    • Lian, J.1
  • 85
    • 84979000373 scopus 로고    scopus 로고
    • Fermentation of mixed substrates by Clostridium pasteurianum and its physiological, metabolic and proteomic characterizations
    • Sabra, W., et al. Fermentation of mixed substrates by Clostridium pasteurianum and its physiological, metabolic and proteomic characterizations. Microb. Cell Fact., 15, 2016, 114.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 114
    • Sabra, W.1
  • 86
    • 84971350787 scopus 로고    scopus 로고
    • High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism
    • Li, Y., et al. High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci. Rep., 6, 2016, 26932.
    • (2016) Sci. Rep. , vol.6 , pp. 26932
    • Li, Y.1
  • 87
    • 69949136867 scopus 로고    scopus 로고
    • Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus
    • Okabe, M., et al. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84 (2009), 597–606.
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 597-606
    • Okabe, M.1
  • 88
    • 85006922958 scopus 로고    scopus 로고
    • Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts
    • Kim, J.-H., et al. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb. Cell Fact., 15, 2016, 214.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 214
    • Kim, J.-H.1
  • 89
    • 84989852376 scopus 로고    scopus 로고
    • Rewriting yeast central carbon metabolism for industrial isoprenoid production
    • Meadows, A.L., et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537 (2016), 694–697.
    • (2016) Nature , vol.537 , pp. 694-697
    • Meadows, A.L.1
  • 90
    • 84994427154 scopus 로고    scopus 로고
    • Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production
    • Li, Z.-J., et al. Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production. J. Ind. Microbiol. Biotechnol. 44 (2017), 605–612.
    • (2017) J. Ind. Microbiol. Biotechnol. , vol.44 , pp. 605-612
    • Li, Z.-J.1
  • 91
    • 85010189217 scopus 로고    scopus 로고
    • Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl coenzyme A-isomerizing enzymes
    • Rohde, M.-T., et al. Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl coenzyme A-isomerizing enzymes. Appl. Environ. Microbiol. 83 (2017), e02622–16.
    • (2017) Appl. Environ. Microbiol. , vol.83 , pp. e02622-16
    • Rohde, M.-T.1
  • 92
    • 84905366023 scopus 로고    scopus 로고
    • From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum
    • Kind, S., et al. From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 25 (2014), 113–123.
    • (2014) Metab. Eng. , vol.25 , pp. 113-123
    • Kind, S.1
  • 93
    • 85027997650 scopus 로고    scopus 로고
    • Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae
    • Published online March 10, 2017
    • Leavitt, J.M., et al. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J., 2017, 10.1002/biot.201600687 Published online March 10, 2017.
    • (2017) Biotechnol. J.
    • Leavitt, J.M.1
  • 94
    • 85020018556 scopus 로고    scopus 로고
    • Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli
    • Luo, Z.W., Lee, S.Y., Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun., 8, 2017, 15689.
    • (2017) Nat. Commun. , vol.8 , pp. 15689
    • Luo, Z.W.1    Lee, S.Y.2
  • 95
    • 84963502701 scopus 로고    scopus 로고
    • High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum
    • Cheng, F., et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11 (2016), 574–584.
    • (2016) Biotechnol. J. , vol.11 , pp. 574-584
    • Cheng, F.1
  • 96
    • 85017112778 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams
    • Chae, T.U., et al. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 41 (2017), 82–91.
    • (2017) Metab. Eng. , vol.41 , pp. 82-91
    • Chae, T.U.1
  • 97
    • 84923874240 scopus 로고    scopus 로고
    • Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes
    • Gottlieb, K., et al. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb. Cell Fact., 13, 2014, 96.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 96
    • Gottlieb, K.1
  • 98
    • 84986294149 scopus 로고    scopus 로고
    • Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration
    • Chen, L., Zeng, A.-P., Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl. Microbiol. Biotechnol. 101 (2017), 559–568.
    • (2017) Appl. Microbiol. Biotechnol. , vol.101 , pp. 559-568
    • Chen, L.1    Zeng, A.-P.2
  • 99
    • 84992084086 scopus 로고    scopus 로고
    • A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose
    • Jorge, J.M.P., et al. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 48 (2016), 2519–2531.
    • (2016) Amino Acids , vol.48 , pp. 2519-2531
    • Jorge, J.M.P.1
  • 100
    • 84929048816 scopus 로고    scopus 로고
    • Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum
    • Zhang, Y., Vadlani, P.V., Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J. Biosci. Bioeng. 119 (2015), 694–699.
    • (2015) J. Biosci. Bioeng. , vol.119 , pp. 694-699
    • Zhang, Y.1    Vadlani, P.V.2
  • 101
    • 84924040608 scopus 로고    scopus 로고
    • Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli
    • Vargas-Tah, A., et al. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microb. Cell Fact., 14, 2015, 6.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 6
    • Vargas-Tah, A.1
  • 102
    • 84941962714 scopus 로고    scopus 로고
    • De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
    • Li, M., et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32 (2015), 1–11.
    • (2015) Metab. Eng. , vol.32 , pp. 1-11
    • Li, M.1
  • 103
    • 84925153777 scopus 로고    scopus 로고
    • Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid
    • Gallage, N.J., Møller, B.L., Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol. Plant 8 (2015), 40–57.
    • (2015) Mol. Plant , vol.8 , pp. 40-57
    • Gallage, N.J.1    Møller, B.L.2
  • 104
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae
    • Scalcinati, G., et al. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microb. Cell Fact., 11, 2012, 117.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 117
    • Scalcinati, G.1
  • 105
    • 79551478567 scopus 로고    scopus 로고
    • Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes
    • Albertsen, L., et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl. Environ. Microbiol. 77 (2011), 1033–1040.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 1033-1040
    • Albertsen, L.1
  • 106
    • 84974601942 scopus 로고    scopus 로고
    • Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase
    • Bae, S.-J., et al. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci. Rep., 6, 2016, 27667.
    • (2016) Sci. Rep. , vol.6 , pp. 27667
    • Bae, S.-J.1
  • 107
    • 84913599401 scopus 로고    scopus 로고
    • Cell factories for insulin production
    • Baeshen, N.A., et al. Cell factories for insulin production. Microb. Cell Fact., 13, 2014, 141.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 141
    • Baeshen, N.A.1
  • 108
    • 84892785219 scopus 로고    scopus 로고
    • Bioengineering virus-like particles as vaccines
    • Lua, L.H.L., et al. Bioengineering virus-like particles as vaccines. Biotechnol. Bioeng. 111 (2014), 425–440.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 425-440
    • Lua, L.H.L.1
  • 109
    • 84924238487 scopus 로고    scopus 로고
    • A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale
    • Schiffer, L., et al. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microb. Cell Fact., 14, 2015, 25.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 25
    • Schiffer, L.1
  • 110
    • 85006253687 scopus 로고    scopus 로고
    • Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35
    • Lee, J.H., et al. Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35. Lett. Appl. Microbiol. 64 (2017), 66–72.
    • (2017) Lett. Appl. Microbiol. , vol.64 , pp. 66-72
    • Lee, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.