-
1
-
-
0033982936
-
KEGG: Kyoto encyclopedia of genes and genomes
-
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28(1):27-30.
-
(2000)
Nucleic Acids Res
, vol.28
, Issue.1
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
2
-
-
77951612556
-
Bigg: A Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions
-
Schellenberger J, Park JO, Conrad TM, et al. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 2010;11(1):213.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 213
-
-
Schellenberger, J.1
Park, J.O.2
Conrad, T.M.3
-
3
-
-
27244436714
-
Expansion of the BioCyc collection of pathway/genome databases to 160 genomes
-
Karp PD, Ouzounis CA, Moore-Kochlacs C, et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 2005;33(19):6083-9.
-
(2005)
Nucleic Acids Res
, vol.33
, Issue.19
, pp. 6083-6089
-
-
Karp, P.D.1
Ouzounis, C.A.2
Moore-Kochlacs, C.3
-
4
-
-
84976865354
-
MetaNetX/MNXref-reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks
-
Moretti S, Martin O, Van Du Tran T, et al. MetaNetX/MNXref-reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res 2016;44(D1):D523-6.
-
(2016)
Nucleic Acids Res
, vol.44
, Issue.D1
, pp. D523-D526
-
-
Moretti, S.1
Martin, O.2
Van Du Tran, T.3
-
5
-
-
77956696072
-
High-throughput generation, optimization and analysis of genome-scale metabolic models
-
Henry CS, DeJongh M, Best AA, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010;28(9):977-82.
-
(2010)
Nat Biotechnol
, vol.28
, Issue.9
, pp. 977-982
-
-
Henry, C.S.1
DeJongh, M.2
Best, A.A.3
-
6
-
-
85011339292
-
Meneco, a topology-based gap-filling tool applicable to degraded genome-wide metabolic networks
-
Prigent S, Frioux C, Dittami SM, et al. Meneco, a topology-based gap-filling tool applicable to degraded genome-wide metabolic networks. PLoS Comput Biol 2017;13(1):e1005276.
-
(2017)
PLoS Comput Biol
, vol.13
, Issue.1
-
-
Prigent, S.1
Frioux, C.2
Dittami, S.M.3
-
7
-
-
85062475488
-
Genome-scale metabolic models as platforms for strain design and biological discovery
-
press, Just-acceptedjust-accepted
-
Mienda BS. Genome-scale metabolic models as platforms for strain design and biological discovery. J Biomol Struct Dyn 2016, in press, Just-accepted(just-accepted):1-23.
-
(2016)
J Biomol Struct Dyn
, pp. 1-23
-
-
Mienda, B.S.1
-
8
-
-
63549108441
-
GrowMatch: An automated method for reconciling in silico/in vivo growth predictions
-
Kumar VS, Maranas CD. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 2009;5(3):e1000308.
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.3
-
-
Kumar, V.S.1
Maranas, C.D.2
-
9
-
-
33751226921
-
Systems approach to refining genome annotation
-
Reed JL, Patel TR, Chen KH, et al. Systems approach to refining genome annotation. Proc Natl Acad Sci USA 2006;103(46):17480-4.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.46
, pp. 17480-17484
-
-
Reed, J.L.1
Patel, T.R.2
Chen, K.H.3
-
10
-
-
33746660425
-
Identification of genome-scale metabolic network models using experimentally measured flux profiles
-
Herrgård MJ, Fong SS, Palsson B>. Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol 2006;2(7):e72.
-
(2006)
PLoS Comput Biol
, vol.2
, Issue.7
-
-
Herrgård, M.J.1
Fong, S.S.2
Palsson, B.3
Oslash4
-
11
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
OBrien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell 2015;161(5):971-87.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 971-987
-
-
OBrien, E.J.1
Monk, J.M.2
Palsson, B.O.3
-
12
-
-
34547676311
-
Optimization based automated curation of metabolic reconstructions
-
Kumar VS, Dasika MS, Maranas CD. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 2007;8:(1):212.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 212
-
-
Kumar, V.S.1
Dasika, M.S.2
Maranas, C.D.3
-
13
-
-
84907026934
-
FastGapfill: Efficient gap filling in metabolic networks
-
Thiele I, Vlassis N, Fleming RM. fastGapFill: efficient gap filling in metabolic networks. Bioinformatics 2014;30(17):2529-31.
-
(2014)
Bioinformatics
, vol.30
, Issue.17
, pp. 2529-2531
-
-
Thiele, I.1
Vlassis, N.2
Fleming, R.M.3
-
14
-
-
84870053320
-
Mirage: A functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks
-
Vitkin E, Shlomi T. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 2012;13(11):R111.
-
(2012)
Genome Biol
, vol.13
, Issue.11
, pp. R111
-
-
Vitkin, E.1
Shlomi, T.2
-
16
-
-
84858439602
-
Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
-
Lewis NE, Nagarajan H, Palsson B>. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 2012;10(4):291-305.
-
(2012)
Nat Rev Microbiol
, vol.10
, Issue.4
, pp. 291-305
-
-
Lewis, N.E.1
Nagarajan, H.2
Palsson, B.3
Oslash4
-
18
-
-
3342925846
-
Comparison of network-based pathway analysis methods
-
Papin JA, Stelling J, Price ND, et al. Comparison of network-based pathway analysis methods. Trends Biotechnol 2004;22(8):400-5.
-
(2004)
Trends Biotechnol
, vol.22
, Issue.8
, pp. 400-405
-
-
Papin, J.A.1
Stelling, J.2
Price, N.D.3
-
19
-
-
84857791962
-
A network-based gene-weighting approach for pathway analysis
-
Fang Z, Tian W, Ji H. A network-based gene-weighting approach for pathway analysis. Cell Res 2012;22(3):565-80.
-
(2012)
Cell Res
, vol.22
, Issue.3
, pp. 565-580
-
-
Fang, Z.1
Tian, W.2
Ji, H.3
-
20
-
-
85006927692
-
A network-based pathway-expanding approach for pathway analysis
-
Zhang Q, Li J, Xie H, et al. A network-based pathway-expanding approach for pathway analysis. BMC Bioinformatics 2016;17(17):231.
-
(2016)
BMC Bioinformatics
, vol.17
, Issue.17
, pp. 231
-
-
Zhang, Q.1
Li, J.2
Xie, H.3
-
22
-
-
84995370935
-
Network-based pathway enrichment analysis with incomplete network information
-
Ma J, Shojaie A, Michailidis G. Network-based pathway enrichment analysis with incomplete network information. Bioinformatics 2016;32(20):3165-74.
-
(2016)
Bioinformatics
, vol.32
, Issue.20
, pp. 3165-3174
-
-
Ma, J.1
Shojaie, A.2
Michailidis, G.3
-
23
-
-
84884172916
-
Elementary flux modes in a nutshell: Properties, calculation and applications
-
Zanghellini J, Ruckerbauer DE, Hanscho M, et al. Elementary flux modes in a nutshell: properties, calculation and applications. Biotechnol J 2013;8(9):1009-16.
-
(2013)
Biotechnol J
, vol.8
, Issue.9
, pp. 1009-1016
-
-
Zanghellini, J.1
Ruckerbauer, D.E.2
Hanscho, M.3
-
24
-
-
79751535106
-
ACOM: A classification method for elementary flux modes based on motif finding
-
Pérès S, Vallée F, Beurton-Aimar M, et al. ACoM: a classification method for elementary flux modes based on motif finding. Biosystems 2011;103(3):410-19.
-
(2011)
Biosystems
, vol.103
, Issue.3
, pp. 410-419
-
-
Pérès, S.1
Vallée, F.2
Beurton-Aimar, M.3
-
25
-
-
84856560417
-
Efmevolver: Computing elementary flux modes in genome-scale metabolic networks
-
Kaleta C,D, Figueiredo LF, Behre J, et al. EFMEvolver: computing elementary flux modes in genome-scale metabolic networks. Lect Notes Inform 2009;157:179-89.
-
(2009)
Lect Notes Inform
, vol.157
, pp. 179-189
-
-
Kaleta, C.1
Figueiredo, L.F.2
Behre, J.3
-
26
-
-
75849164426
-
Computing the shortest elementary flux modes in genome-scale metabolic networks
-
De Figueiredo LF, Podhorski A, Rubio A, et al. Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 2009;25(23):3158-65.
-
(2009)
Bioinformatics
, vol.25
, Issue.23
, pp. 3158-3165
-
-
De Figueiredo, L.F.1
Podhorski, A.2
Rubio, A.3
-
27
-
-
28444458560
-
The geometry of the flux cone of a metabolic network
-
Wagner C, Urbanczik R. The geometry of the flux cone of a metabolic network. Biophys J 2005;89(6):3837-45.
-
(2005)
Biophys J
, vol.89
, Issue.6
, pp. 3837-3845
-
-
Wagner, C.1
Urbanczik, R.2
-
28
-
-
79951528622
-
Exploring metabolic pathways in genome-scale networks via generating flux modes
-
Rezola A, de Figueiredo LF, Brock M, et al. Exploring metabolic pathways in genome-scale networks via generating flux modes. Bioinformatics 2011;27(4):534-40.
-
(2011)
Bioinformatics
, vol.27
, Issue.4
, pp. 534-540
-
-
Rezola, A.1
De Figueiredo, L.F.2
Brock, M.3
-
29
-
-
16344382935
-
An improved algorithm for stoichiometric network analysis: Theory and applications
-
Urbanczik R, Wagner C. An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 2005;21(7):1203-10.
-
(2005)
Bioinformatics
, vol.21
, Issue.7
, pp. 1203-1210
-
-
Urbanczik, R.1
Wagner, C.2
-
30
-
-
50949094727
-
A new constraint-based description of the steady-state flux cone of metabolic networks
-
Larhlimi A, Bockmayr A. A new constraint-based description of the steady-state flux cone of metabolic networks. Discrete Appl Math 2009;157(10):2257-66.
-
(2009)
Discrete Appl Math
, vol.157
, Issue.10
, pp. 2257-2266
-
-
Larhlimi, A.1
Bockmayr, A.2
-
31
-
-
85062455676
-
A new approach to obtaining EFMs using graph methods based on the shortest path between end nodes
-
Hidalgo JF, Guil F, Garcıa JM. A new approach to obtaining EFMs using graph methods based on the shortest path between end nodes. Genomics Comput Biol 2016;2(1):30.
-
(2016)
Genomics Comput Biol
, vol.2
, Issue.1
, pp. 30
-
-
Hidalgo, J.F.1
Guil, F.2
Garcıa, J.M.3
-
32
-
-
84979838081
-
Advances in network-based metabolic pathway analysis and gene expression data integration
-
Rezola A, Pey J, Tobalina L, et al. Advances in network-based metabolic pathway analysis and gene expression data integration. Brief Bioinform 2015;16:265-79.
-
(2015)
Brief Bioinform
, vol.16
, pp. 265-279
-
-
Rezola, A.1
Pey, J.2
Tobalina, L.3
-
33
-
-
84924388543
-
Metabolomics integrated elementary flux mode analysis in large metabolic networks
-
Gerstl MP, Ruckerbauer DE, Mattanovich D, et al. Metabolomics integrated elementary flux mode analysis in large metabolic networks. Sci Rep 2015;5:8930.
-
(2015)
Sci Rep
, vol.5
, pp. 8930
-
-
Gerstl, M.P.1
Ruckerbauer, D.E.2
Mattanovich, D.3
-
34
-
-
33745433792
-
Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data
-
Kümmel A, Panke S, Heinemann M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2006;2(1):2006.0034.
-
(2006)
Mol Syst Biol
, vol.2
, Issue.1
, pp. 20060034
-
-
Kümmel, A.1
Panke, S.2
Heinemann, M.3
-
35
-
-
84962678128
-
Which sets of elementary flux modes form thermodynamically feasible flux distributions?
-
Gerstl MP, Jungreuthmayer C, Müller S, et al. Which sets of elementary flux modes form thermodynamically feasible flux distributions? FEBS J 2016;283(9):1782-94.
-
(2016)
FEBS J
, vol.283
, Issue.9
, pp. 1782-1794
-
-
Gerstl, M.P.1
Jungreuthmayer, C.2
Müller, S.3
-
36
-
-
0034615791
-
Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective
-
Schilling CH, Letscher D, Palsson B>. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 2000;203(3):229-48.
-
(2000)
J Theor Biol
, vol.203
, Issue.3
, pp. 229-248
-
-
Schilling, C.H.1
Letscher, D.2
Palsson, B.3
Oslash4
-
37
-
-
0023714694
-
Stoichiometric network analysis
-
Clarke BL. Stoichiometric network analysis. Cell Biochem Biophys 1988;12(1):237-53.
-
(1988)
Cell Biochem Biophys
, vol.12
, Issue.1
, pp. 237-253
-
-
Clarke, B.L.1
-
38
-
-
84901312605
-
Minimal cut sets and the use of failure modes in metabolic networks
-
Clark ST, Verwoerd WS. Minimal cut sets and the use of failure modes in metabolic networks. Metabolites 2012;2(3):567-95.
-
(2012)
Metabolites
, vol.2
, Issue.3
, pp. 567-595
-
-
Clark, S.T.1
Verwoerd, W.S.2
-
39
-
-
70349636598
-
Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns
-
Kaleta C, de Figueiredo LF, Schuster S. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res 2009;19(10):1872-83.
-
(2009)
Genome Res
, vol.19
, Issue.10
, pp. 1872-1883
-
-
Kaleta, C.1
De Figueiredo, L.F.2
Schuster, S.3
-
40
-
-
84907350970
-
Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path
-
Campodonico MA, Andrews BA, Asenjo JA, et al. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 2014;25:140-58.
-
(2014)
Metab Eng
, vol.25
, pp. 140-158
-
-
Campodonico, M.A.1
Andrews, B.A.2
Asenjo, J.A.3
-
41
-
-
17444382016
-
Exploring the diversity of complex metabolic networks
-
Hatzimanikatis V, Li C, Ionita JA, et al. Exploring the diversity of complex metabolic networks. Bioinformatics 2005;21(8):1603-9.
-
(2005)
Bioinformatics
, vol.21
, Issue.8
, pp. 1603-1609
-
-
Hatzimanikatis, V.1
Li, C.2
Ionita, J.A.3
-
42
-
-
84857192122
-
Computational tools for the synthetic design of biochemical pathways
-
Medema MH, Van Raaphorst R, Takano E, et al. Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 2012;10(3):191-202.
-
(2012)
Nat Rev Microbiol
, vol.10
, Issue.3
, pp. 191-202
-
-
Medema, M.H.1
Van Raaphorst, R.2
Takano, E.3
-
43
-
-
50649103751
-
Estimating the size of the solution space of metabolic networks
-
Braunstein A, Mulet R, Pagnani A. Estimating the size of the solution space of metabolic networks. BMC Bioinformatics 2008;9(1):240.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 240
-
-
Braunstein, A.1
Mulet, R.2
Pagnani, A.3
-
44
-
-
79956212972
-
Symbolic flux analysis for genome-scale metabolic networks
-
Schryer DW, Vendelin M, Peterson P. Symbolic flux analysis for genome-scale metabolic networks. BMC Syst Biol 2011;5(1):81.
-
(2011)
BMC Syst Biol
, vol.5
, Issue.1
, pp. 81
-
-
Schryer, D.W.1
Vendelin, M.2
Peterson, P.3
-
47
-
-
84928911367
-
Uniform sampling of steady states in metabolic networks: Heterogeneous scales and rounding
-
De Martino D, Mori M, Parisi V. Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding. PloS One 2015;10(4):e0122670.
-
(2015)
PloS One
, vol.10
, Issue.4
-
-
De Martino, D.1
Mori, M.2
Parisi, V.3
-
48
-
-
84988890296
-
MetaBoTools: A comprehensive toolbox for analysis of genome-scale metabolic models
-
Aurich MK, Fleming RM, Thiele I. MetaboTools: a comprehensive toolbox for analysis of genome-scale metabolic models. Frontiers in Physiology 2016;7:327.
-
(2016)
Frontiers in Physiology
, vol.7
, pp. 327
-
-
Aurich, M.K.1
Fleming, R.M.2
Thiele, I.3
-
49
-
-
65649126379
-
Connecting extracellular metabolomic measurements to intracellular flux states in yeast
-
Mo ML, Palsson B>, Herrgård MJ. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 2009;3(1):37.
-
(2009)
BMC Syst Biol
, vol.3
, Issue.1
, pp. 37
-
-
Mo, M.L.1
Palsson, B.2
Oslash3
Herrgård, M.J.4
-
50
-
-
84930373777
-
Prediction of intracellular metabolic states from extracellular metabolomic data
-
Aurich MK, Paglia G, Rolfsson O, et al. Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics 2015;11(3):603-19.
-
(2015)
Metabolomics
, vol.11
, Issue.3
, pp. 603-619
-
-
Aurich, M.K.1
Paglia, G.2
Rolfsson, O.3
-
52
-
-
84994442721
-
Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling
-
Zielinski ŁP, Smith AC, Smith AG, et al. Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion 2016;31:45-55.
-
(2016)
Mitochondrion
, vol.31
, pp. 45-55
-
-
Zielinski, Ł.P.1
Smith, A.C.2
Smith, A.G.3
-
54
-
-
0036708443
-
Dynamic flux balance analysis of diauxic growth in Escherichia coli
-
Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002;83(3):1331-40.
-
(2002)
Biophys J
, vol.83
, Issue.3
, pp. 1331-1340
-
-
Mahadevan, R.1
Edwards, J.S.2
Doyle, F.J.3
-
55
-
-
0034741983
-
13 C metabolic flux analysis
-
Wiechert W. 13 C metabolic flux analysis. Metab Eng 2001;3(3):195-206.
-
(2001)
Metab Eng
, vol.3
, Issue.3
, pp. 195-206
-
-
Wiechert, W.1
-
56
-
-
78751584992
-
Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments
-
Zhuang K, Izallalen M, Mouser P, et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 2011;5(2):305-16.
-
(2011)
ISME J
, vol.5
, Issue.2
, pp. 305-316
-
-
Zhuang, K.1
Izallalen, M.2
Mouser, P.3
-
57
-
-
84866128045
-
Shrinking the metabolic solution space using experimental datasets
-
Reed JL. Shrinking the metabolic solution space using experimental datasets. PLoS Comput Biol 2012;8(8):e1002662.
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.8
-
-
Reed, J.L.1
-
58
-
-
0034798879
-
Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments
-
Burgard AP, Vaidyaraman S, Maranas CD. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol Prog 2001;17(5):791-7.
-
(2001)
Biotechnol Prog
, vol.17
, Issue.5
, pp. 791-797
-
-
Burgard, A.P.1
Vaidyaraman, S.2
Maranas, C.D.3
-
59
-
-
1642457253
-
The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
-
Mahadevan R, Schilling C. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003;5(4):264-76.
-
(2003)
Metab Eng
, vol.5
, Issue.4
, pp. 264-276
-
-
Mahadevan, R.1
Schilling, C.2
-
61
-
-
84941198229
-
Heading in the right direction: Thermodynamics-based network analysis and pathway engineering
-
Ataman M, Hatzimanikatis V. Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr Opin Biotechnol 2015;36:176-82.
-
(2015)
Curr Opin Biotechnol
, vol.36
, pp. 176-182
-
-
Ataman, M.1
Hatzimanikatis, V.2
-
62
-
-
0036840340
-
Extreme pathways and Kirchhoff's second law
-
Price ND, Famili I, Beard DA, et al. Extreme pathways and Kirchhoff's second law. Biophys J 2002;83(5):2879.
-
(2002)
Biophys J
, vol.83
, Issue.5
, pp. 2879
-
-
Price, N.D.1
Famili, I.2
Beard, D.A.3
-
63
-
-
79551676901
-
Elimination of thermodynamically infeasible loops in steady-state metabolic models
-
Schellenberger J, Lewis NE, Palsson B>. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 2011;100(3):544-53.
-
(2011)
Biophys J
, vol.100
, Issue.3
, pp. 544-553
-
-
Schellenberger, J.1
Lewis, N.E.2
Palsson, B.3
Oslash4
-
64
-
-
0036286631
-
Energy balance for analysis of complex metabolic networks
-
Beard DA, Liang S, Qian H. Energy balance for analysis of complex metabolic networks. Biophys J 2002;83(1):79-86.
-
(2002)
Biophys J
, vol.83
, Issue.1
, pp. 79-86
-
-
Beard, D.A.1
Liang, S.2
Qian, H.3
-
65
-
-
84875625255
-
Fast thermodynamically constrained flux variability analysis
-
Müller AC, Bockmayr A. Fast thermodynamically constrained flux variability analysis. Bioinformatics 2013;29:903-9.
-
(2013)
Bioinformatics
, vol.29
, pp. 903-909
-
-
Müller, A.C.1
Bockmayr, A.2
-
66
-
-
77955141026
-
Omic data from evolved E. Coli are consistent with computed optimal growth from genome-scale models
-
Lewis NE, Hixson KK, Conrad TM, et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010;6(1):390.
-
(2010)
Mol Syst Biol
, vol.6
, Issue.1
, pp. 390
-
-
Lewis, N.E.1
Hixson, K.K.2
Conrad, T.M.3
-
67
-
-
84945144145
-
Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA
-
Rügen M, Bockmayr A, Steuer R. Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA. Sci Rep 2015;5:15247
-
(2015)
Sci Rep
, vol.5
, pp. 15247
-
-
Rügen, M.1
Bockmayr, A.2
Steuer, R.3
-
69
-
-
80052076284
-
Bacterial growth rate reflects a bottleneck in resource allocation
-
Goelzer A, Fromion V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim Biophys Acta 2011;1810(10):978-88.
-
(2011)
Biochim Biophys Acta
, vol.1810
, Issue.10
, pp. 978-988
-
-
Goelzer, A.1
Fromion, V.2
-
70
-
-
84978791333
-
Constrained allocation flux balance analysis
-
Mori M, Hwa T, Martin OC, et al. Constrained allocation flux balance analysis. PLoS Comput Biol 2016;12(6):e1004913.
-
(2016)
PLoS Comput Biol
, vol.12
, Issue.6
-
-
Mori, M.1
Hwa, T.2
Martin, O.C.3
-
71
-
-
84949117400
-
Predicting internal cell fluxes at suboptimal growth
-
Schultz A, Qutub AA. Predicting internal cell fluxes at suboptimal growth. BMC Syst Biol 2015;9(1):18.
-
(2015)
BMC Syst Biol
, vol.9
, Issue.1
, pp. 18
-
-
Schultz, A.1
Qutub, A.A.2
-
72
-
-
84880783396
-
Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM
-
Dreyfuss JM, Zucker JD, Hood HM, et al. Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLoS Comput Biol 2013;9(7):e1003126.
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.7
-
-
Dreyfuss, J.M.1
Zucker, J.D.2
Hood, H.M.3
-
73
-
-
34547683819
-
Bayesian flux balance analysis applied to a skeletal muscle metabolic model
-
Heino J, Tunyan K, Calvetti D, et al. Bayesian flux balance analysis applied to a skeletal muscle metabolic model. J Theor Biol 2007;248(1):91-110.
-
(2007)
J Theor Biol
, vol.248
, Issue.1
, pp. 91-110
-
-
Heino, J.1
Tunyan, K.2
Calvetti, D.3
-
74
-
-
74649085658
-
Metabolica: A statistical research tool for analyzing metabolic networks
-
Heino J, Calvetti D, Somersalo E. Metabolica: a statistical research tool for analyzing metabolic networks. Comput Methods Programs Biomed 2010;97(2):151-67.
-
(2010)
Comput Methods Programs Biomed
, vol.97
, Issue.2
, pp. 151-167
-
-
Heino, J.1
Calvetti, D.2
Somersalo, E.3
-
75
-
-
84891650773
-
Incorporation of flexible objectives and time-linked simulation with flux balance analysis
-
Birch EW, Udell M, Covert MW. Incorporation of flexible objectives and time-linked simulation with flux balance analysis. J Theor Biol 2014;345:12-21.
-
(2014)
J Theor Biol
, vol.345
, pp. 12-21
-
-
Birch, E.W.1
Udell, M.2
Covert, M.W.3
-
76
-
-
34247183123
-
A genome-scale computational study of the interplay between transcriptional regulation and metabolism
-
Shlomi T, Eisenberg Y, Sharan R, et al. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 2007;3(1):101.
-
(2007)
Mol Syst Biol
, vol.3
, Issue.1
, pp. 101
-
-
Shlomi, T.1
Eisenberg, Y.2
Sharan, R.3
-
77
-
-
51749113592
-
Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli
-
Covert MW, Xiao N, Chen TJ, et al. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 2008;24(18):2044-50.
-
(2008)
Bioinformatics
, vol.24
, Issue.18
, pp. 2044-2050
-
-
Covert, M.W.1
Xiao, N.2
Chen, T.J.3
-
78
-
-
44949247269
-
Dynamic analysis of integrated signaling, metabolic, and regulatory networks
-
Lee JM, Gianchandani EP, Eddy JA, et al. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 2008;4(5):e1000086.
-
(2008)
PLoS Comput Biol
, vol.4
, Issue.5
-
-
Lee, J.M.1
Gianchandani, E.P.2
Eddy, J.A.3
-
79
-
-
78049255973
-
Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
-
Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2010;107(41):17845-50.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.41
, pp. 17845-17850
-
-
Chandrasekaran, S.1
Price, N.D.2
-
80
-
-
84892690947
-
Metabolic constraint-based refinement of transcriptional regulatory networks
-
Chandrasekaran S, Price ND. Metabolic constraint-based refinement of transcriptional regulatory networks. PLoS Comput Biol 2013;9(12):e1003370.
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.12
-
-
Chandrasekaran, S.1
Price, N.D.2
-
81
-
-
84984994793
-
FlexFlux: Combining metabolic flux and regulatory network analyses
-
Marmiesse L, Peyraud R, Cottret L. FlexFlux: combining metabolic flux and regulatory network analyses. BMC Syst Biol 2015;9(1):93.
-
(2015)
BMC Syst Biol
, vol.9
, Issue.1
, pp. 93
-
-
Marmiesse, L.1
Peyraud, R.2
Cottret, L.3
-
82
-
-
85030102047
-
Mufins: Multi-formalism interaction network simulator
-
Wu H, Von Kamp A, Leoncikas V, et al. MUFINS: multi-formalism interaction network simulator. NPJ Syst Biol Appl 2016;2:16032.
-
(2016)
NPJ Syst Biol Appl
, vol.2
, pp. 16032
-
-
Wu, H.1
Von Kamp, A.2
Leoncikas, V.3
-
83
-
-
84895952176
-
QSSPN: Dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells
-
Fisher CP, Plant NJ, Moore JB, et al. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells. Bioinformatics 2013;29(24):3181-90.
-
(2013)
Bioinformatics
, vol.29
, Issue.24
, pp. 3181-3190
-
-
Fisher, C.P.1
Plant, N.J.2
Moore, J.B.3
-
85
-
-
85019116437
-
TRFBA: An algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data
-
Motamedian E, Mohammadi M, Shojaosadati SA, et al. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data. Bioinformatics 2017;33:1057-63.
-
(2017)
Bioinformatics
, vol.33
, pp. 1057-1063
-
-
Motamedian, E.1
Mohammadi, M.2
Shojaosadati, S.A.3
-
86
-
-
84874271270
-
NCBI GEO: Archive for functional genomics data sets-update
-
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Rese 2013;41(D1):D991-5.
-
(2013)
Nucleic Acids Rese
, vol.41
, Issue.D1
, pp. D991-D995
-
-
Barrett, T.1
Wilhite, S.E.2
Ledoux, P.3
-
87
-
-
84941103248
-
ArrayExpress update-simplifying data submissions
-
Kolesnikov N, Hastings E, Keays M, et al. ArrayExpress update-simplifying data submissions. Nucleic Acids Res 2015;43:D1113-6.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D1113-D1116
-
-
Kolesnikov, N.1
Hastings, E.2
Keays, M.3
-
88
-
-
84872596110
-
Reuse of public genome-wide gene expression data
-
Rung J, Brazma A. Reuse of public genome-wide gene expression data. Nat Rev Genet 2013;14(2):89-99.
-
(2013)
Nat Rev Genet
, vol.14
, Issue.2
, pp. 89-99
-
-
Rung, J.1
Brazma, A.2
-
89
-
-
84976878197
-
Expression Atlas update-an integrated database of gene and protein expression in humans, animals and plants
-
Petryszak R, Keays M, Tang YA, et al. Expression Atlas update-an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 2016;44:D746-52.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. D746-D752
-
-
Petryszak, R.1
Keays, M.2
Tang, Y.A.3
-
90
-
-
62349088493
-
GeneChaser: Identifying all biological and clinical conditions in which genes of interest are differentially expressed
-
Chen R, Mallelwar R, Thosar A, et al. GeneChaser: identifying all biological and clinical conditions in which genes of interest are differentially expressed. BMC Bioinformatics 2008;9(1):548.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 548
-
-
Chen, R.1
Mallelwar, R.2
Thosar, A.3
-
91
-
-
82255164258
-
Profilechaser: Searching microarray repositories based on genome-wide patterns of differential expression
-
Engreitz JM, Chen R, Morgan AA, et al. ProfileChaser: searching microarray repositories based on genome-wide patterns of differential expression. Bioinformatics 2011;27(23):3317-18.
-
(2011)
Bioinformatics
, vol.27
, Issue.23
, pp. 3317-3318
-
-
Engreitz, J.M.1
Chen, R.2
Morgan, A.A.3
-
92
-
-
1642377561
-
Oncomine: A cancer microarray database and integrated data-mining platform
-
Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004;6(1):1-6.
-
(2004)
Neoplasia
, vol.6
, Issue.1
, pp. 1-6
-
-
Rhodes, D.R.1
Yu, J.2
Shanker, K.3
-
93
-
-
85016154437
-
The mouse Gene Expression Database (GXD): 2017 update
-
Finger JH, Smith CM, Hayamizu TF, et al. The mouse Gene Expression Database (GXD): 2017 update. Nucleic Acids Res 2017;45(D1):D730-6.
-
(2017)
Nucleic Acids Res
, vol.45
, Issue.D1
, pp. D730-D736
-
-
Finger, J.H.1
Smith, C.M.2
Hayamizu, T.F.3
-
94
-
-
84891787981
-
The pancreatic expression database: Recent extensions and updates
-
Ullah AZD, Cutts RJ, Ghetia M, et al. The pancreatic expression database: recent extensions and updates. Nucleic Acids Res 2014;42(D1):D944-9.
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.D1
, pp. D944-D949
-
-
Ullah, A.Z.D.1
Cutts, R.J.2
Ghetia, M.3
-
95
-
-
84909608024
-
Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: A genome-scale metabolic model (GSMM) approach
-
Salehzadeh-Yazdi A, Asgari Y, Saboury AA, et al. Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: a genome-scale metabolic model (GSMM) approach. PloS One 2014;9(11):e111686.
-
(2014)
PloS One
, vol.9
, Issue.11
-
-
Salehzadeh-Yazdi, A.1
Asgari, Y.2
Saboury, A.A.3
-
96
-
-
84974663176
-
Advances in the integration of transcriptional regulatory information into genome-scale metabolic models
-
Vivek-Ananth R, Samal A. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems 2016;147:1-10.
-
(2016)
Biosystems
, vol.147
, pp. 1-10
-
-
Vivek-Ananth, R.1
Samal, A.2
-
97
-
-
84928412434
-
Methods for integration of transcriptomic data in genome-scale metabolic models
-
Kim MK, Lun DS. Methods for integration of transcriptomic data in genome-scale metabolic models. Comput Struct Biotechnol J 2014;11(18):59-65.
-
(2014)
Comput Struct Biotechnol J
, vol.11
, Issue.18
, pp. 59-65
-
-
Kim, M.K.1
Lun, D.S.2
-
98
-
-
44949225040
-
Context-specific metabolic networks are consistent with experiments
-
Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 2008;4(5):e1000082.
-
(2008)
PLoS Comput Biol
, vol.4
, Issue.5
-
-
Becker, S.A.1
Palsson, B.O.2
-
99
-
-
84890092837
-
GIm3E: Condition-specific models of cellular metabolism developed from metabolomics and expression data
-
Schmidt BJ, Ebrahim A, Metz TO, et al. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 2013;29(22):2900-8.
-
(2013)
Bioinformatics
, vol.29
, Issue.22
, pp. 2900-2908
-
-
Schmidt, B.J.1
Ebrahim, A.2
Metz, T.O.3
-
100
-
-
51349092391
-
Network-based prediction of human tissue-specific metabolism
-
Shlomi T, Cabili MN, Herrgård MJ, et al. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008;26(9):1003-10.
-
(2008)
Nat Biotechnol
, vol.26
, Issue.9
, pp. 1003-1010
-
-
Shlomi, T.1
Cabili, M.N.2
Herrgård, M.J.3
-
101
-
-
84866487453
-
Integration of expression data in genome-scale metabolic network reconstructions
-
Blazier AS, Papin JA. Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 2012;3:299.
-
(2012)
Front Physiol
, vol.3
, pp. 299
-
-
Blazier, A.S.1
Papin, J.A.2
-
102
-
-
79951745716
-
IMAT: An integrative metabolic analysis tool
-
Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool. Bioinformatics 2010;26(24):3140-2.
-
(2010)
Bioinformatics
, vol.26
, Issue.24
, pp. 3140-3142
-
-
Zur, H.1
Ruppin, E.2
Shlomi, T.3
-
103
-
-
84875977583
-
Inferring metabolic states in uncharacterized environments using gene-expression measurements
-
Rossell S, Huynen MA, Notebaart RA. Inferring metabolic states in uncharacterized environments using gene-expression measurements. PLoS Comput Biol 2013;9(3):e1002988.
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.3
-
-
Rossell, S.1
Huynen, M.A.2
Notebaart, R.A.3
-
104
-
-
84863662483
-
Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
-
Agren R, Bordel S, Mardinoglu A, et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 2012;8(5):e1002518.
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.5
-
-
Agren, R.1
Bordel, S.2
Mardinoglu, A.3
-
105
-
-
84901306814
-
Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
-
Machado D, Herrgård M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 2014;10(4):e1003580.
-
(2014)
PLoS Comput Biol
, vol.10
, Issue.4
-
-
Machado, D.1
Herrgård, M.2
-
106
-
-
84898663879
-
Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
-
Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol 2014;10(3):721.
-
(2014)
Mol Syst Biol
, vol.10
, Issue.3
, pp. 721
-
-
Agren, R.1
Mardinoglu, A.2
Asplund, A.3
-
107
-
-
79951536020
-
Functional integration of a metabolic network model and expression data without arbitrary thresholding
-
Jensen PA, Papin JA. Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 2011;27(4):541-7.
-
(2011)
Bioinformatics
, vol.27
, Issue.4
, pp. 541-547
-
-
Jensen, P.A.1
Papin, J.A.2
-
108
-
-
70049110173
-
Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production
-
Colijn C, Brandes A, Zucker J, et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 2009;5(8):e1000489.
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.8
-
-
Colijn, C.1
Brandes, A.2
Zucker, J.3
-
109
-
-
84976868799
-
E-Flux2 and SPOT: Validated methods for inferring intracellular metabolic flux distributions from transcriptomic data
-
Kim MK, Lane A, Kelley JJ, et al. E-Flux2 and SPOT: validated methods for inferring intracellular metabolic flux distributions from transcriptomic data. PLoS One 2016;11(6):e0157101.
-
(2016)
PLoS One
, vol.11
, Issue.6
-
-
Kim, M.K.1
Lane, A.2
Kelley, J.J.3
-
110
-
-
84944727589
-
Predictive analytics of environmental adaptability in multi-omic network models
-
Angione C, Lio P. Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 2015;5:15147.
-
(2015)
Sci Rep
, vol.5
, pp. 15147
-
-
Angione, C.1
Lio, P.2
-
111
-
-
84941702360
-
A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data
-
Barker BE, Sadagopan N, Wang Y, et al. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Comput Biol Chem 2015;59:98-112.
-
(2015)
Comput Biol Chem
, vol.59
, pp. 98-112
-
-
Barker, B.E.1
Sadagopan, N.2
Wang, Y.3
-
112
-
-
84862301363
-
Improving metabolic flux predictions using absolute gene expression data
-
Lee D, Smallbone K, Dunn WB, et al. Improving metabolic flux predictions using absolute gene expression data. BMC Syst Biol 2012;6(1):73.
-
(2012)
BMC Syst Biol
, vol.6
, Issue.1
, pp. 73
-
-
Lee, D.1
Smallbone, K.2
Dunn, W.B.3
-
113
-
-
84930377006
-
Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer
-
Yizhak K, Gaude E, Le Dévédec S, et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. Elife 2014;3:e03641.
-
(2014)
Elife
, vol.3
-
-
Yizhak, K.1
Gaude, E.2
Le Dévédec, S.3
-
114
-
-
84911888355
-
Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle
-
Song HS, Reifman J, Wallqvist A. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle. PloS One 2014;9(11):e112524.
-
(2014)
PloS One
, vol.9
, Issue.11
-
-
Song, H.S.1
Reifman, J.2
Wallqvist, A.3
-
115
-
-
85013046059
-
Making life difficult for Clostridium difficile: Augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization
-
Kashaf SS, Angione C, Lio P. Making life difficult for Clostridium difficile: augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization. BMC Syst Biol 2017;11(1):25.
-
(2017)
BMC Syst Biol
, vol.11
, Issue.1
, pp. 25
-
-
Kashaf, S.S.1
Angione, C.2
Lio, P.3
-
116
-
-
77956417789
-
Computational reconstruction of tissue-specific metabolic models: Application to human liver metabolism
-
Jerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 2010;6(1):401.
-
(2010)
Mol Syst Biol
, vol.6
, Issue.1
, pp. 401
-
-
Jerby, L.1
Shlomi, T.2
Ruppin, E.3
-
117
-
-
84896701551
-
Fast reconstruction of compact context-specific metabolic network models
-
Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 2014;10(1):e1003424.
-
(2014)
PLoS Comput Biol
, vol.10
, Issue.1
-
-
Vlassis, N.1
Pacheco, M.P.2
Sauter, T.3
-
118
-
-
84870933131
-
Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
-
Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 2012;6(1):153.
-
(2012)
BMC Syst Biol
, vol.6
, Issue.1
, pp. 153
-
-
Wang, Y.1
Eddy, J.A.2
Price, N.D.3
-
119
-
-
84945186280
-
Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network
-
Pacheco MP, John E, Kaoma T, et al. Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network. BMC Genomics 2015;16(1):809.
-
(2015)
BMC Genomics
, vol.16
, Issue.1
, pp. 809
-
-
Pacheco, M.P.1
John, E.2
Kaoma, T.3
-
120
-
-
84962059544
-
Reconstruction of tissue-specific metabolic networks using CORDA
-
Schultz A, Qutub AA. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 2016;12(3):e1004808.
-
(2016)
PLoS Comput Biol
, vol.12
, Issue.3
-
-
Schultz, A.1
Qutub, A.A.2
-
121
-
-
84941312579
-
Context-specific metabolic model extraction based on regularized least squares optimization
-
Estévez SR, Nikoloski Z. Context-specific metabolic model extraction based on regularized least squares optimization. PloS One 2015;10(7):e0131875.
-
(2015)
PloS One
, vol.10
, Issue.7
-
-
Estévez, S.R.1
Nikoloski, Z.2
-
122
-
-
85062462389
-
Gene-centric constraint of metabolic models
-
Fyson N, Kim MK, Lun D, et al. Gene-centric constraint of metabolic models. bioRxiv 2017, 116558.
-
(2017)
bioRxiv
, pp. 116558
-
-
Fyson, N.1
Kim, M.K.2
Lun, D.3
-
123
-
-
85021732951
-
Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function
-
press
-
Zhang SW, Gou WL, Li Y. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function. Mol Biosyst 2017, in press.
-
(2017)
Mol Biosyst
-
-
Zhang, S.W.1
Gou, W.L.2
Li, Y.3
-
124
-
-
84964582904
-
OM-FBA: Integrate transcriptomics data with flux balance analysis to decipher the cell metabolism
-
Guo W, Feng X. OM-FBA: integrate transcriptomics data with flux balance analysis to decipher the cell metabolism. PloS One 2016;11(4):e0154188.
-
(2016)
PloS One
, vol.11
, Issue.4
-
-
Guo, W.1
Feng, X.2
-
125
-
-
48249142459
-
Can single knockouts accurately single out gene functions?
-
Deutscher D, Meilijson I, Schuster S, et al. Can single knockouts accurately single out gene functions? BMC Syst Biol 2008;2(1):50.
-
(2008)
BMC Syst Biol
, vol.2
, Issue.1
, pp. 50
-
-
Deutscher, D.1
Meilijson, I.2
Schuster, S.3
-
126
-
-
78650890720
-
Synthetic lethality: General principles, utility and detection using genetic screens in human cells
-
Nijman S. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett 2011;585(1):1-6.
-
(2011)
FEBS Lett
, vol.585
, Issue.1
, pp. 1-6
-
-
Nijman, S.1
-
127
-
-
69249102097
-
Genome-scale gene/ reaction essentiality and synthetic lethality analysis
-
Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/ reaction essentiality and synthetic lethality analysis. Mol Syst Biol 2009;5:301.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 301
-
-
Suthers, P.F.1
Zomorrodi, A.2
Maranas, C.D.3
-
128
-
-
84947716970
-
Fast-SL: An efficient algorithm to identify synthetic lethal sets in metabolic networks
-
Pratapa A, Balachandran S, Raman K. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics 2015;31:3299-305.
-
(2015)
Bioinformatics
, vol.31
, pp. 3299-3305
-
-
Pratapa, A.1
Balachandran, S.2
Raman, K.3
-
129
-
-
85007247161
-
Direct calculation of minimal cut sets involving a specific reaction knock-out
-
Tobalina L, Pey J, Planes FJ. Direct calculation of minimal cut sets involving a specific reaction knock-out. Bioinformatics 2016;32(13):2001-7.
-
(2016)
Bioinformatics
, vol.32
, Issue.13
, pp. 2001-2007
-
-
Tobalina, L.1
Pey, J.2
Planes, F.J.3
-
130
-
-
84907333139
-
Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality
-
Jerby-Arnon L, Pfetzer N, Waldman YY, et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 2014;158(5):1199-209.
-
(2014)
Cell
, vol.158
, Issue.5
, pp. 1199-1209
-
-
Jerby-Arnon, L.1
Pfetzer, N.2
Waldman, Y.Y.3
-
131
-
-
84942693276
-
Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival
-
Megchelenbrink W, Katzir R, Lu X, et al. Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival. Proc Natl Acad Sci USA 2015;112(39):12217-22.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.39
, pp. 12217-12222
-
-
Megchelenbrink, W.1
Katzir, R.2
Lu, X.3
-
132
-
-
84860822839
-
Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico
-
McAnulty MJ, Yen JY, Freedman BG, et al. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 2012;6(1):42.
-
(2012)
BMC Syst Biol
, vol.6
, Issue.1
, pp. 42
-
-
McAnulty, M.J.1
Yen, J.Y.2
Freedman, B.G.3
-
133
-
-
84877134633
-
Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints
-
Yen JY, Nazem-Bokaee H, Freedman BG, et al. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Biotechnol J 2013;8(5):581-94.
-
(2013)
Biotechnol J
, vol.8
, Issue.5
, pp. 581-594
-
-
Yen, J.Y.1
Nazem-Bokaee, H.2
Freedman, B.G.3
-
134
-
-
0037069467
-
Analysis of optimality in natural and perturbed metabolic networks
-
Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 2002;99(23):15112-17.
-
(2002)
Proc Natl Acad Sci
, vol.99
, Issue.23
, pp. 15112-15117
-
-
Segre, D.1
Vitkup, D.2
Church, G.M.3
-
136
-
-
77954197778
-
Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
-
Yizhak K, Benyamini T, Liebermeister W, et al. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 2010;26(12):i255-60.
-
(2010)
Bioinformatics
, vol.26
, Issue.12
, pp. i255-i260
-
-
Yizhak, K.1
Benyamini, T.2
Liebermeister, W.3
-
137
-
-
19644386033
-
Regulatory on/off minimization of metabolic flux changes after genetic perturbations
-
Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 2005;102(21):7695-700.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, Issue.21
, pp. 7695-7700
-
-
Shlomi, T.1
Berkman, O.2
Ruppin, E.3
-
138
-
-
84866539049
-
Relatch: Relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations
-
Kim J, Reed JL. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome Biol 2012;13(9):R78.
-
(2012)
Genome Biol
, vol.13
, Issue.9
, pp. R78
-
-
Kim, J.1
Reed, J.L.2
-
139
-
-
84939810702
-
A hybrid of metabolic flux analysis and Bayesian factor modeling for multiomic temporal pathway activation
-
Angione C, Pratanwanich N, Lio P. A hybrid of metabolic flux analysis and Bayesian factor modeling for multiomic temporal pathway activation. ACS Synth Biol 2015;4(8):880-9.
-
(2015)
ACS Synth Biol
, vol.4
, Issue.8
, pp. 880-889
-
-
Angione, C.1
Pratanwanich, N.2
Lio, P.3
-
141
-
-
33847307148
-
Bayesian-based selection of metabolic objective functions
-
Knorr AL, Jain R, Srivastava R. Bayesian-based selection of metabolic objective functions. Bioinformatics 2007;23(3):351-7.
-
(2007)
Bioinformatics
, vol.23
, Issue.3
, pp. 351-357
-
-
Knorr, A.L.1
Jain, R.2
Srivastava, R.3
-
142
-
-
77953296954
-
Multi-objective mixed integer strategy for the optimisation of biological networks
-
Sendin J, Exler O, Banga JR. Multi-objective mixed integer strategy for the optimisation of biological networks. IET Syst Biol 2010;4(3):236-48.
-
(2010)
IET Syst Biol
, vol.4
, Issue.3
, pp. 236-248
-
-
Sendin, J.1
Exler, O.2
Banga, J.R.3
-
144
-
-
84945579497
-
Multi-target analysis and design of mitochondrial metabolism
-
Angione C, Costanza J, Carapezza G, et al. Multi-target analysis and design of mitochondrial metabolism. PloS One 2015;10(9):e0133825.
-
(2015)
PloS One
, vol.10
, Issue.9
-
-
Angione, C.1
Costanza, J.2
Carapezza, G.3
-
145
-
-
84891553151
-
Global dynamic optimization approach to predict activation in metabolic pathways
-
de Hijas-Liste GM, Klipp E, Balsa-Canto E, et al. Global dynamic optimization approach to predict activation in metabolic pathways. BMC Syst Biol 2014;8(1):1.
-
(2014)
BMC Syst Biol
, vol.8
, Issue.1
, pp. 1
-
-
De Hijas-Liste, G.M.1
Klipp, E.2
Balsa-Canto, E.3
-
147
-
-
67651098861
-
Multi-objective optimisation of metabolic productivity and thermodynamic performance
-
Xu M, Bhat S, Smith R, et al. Multi-objective optimisation of metabolic productivity and thermodynamic performance. Comput Chem Eng 2009;33(9):1438-50.
-
(2009)
Comput Chem Eng
, vol.33
, Issue.9
, pp. 1438-1450
-
-
Xu, M.1
Bhat, S.2
Smith, R.3
-
148
-
-
33746828943
-
Model based optimization of biochemical systems using multiple objectives: A comparison of several solution strategies
-
Sendın OH, Vera J, Torres NV, et al. Model based optimization of biochemical systems using multiple objectives: a comparison of several solution strategies. Math Comput Model Dyn Syst 2006;12(5):469-87.
-
(2006)
Math Comput Model Dyn Syst
, vol.12
, Issue.5
, pp. 469-487
-
-
Sendın, O.H.1
Vera, J.2
Torres, N.V.3
-
151
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm: NSGA-II
-
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans Evol Comp 2002;6(2):182-97. Available from: http://dx.doi.org/10.1109/4235.996017.
-
(2002)
Trans Evol Comp
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
-
153
-
-
84866180675
-
Enhancing diversity for NSGA-II in evolutionary multi-objective optimization
-
New York: IEEE, 2012
-
Zheng J, Shen R, Zou J. Enhancing diversity for NSGA-II in evolutionary multi-objective optimization. In: Eighth International Conference on Natural Computation (ICNC), 2012. New York: IEEE, 2012, 654-7.
-
(2012)
Eighth International Conference on Natural Computation (ICNC)
, pp. 654-657
-
-
Zheng, J.1
Shen, R.2
Zou, J.3
-
154
-
-
0242487787
-
OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003;84(6):647-57.
-
(2003)
Biotechnol Bioeng
, vol.84
, Issue.6
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
155
-
-
0347762731
-
Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock
-
Pharkya P, Burgard AP, Maranas CD. Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 2003;84(7):887-99.
-
(2003)
Biotechnol Bioeng
, vol.84
, Issue.7
, pp. 887-899
-
-
Pharkya, P.1
Burgard, A.P.2
Maranas, C.D.3
-
156
-
-
77949495880
-
Predicting metabolic engineering knockout strategies for chemical production: Accounting for competing pathways
-
Tepper N, Shlomi T. Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 2010;26(4):536-43.
-
(2010)
Bioinformatics
, vol.26
, Issue.4
, pp. 536-543
-
-
Tepper, N.1
Shlomi, T.2
-
157
-
-
77954590959
-
Optforce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
-
Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 2010;6(4):e1000744.
-
(2010)
PLoS Comput Biol
, vol.6
, Issue.4
-
-
Ranganathan, S.1
Suthers, P.F.2
Maranas, C.D.3
-
158
-
-
84895756673
-
K-Optforce: Integrating kinetics with flux balance analysis for strain design
-
Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol 2014;10(2):e1003487.
-
(2014)
PLoS Comput Biol
, vol.10
, Issue.2
-
-
Chowdhury, A.1
Zomorrodi, A.R.2
Maranas, C.D.3
-
159
-
-
84892598828
-
Reacknock: Identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network
-
Xu Z, Zheng P, Sun J, et al. ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network. PloS One 2013;8(12):e72150.
-
(2013)
PloS One
, vol.8
, Issue.12
-
-
Xu, Z.1
Zheng, P.2
Sun, J.3
-
160
-
-
8744224466
-
Optstrain: A computational framework for redesign of microbial production systems
-
Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial production systems. Genome Res 2004;14(11):2367-76.
-
(2004)
Genome Res
, vol.14
, Issue.11
, pp. 2367-2376
-
-
Pharkya, P.1
Burgard, A.P.2
Maranas, C.D.3
-
161
-
-
80052573483
-
Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
-
Kim J, Reed JL, Maravelias CT. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 2011;6(9):e24162.
-
(2011)
PLoS One
, vol.6
, Issue.9
-
-
Kim, J.1
Reed, J.L.2
Maravelias, C.T.3
-
162
-
-
69249146187
-
Large-scale identification of genetic design strategies using local search
-
Lun DS, Rockwell G, Guido NJ, et al. Large-scale identification of genetic design strategies using local search. Mol Syst Biol 2009;5:296.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 296
-
-
Lun, D.S.1
Rockwell, G.2
Guido, N.J.3
-
163
-
-
67650660144
-
Increased malonyl co-enzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
-
Fowler ZL, Gikandi WW, Koffas MA. Increased malonyl co-enzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 2009;75(18):5831-9.
-
(2009)
Appl Environ Microbiol
, vol.75
, Issue.18
, pp. 5831-5839
-
-
Fowler, Z.L.1
Gikandi, W.W.2
Koffas, M.A.3
-
164
-
-
58149307906
-
Natural computation meta-heuristics for the in silico optimization of microbial strains
-
Rocha M, Maia P, Mendes R, et al. Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 2008;9(1):499.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 499
-
-
Rocha, M.1
Maia, P.2
Mendes, R.3
-
165
-
-
77955653535
-
Soft constraints-based multiobjective framework for flux balance analysis
-
Nagrath D, Avila-Elchiver M, Berthiaume F, et al. Soft constraints-based multiobjective framework for flux balance analysis. Metab Eng 2010;12(5):429-45.
-
(2010)
Metab Eng
, vol.12
, Issue.5
, pp. 429-445
-
-
Nagrath, D.1
Avila-Elchiver, M.2
Berthiaume, F.3
-
166
-
-
84866090747
-
Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks
-
Kelk SM, Olivier BG, Stougie L, et al. Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci Rep 2012;2:580.
-
(2012)
Sci Rep
, vol.2
, pp. 580
-
-
Kelk, S.M.1
Olivier, B.G.2
Stougie, L.3
-
167
-
-
84929485274
-
Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models
-
Maarleveld TR, Wortel MT, Olivier BG, et al. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models. PLoS Comput Biol 2015;11(4):e1004166.
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.4
-
-
Maarleveld, T.R.1
Wortel, M.T.2
Olivier, B.G.3
-
168
-
-
84861180223
-
OpTCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities
-
Zomorrodi AR, Maranas CD. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 2012;8(2):e1002363.
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.2
-
-
Zomorrodi, A.R.1
Maranas, C.D.2
-
169
-
-
84878575301
-
Community flux balance analysis for microbial consortia at balanced growth
-
Khandelwal RA, Olivier BG, Röling WF, et al. Community flux balance analysis for microbial consortia at balanced growth. PLoS One 2013;8(5):e64567.
-
(2013)
PLoS One
, vol.8
, Issue.5
-
-
Khandelwal, R.A.1
Olivier, B.G.2
Röling, W.F.3
-
170
-
-
85006107025
-
Constraint-based stoichiometric modelling from single organisms to microbial communities
-
Gottstein W, Olivier BG, Bruggeman FJ, et al. Constraint-based stoichiometric modelling from single organisms to microbial communities. J R Soc Interface 2016;13(124):20160627.
-
(2016)
J R Soc Interface
, vol.13
, Issue.124
, pp. 20160627
-
-
Gottstein, W.1
Olivier, B.G.2
Bruggeman, F.J.3
-
171
-
-
84938586730
-
Quantifying diet-induced metabolic changes of the human gut microbiome
-
Shoaie S, Ghaffari P, Kovatcheva-Datchary P, et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab 2015;22(2):320-31.
-
(2015)
Cell Metab
, vol.22
, Issue.2
, pp. 320-331
-
-
Shoaie, S.1
Ghaffari, P.2
Kovatcheva-Datchary, P.3
-
172
-
-
84946615442
-
Calibration and analysis of genome-based models for microbial ecology
-
Louca S, Doebeli M. Calibration and analysis of genome-based models for microbial ecology. Elife 2015;4:e08208.
-
(2015)
Elife
, vol.4
-
-
Louca, S.1
Doebeli, M.2
-
173
-
-
84901273253
-
Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics
-
Harcombe WR, Riehl WJ, Dukovski I, et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 2014;7(4):1104-15.
-
(2014)
Cell Rep
, vol.7
, Issue.4
, pp. 1104-1115
-
-
Harcombe, W.R.1
Riehl, W.J.2
Dukovski, I.3
-
174
-
-
84918789208
-
MetDFBA: Incorporating time-resolved metabolomics measurements into dynamic flux balance analysis
-
Willemsen AM, Hendrickx DM, Hoefsloot HC, et al. MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis. Mol Biosyst 2015;11(1):137-45.
-
(2015)
Mol Biosyst
, vol.11
, Issue.1
, pp. 137-145
-
-
Willemsen, A.M.1
Hendrickx, D.M.2
Hoefsloot, H.C.3
-
175
-
-
84899012698
-
D-OpTCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities
-
Zomorrodi AR, Islam MM, Maranas CD. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 2014;3(4):247-57.
-
(2014)
ACS Synth Biol
, vol.3
, Issue.4
, pp. 247-257
-
-
Zomorrodi, A.R.1
Islam, M.M.2
Maranas, C.D.3
-
176
-
-
84994681134
-
AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology
-
Balsa-Canto E, Henriques D, Gabor A, et al. AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology. Bioinformatics 2016;32:3357-3359.
-
(2016)
Bioinformatics
, vol.32
, pp. 3357-3359
-
-
Balsa-Canto, E.1
Henriques, D.2
Gabor, A.3
-
177
-
-
58749106454
-
Ensemble modeling of metabolic networks
-
Tran LM, Rizk ML, Liao JC. Ensemble modeling of metabolic networks. Biophys J 2008;95(12):5606-17.
-
(2008)
Biophys J
, vol.95
, Issue.12
, pp. 5606-5617
-
-
Tran, L.M.1
Rizk, M.L.2
Liao, J.C.3
-
178
-
-
84904296838
-
Ensemble modeling for robustness analysis in engineering non-native metabolic pathways
-
Lee Y, Rivera JGL, Liao JC. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab Eng 2014;25:63-71.
-
(2014)
Metab Eng
, vol.25
, pp. 63-71
-
-
Lee, Y.1
Rivera, J.G.L.2
Liao, J.C.3
-
179
-
-
69149110444
-
Multiobjective flux balancing using the NISE method for metabolic network analysis
-
Oh YG, Lee DY, Lee SY, et al. Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnol Prog 2009;25(4):999-1008.
-
(2009)
Biotechnol Prog
, vol.25
, Issue.4
, pp. 999-1008
-
-
Oh, Y.G.1
Lee, D.Y.2
Lee, S.Y.3
-
180
-
-
79960710926
-
Optimal performance of the heat-shock gene regulatory network
-
El Samad H, Khammash M, Homescu C, et al. Optimal performance of the heat-shock gene regulatory network. IFAC Proc Vol 2005;38(1):19-24.
-
(2005)
IFAC Proc
, vol.38
, Issue.1
, pp. 19-24
-
-
El Samad, H.1
Khammash, M.2
Homescu, C.3
-
181
-
-
77956134208
-
Analysis and optimization of c3 photosynthetic carbon metabolism
-
New York: IEEE, 2010
-
Stracquadanio G, Umeton R, Papini A, et al. Analysis and optimization of c3 photosynthetic carbon metabolism. In: IEEE International Conference on BioInformatics and BioEngineering (BIBE), 2010. New York: IEEE, 2010, 44-51.
-
(2010)
IEEE International Conference on BioInformatics and BioEngineering (BIBE)
, pp. 44-51
-
-
Stracquadanio, G.1
Umeton, R.2
Papini, A.3
-
182
-
-
77951996338
-
A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems
-
Zhang HX, Goutsias J. A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems. BMC Bioinformatics 2010; 11(1):246.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 246
-
-
Zhang, H.X.1
Goutsias, J.2
-
183
-
-
33747889036
-
Sensitivity analysis of differential-algebraic equations and partial differential equations
-
Petzold L, Li S, Cao Y, et al. Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput Chem Eng 2006;30(10):1553-9.
-
(2006)
Comput Chem Eng
, vol.30
, Issue.10
, pp. 1553-1559
-
-
Petzold, L.1
Li, S.2
Cao, Y.3
-
184
-
-
85008259039
-
Thermodynamics-based metabolite sensitivity analysis in metabolic networks
-
Kiparissides A, Hatzimanikatis V. Thermodynamics-based metabolite sensitivity analysis in metabolic networks. Metab Eng 2017;39:117-27.
-
(2017)
Metab Eng
, vol.39
, pp. 117-127
-
-
Kiparissides, A.1
Hatzimanikatis, V.2
-
185
-
-
77955058605
-
Production of biofuels and biochemicals: In need of an ORACLE
-
Miskovic L, Hatzimanikatis V. Production of biofuels and biochemicals: in need of an ORACLE. Trends Biotechnol 2010;28(8):391-7.
-
(2010)
Trends Biotechnol
, vol.28
, Issue.8
, pp. 391-397
-
-
Miskovic, L.1
Hatzimanikatis, V.2
-
186
-
-
84952637898
-
ISCHRUNK-In Silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
-
Andreozzi S, Miskovic L, Hatzimanikatis V. iSCHRUNK-In Silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metab Eng 2016;33:158-68.
-
(2016)
Metab Eng
, vol.33
, pp. 158-168
-
-
Andreozzi, S.1
Miskovic, L.2
Hatzimanikatis, V.3
-
190
-
-
84887452388
-
A survey of multi-view machine learning
-
Sun S. A survey of multi-view machine learning. Neural Comput Appl 2013;23(7-8):2031-8.
-
(2013)
Neural Comput Appl
, vol.23
, Issue.7-8
, pp. 2031-2038
-
-
Sun, S.1
-
192
-
-
84925031191
-
Methods of integrating data to uncover genotype-phenotype interactions
-
Ritchie MD, Holzinger ER, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 2015;16(2):85-97.
-
(2015)
Nat Rev Genet
, vol.16
, Issue.2
, pp. 85-97
-
-
Ritchie, M.D.1
Holzinger, E.R.2
Li, R.3
-
193
-
-
84939481400
-
MVDA: A multi-view genomic data integration methodology
-
Serra A, Fratello M, Fortino V, et al. MVDA: a multi-view genomic data integration methodology. BMC Bioinformatics 2015;16(1):261.
-
(2015)
BMC Bioinformatics
, vol.16
, Issue.1
, pp. 261
-
-
Serra, A.1
Fratello, M.2
Fortino, V.3
-
194
-
-
84964674890
-
Pan-cancer sub-typing in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics
-
Taskesen E, Huisman SM, Mahfouz A, et al. Pan-cancer sub-typing in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics. Sci Rep 2016;6(24949):1-13.
-
(2016)
Sci Rep
, vol.6
, Issue.24949
, pp. 1-13
-
-
Taskesen, E.1
Huisman, S.M.2
Mahfouz, A.3
-
195
-
-
84931091190
-
Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
-
Speicher NK, Pfeifer N. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics 2015;31(12):i268-75.
-
(2015)
Bioinformatics
, vol.31
, Issue.12
, pp. i268-i275
-
-
Speicher, N.K.1
Pfeifer, N.2
-
196
-
-
84934440205
-
Clustering
-
IEEE, New York
-
McLachlan GJ, Bean RW, Ng SK. Clustering. In: Bioinformatics: Structure, Function and Applications. 2008, 423-39. IEEE, New York.
-
(2008)
Bioinformatics: Structure, Function and Applications
, pp. 423-439
-
-
McLachlan, G.J.1
Bean, R.W.2
Ng, S.K.3
-
197
-
-
84874615171
-
TW-k-means: Automated two-level variable weighting clustering algorithm for multiview data
-
Chen X, Xu X, Huang JZ, et al. TW-k-means: automated two-level variable weighting clustering algorithm for multiview data. IEEE Trans Knowl Data Eng 2013;25(4):932-44.
-
(2013)
IEEE Trans Knowl Data Eng
, vol.25
, Issue.4
, pp. 932-944
-
-
Chen, X.1
Xu, X.2
Huang, J.Z.3
-
198
-
-
70449331456
-
Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
-
Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009;25(22):2906-12.
-
(2009)
Bioinformatics
, vol.25
, Issue.22
, pp. 2906-2912
-
-
Shen, R.1
Olshen, A.B.2
Ladanyi, M.3
-
200
-
-
84895516704
-
Similarity network fusion for aggregating data types on a genomic scale
-
Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11(3):333-7.
-
(2014)
Nat Methods
, vol.11
, Issue.3
, pp. 333-337
-
-
Wang, B.1
Mezlini, A.M.2
Demir, F.3
-
201
-
-
84978924623
-
Multiplex methods provide effective integration of multi-omic data in genome-scale models
-
Angione C, Conway M, Lio P. Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinformatics 2016;17(4):257.
-
(2016)
BMC Bioinformatics
, vol.17
, Issue.4
, pp. 257
-
-
Angione, C.1
Conway, M.2
Lio, P.3
-
203
-
-
85018416206
-
A review on machine learning principles for multi-view biological data integration
-
press
-
Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integration. Brief Bioinformatics 2016, in press.
-
(2016)
Brief Bioinformatics
-
-
Li, Y.1
Wu, F.X.2
Ngom, A.3
-
204
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001;45(1):5-32.
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
205
-
-
84907452523
-
A robust and accurate method for feature selection and prioritization from multi-class OMICs data
-
Fortino V, Kinaret P, Fyhrquist N, et al. A robust and accurate method for feature selection and prioritization from multi-class OMICs data. PloS One 2014;9(9):e107801.
-
(2014)
PloS One
, vol.9
, Issue.9
-
-
Fortino, V.1
Kinaret, P.2
Fyhrquist, N.3
-
206
-
-
84997521933
-
Integration of metabolomics, lipidomics and clinical data using a machine learning method
-
Acharjee A, Ament Z, West JA, et al. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinformatics 2016;17(15):37.
-
(2016)
BMC Bioinformatics
, vol.17
, Issue.15
, pp. 37
-
-
Acharjee, A.1
Ament, Z.2
West, J.A.3
-
207
-
-
84908543129
-
Exploring the complexity of pathway-drug relationships using latent Dirichlet allocation
-
Pratanwanich N, Lio P. Exploring the complexity of pathway-drug relationships using latent Dirichlet allocation. Comput Biol Chem 2014;53:144-52.
-
(2014)
Comput Biol Chem
, vol.53
, pp. 144-152
-
-
Pratanwanich, N.1
Lio, P.2
|