메뉴 건너뛰기




Volumn 19, Issue 6, 2017, Pages 1218-1235

Seeing the wood for the trees: A forest of methods for optimization and omic-network integration in metabolic modelling

Author keywords

Data integration; Flux balance analysis; Genome scale models; Metabolic models; Multi objective optimization; Poly omic

Indexed keywords

ARTICLE; FOREST; GENOME; HUMAN; MACHINE LEARNING; PUBLICATION; SYSTEMS BIOLOGY; VISION; METABOLISM; PROCEDURES; THEORETICAL MODEL;

EID: 85057522434     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbx053     Document Type: Article
Times cited : (40)

References (207)
  • 1
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28(1):27-30.
    • (2000) Nucleic Acids Res , vol.28 , Issue.1 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 2
    • 77951612556 scopus 로고    scopus 로고
    • Bigg: A Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions
    • Schellenberger J, Park JO, Conrad TM, et al. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 2010;11(1):213.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 213
    • Schellenberger, J.1    Park, J.O.2    Conrad, T.M.3
  • 3
    • 27244436714 scopus 로고    scopus 로고
    • Expansion of the BioCyc collection of pathway/genome databases to 160 genomes
    • Karp PD, Ouzounis CA, Moore-Kochlacs C, et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 2005;33(19):6083-9.
    • (2005) Nucleic Acids Res , vol.33 , Issue.19 , pp. 6083-6089
    • Karp, P.D.1    Ouzounis, C.A.2    Moore-Kochlacs, C.3
  • 4
    • 84976865354 scopus 로고    scopus 로고
    • MetaNetX/MNXref-reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks
    • Moretti S, Martin O, Van Du Tran T, et al. MetaNetX/MNXref-reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res 2016;44(D1):D523-6.
    • (2016) Nucleic Acids Res , vol.44 , Issue.D1 , pp. D523-D526
    • Moretti, S.1    Martin, O.2    Van Du Tran, T.3
  • 5
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • Henry CS, DeJongh M, Best AA, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010;28(9):977-82.
    • (2010) Nat Biotechnol , vol.28 , Issue.9 , pp. 977-982
    • Henry, C.S.1    DeJongh, M.2    Best, A.A.3
  • 6
    • 85011339292 scopus 로고    scopus 로고
    • Meneco, a topology-based gap-filling tool applicable to degraded genome-wide metabolic networks
    • Prigent S, Frioux C, Dittami SM, et al. Meneco, a topology-based gap-filling tool applicable to degraded genome-wide metabolic networks. PLoS Comput Biol 2017;13(1):e1005276.
    • (2017) PLoS Comput Biol , vol.13 , Issue.1
    • Prigent, S.1    Frioux, C.2    Dittami, S.M.3
  • 7
    • 85062475488 scopus 로고    scopus 로고
    • Genome-scale metabolic models as platforms for strain design and biological discovery
    • press, Just-acceptedjust-accepted
    • Mienda BS. Genome-scale metabolic models as platforms for strain design and biological discovery. J Biomol Struct Dyn 2016, in press, Just-accepted(just-accepted):1-23.
    • (2016) J Biomol Struct Dyn , pp. 1-23
    • Mienda, B.S.1
  • 8
    • 63549108441 scopus 로고    scopus 로고
    • GrowMatch: An automated method for reconciling in silico/in vivo growth predictions
    • Kumar VS, Maranas CD. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 2009;5(3):e1000308.
    • (2009) PLoS Comput Biol , vol.5 , Issue.3
    • Kumar, V.S.1    Maranas, C.D.2
  • 9
    • 33751226921 scopus 로고    scopus 로고
    • Systems approach to refining genome annotation
    • Reed JL, Patel TR, Chen KH, et al. Systems approach to refining genome annotation. Proc Natl Acad Sci USA 2006;103(46):17480-4.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.46 , pp. 17480-17484
    • Reed, J.L.1    Patel, T.R.2    Chen, K.H.3
  • 10
    • 33746660425 scopus 로고    scopus 로고
    • Identification of genome-scale metabolic network models using experimentally measured flux profiles
    • Herrgård MJ, Fong SS, Palsson B>. Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol 2006;2(7):e72.
    • (2006) PLoS Comput Biol , vol.2 , Issue.7
    • Herrgård, M.J.1    Fong, S.S.2    Palsson, B.3    Oslash4
  • 11
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • OBrien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell 2015;161(5):971-87.
    • (2015) Cell , vol.161 , Issue.5 , pp. 971-987
    • OBrien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 12
    • 34547676311 scopus 로고    scopus 로고
    • Optimization based automated curation of metabolic reconstructions
    • Kumar VS, Dasika MS, Maranas CD. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 2007;8:(1):212.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 212
    • Kumar, V.S.1    Dasika, M.S.2    Maranas, C.D.3
  • 13
    • 84907026934 scopus 로고    scopus 로고
    • FastGapfill: Efficient gap filling in metabolic networks
    • Thiele I, Vlassis N, Fleming RM. fastGapFill: efficient gap filling in metabolic networks. Bioinformatics 2014;30(17):2529-31.
    • (2014) Bioinformatics , vol.30 , Issue.17 , pp. 2529-2531
    • Thiele, I.1    Vlassis, N.2    Fleming, R.M.3
  • 14
    • 84870053320 scopus 로고    scopus 로고
    • Mirage: A functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks
    • Vitkin E, Shlomi T. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 2012;13(11):R111.
    • (2012) Genome Biol , vol.13 , Issue.11 , pp. R111
    • Vitkin, E.1    Shlomi, T.2
  • 16
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis NE, Nagarajan H, Palsson B>. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 2012;10(4):291-305.
    • (2012) Nat Rev Microbiol , vol.10 , Issue.4 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.3    Oslash4
  • 18
    • 3342925846 scopus 로고    scopus 로고
    • Comparison of network-based pathway analysis methods
    • Papin JA, Stelling J, Price ND, et al. Comparison of network-based pathway analysis methods. Trends Biotechnol 2004;22(8):400-5.
    • (2004) Trends Biotechnol , vol.22 , Issue.8 , pp. 400-405
    • Papin, J.A.1    Stelling, J.2    Price, N.D.3
  • 19
    • 84857791962 scopus 로고    scopus 로고
    • A network-based gene-weighting approach for pathway analysis
    • Fang Z, Tian W, Ji H. A network-based gene-weighting approach for pathway analysis. Cell Res 2012;22(3):565-80.
    • (2012) Cell Res , vol.22 , Issue.3 , pp. 565-580
    • Fang, Z.1    Tian, W.2    Ji, H.3
  • 20
    • 85006927692 scopus 로고    scopus 로고
    • A network-based pathway-expanding approach for pathway analysis
    • Zhang Q, Li J, Xie H, et al. A network-based pathway-expanding approach for pathway analysis. BMC Bioinformatics 2016;17(17):231.
    • (2016) BMC Bioinformatics , vol.17 , Issue.17 , pp. 231
    • Zhang, Q.1    Li, J.2    Xie, H.3
  • 22
    • 84995370935 scopus 로고    scopus 로고
    • Network-based pathway enrichment analysis with incomplete network information
    • Ma J, Shojaie A, Michailidis G. Network-based pathway enrichment analysis with incomplete network information. Bioinformatics 2016;32(20):3165-74.
    • (2016) Bioinformatics , vol.32 , Issue.20 , pp. 3165-3174
    • Ma, J.1    Shojaie, A.2    Michailidis, G.3
  • 23
    • 84884172916 scopus 로고    scopus 로고
    • Elementary flux modes in a nutshell: Properties, calculation and applications
    • Zanghellini J, Ruckerbauer DE, Hanscho M, et al. Elementary flux modes in a nutshell: properties, calculation and applications. Biotechnol J 2013;8(9):1009-16.
    • (2013) Biotechnol J , vol.8 , Issue.9 , pp. 1009-1016
    • Zanghellini, J.1    Ruckerbauer, D.E.2    Hanscho, M.3
  • 24
    • 79751535106 scopus 로고    scopus 로고
    • ACOM: A classification method for elementary flux modes based on motif finding
    • Pérès S, Vallée F, Beurton-Aimar M, et al. ACoM: a classification method for elementary flux modes based on motif finding. Biosystems 2011;103(3):410-19.
    • (2011) Biosystems , vol.103 , Issue.3 , pp. 410-419
    • Pérès, S.1    Vallée, F.2    Beurton-Aimar, M.3
  • 25
    • 84856560417 scopus 로고    scopus 로고
    • Efmevolver: Computing elementary flux modes in genome-scale metabolic networks
    • Kaleta C,D, Figueiredo LF, Behre J, et al. EFMEvolver: computing elementary flux modes in genome-scale metabolic networks. Lect Notes Inform 2009;157:179-89.
    • (2009) Lect Notes Inform , vol.157 , pp. 179-189
    • Kaleta, C.1    Figueiredo, L.F.2    Behre, J.3
  • 26
    • 75849164426 scopus 로고    scopus 로고
    • Computing the shortest elementary flux modes in genome-scale metabolic networks
    • De Figueiredo LF, Podhorski A, Rubio A, et al. Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 2009;25(23):3158-65.
    • (2009) Bioinformatics , vol.25 , Issue.23 , pp. 3158-3165
    • De Figueiredo, L.F.1    Podhorski, A.2    Rubio, A.3
  • 27
    • 28444458560 scopus 로고    scopus 로고
    • The geometry of the flux cone of a metabolic network
    • Wagner C, Urbanczik R. The geometry of the flux cone of a metabolic network. Biophys J 2005;89(6):3837-45.
    • (2005) Biophys J , vol.89 , Issue.6 , pp. 3837-3845
    • Wagner, C.1    Urbanczik, R.2
  • 28
    • 79951528622 scopus 로고    scopus 로고
    • Exploring metabolic pathways in genome-scale networks via generating flux modes
    • Rezola A, de Figueiredo LF, Brock M, et al. Exploring metabolic pathways in genome-scale networks via generating flux modes. Bioinformatics 2011;27(4):534-40.
    • (2011) Bioinformatics , vol.27 , Issue.4 , pp. 534-540
    • Rezola, A.1    De Figueiredo, L.F.2    Brock, M.3
  • 29
    • 16344382935 scopus 로고    scopus 로고
    • An improved algorithm for stoichiometric network analysis: Theory and applications
    • Urbanczik R, Wagner C. An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 2005;21(7):1203-10.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1203-1210
    • Urbanczik, R.1    Wagner, C.2
  • 30
    • 50949094727 scopus 로고    scopus 로고
    • A new constraint-based description of the steady-state flux cone of metabolic networks
    • Larhlimi A, Bockmayr A. A new constraint-based description of the steady-state flux cone of metabolic networks. Discrete Appl Math 2009;157(10):2257-66.
    • (2009) Discrete Appl Math , vol.157 , Issue.10 , pp. 2257-2266
    • Larhlimi, A.1    Bockmayr, A.2
  • 31
    • 85062455676 scopus 로고    scopus 로고
    • A new approach to obtaining EFMs using graph methods based on the shortest path between end nodes
    • Hidalgo JF, Guil F, Garcıa JM. A new approach to obtaining EFMs using graph methods based on the shortest path between end nodes. Genomics Comput Biol 2016;2(1):30.
    • (2016) Genomics Comput Biol , vol.2 , Issue.1 , pp. 30
    • Hidalgo, J.F.1    Guil, F.2    Garcıa, J.M.3
  • 32
    • 84979838081 scopus 로고    scopus 로고
    • Advances in network-based metabolic pathway analysis and gene expression data integration
    • Rezola A, Pey J, Tobalina L, et al. Advances in network-based metabolic pathway analysis and gene expression data integration. Brief Bioinform 2015;16:265-79.
    • (2015) Brief Bioinform , vol.16 , pp. 265-279
    • Rezola, A.1    Pey, J.2    Tobalina, L.3
  • 33
    • 84924388543 scopus 로고    scopus 로고
    • Metabolomics integrated elementary flux mode analysis in large metabolic networks
    • Gerstl MP, Ruckerbauer DE, Mattanovich D, et al. Metabolomics integrated elementary flux mode analysis in large metabolic networks. Sci Rep 2015;5:8930.
    • (2015) Sci Rep , vol.5 , pp. 8930
    • Gerstl, M.P.1    Ruckerbauer, D.E.2    Mattanovich, D.3
  • 34
    • 33745433792 scopus 로고    scopus 로고
    • Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data
    • Kümmel A, Panke S, Heinemann M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2006;2(1):2006.0034.
    • (2006) Mol Syst Biol , vol.2 , Issue.1 , pp. 20060034
    • Kümmel, A.1    Panke, S.2    Heinemann, M.3
  • 35
    • 84962678128 scopus 로고    scopus 로고
    • Which sets of elementary flux modes form thermodynamically feasible flux distributions?
    • Gerstl MP, Jungreuthmayer C, Müller S, et al. Which sets of elementary flux modes form thermodynamically feasible flux distributions? FEBS J 2016;283(9):1782-94.
    • (2016) FEBS J , vol.283 , Issue.9 , pp. 1782-1794
    • Gerstl, M.P.1    Jungreuthmayer, C.2    Müller, S.3
  • 36
    • 0034615791 scopus 로고    scopus 로고
    • Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective
    • Schilling CH, Letscher D, Palsson B>. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 2000;203(3):229-48.
    • (2000) J Theor Biol , vol.203 , Issue.3 , pp. 229-248
    • Schilling, C.H.1    Letscher, D.2    Palsson, B.3    Oslash4
  • 37
    • 0023714694 scopus 로고
    • Stoichiometric network analysis
    • Clarke BL. Stoichiometric network analysis. Cell Biochem Biophys 1988;12(1):237-53.
    • (1988) Cell Biochem Biophys , vol.12 , Issue.1 , pp. 237-253
    • Clarke, B.L.1
  • 38
    • 84901312605 scopus 로고    scopus 로고
    • Minimal cut sets and the use of failure modes in metabolic networks
    • Clark ST, Verwoerd WS. Minimal cut sets and the use of failure modes in metabolic networks. Metabolites 2012;2(3):567-95.
    • (2012) Metabolites , vol.2 , Issue.3 , pp. 567-595
    • Clark, S.T.1    Verwoerd, W.S.2
  • 39
    • 70349636598 scopus 로고    scopus 로고
    • Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns
    • Kaleta C, de Figueiredo LF, Schuster S. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res 2009;19(10):1872-83.
    • (2009) Genome Res , vol.19 , Issue.10 , pp. 1872-1883
    • Kaleta, C.1    De Figueiredo, L.F.2    Schuster, S.3
  • 40
    • 84907350970 scopus 로고    scopus 로고
    • Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path
    • Campodonico MA, Andrews BA, Asenjo JA, et al. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 2014;25:140-58.
    • (2014) Metab Eng , vol.25 , pp. 140-158
    • Campodonico, M.A.1    Andrews, B.A.2    Asenjo, J.A.3
  • 41
    • 17444382016 scopus 로고    scopus 로고
    • Exploring the diversity of complex metabolic networks
    • Hatzimanikatis V, Li C, Ionita JA, et al. Exploring the diversity of complex metabolic networks. Bioinformatics 2005;21(8):1603-9.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1603-1609
    • Hatzimanikatis, V.1    Li, C.2    Ionita, J.A.3
  • 42
    • 84857192122 scopus 로고    scopus 로고
    • Computational tools for the synthetic design of biochemical pathways
    • Medema MH, Van Raaphorst R, Takano E, et al. Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 2012;10(3):191-202.
    • (2012) Nat Rev Microbiol , vol.10 , Issue.3 , pp. 191-202
    • Medema, M.H.1    Van Raaphorst, R.2    Takano, E.3
  • 43
    • 50649103751 scopus 로고    scopus 로고
    • Estimating the size of the solution space of metabolic networks
    • Braunstein A, Mulet R, Pagnani A. Estimating the size of the solution space of metabolic networks. BMC Bioinformatics 2008;9(1):240.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 240
    • Braunstein, A.1    Mulet, R.2    Pagnani, A.3
  • 44
    • 79956212972 scopus 로고    scopus 로고
    • Symbolic flux analysis for genome-scale metabolic networks
    • Schryer DW, Vendelin M, Peterson P. Symbolic flux analysis for genome-scale metabolic networks. BMC Syst Biol 2011;5(1):81.
    • (2011) BMC Syst Biol , vol.5 , Issue.1 , pp. 81
    • Schryer, D.W.1    Vendelin, M.2    Peterson, P.3
  • 45
    • 77952295145 scopus 로고    scopus 로고
    • Genotype networks in metabolic reaction spaces
    • Samal A, Matias Rodrigues JF, Jost J, et al. Genotype networks in metabolic reaction spaces. BMC Syst Biol 2010;4(1):30.
    • (2010) BMC Syst Biol , vol.4 , Issue.1 , pp. 30
    • Samal, A.1    Matias Rodrigues, J.F.2    Jost, J.3
  • 47
    • 84928911367 scopus 로고    scopus 로고
    • Uniform sampling of steady states in metabolic networks: Heterogeneous scales and rounding
    • De Martino D, Mori M, Parisi V. Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding. PloS One 2015;10(4):e0122670.
    • (2015) PloS One , vol.10 , Issue.4
    • De Martino, D.1    Mori, M.2    Parisi, V.3
  • 48
    • 84988890296 scopus 로고    scopus 로고
    • MetaBoTools: A comprehensive toolbox for analysis of genome-scale metabolic models
    • Aurich MK, Fleming RM, Thiele I. MetaboTools: a comprehensive toolbox for analysis of genome-scale metabolic models. Frontiers in Physiology 2016;7:327.
    • (2016) Frontiers in Physiology , vol.7 , pp. 327
    • Aurich, M.K.1    Fleming, R.M.2    Thiele, I.3
  • 49
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo ML, Palsson B>, Herrgård MJ. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 2009;3(1):37.
    • (2009) BMC Syst Biol , vol.3 , Issue.1 , pp. 37
    • Mo, M.L.1    Palsson, B.2    Oslash3    Herrgård, M.J.4
  • 50
    • 84930373777 scopus 로고    scopus 로고
    • Prediction of intracellular metabolic states from extracellular metabolomic data
    • Aurich MK, Paglia G, Rolfsson O, et al. Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics 2015;11(3):603-19.
    • (2015) Metabolomics , vol.11 , Issue.3 , pp. 603-619
    • Aurich, M.K.1    Paglia, G.2    Rolfsson, O.3
  • 52
    • 84994442721 scopus 로고    scopus 로고
    • Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling
    • Zielinski ŁP, Smith AC, Smith AG, et al. Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion 2016;31:45-55.
    • (2016) Mitochondrion , vol.31 , pp. 45-55
    • Zielinski, Ł.P.1    Smith, A.C.2    Smith, A.G.3
  • 54
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002;83(3):1331-40.
    • (2002) Biophys J , vol.83 , Issue.3 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 55
    • 0034741983 scopus 로고    scopus 로고
    • 13 C metabolic flux analysis
    • Wiechert W. 13 C metabolic flux analysis. Metab Eng 2001;3(3):195-206.
    • (2001) Metab Eng , vol.3 , Issue.3 , pp. 195-206
    • Wiechert, W.1
  • 56
    • 78751584992 scopus 로고    scopus 로고
    • Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments
    • Zhuang K, Izallalen M, Mouser P, et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 2011;5(2):305-16.
    • (2011) ISME J , vol.5 , Issue.2 , pp. 305-316
    • Zhuang, K.1    Izallalen, M.2    Mouser, P.3
  • 57
    • 84866128045 scopus 로고    scopus 로고
    • Shrinking the metabolic solution space using experimental datasets
    • Reed JL. Shrinking the metabolic solution space using experimental datasets. PLoS Comput Biol 2012;8(8):e1002662.
    • (2012) PLoS Comput Biol , vol.8 , Issue.8
    • Reed, J.L.1
  • 58
    • 0034798879 scopus 로고    scopus 로고
    • Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments
    • Burgard AP, Vaidyaraman S, Maranas CD. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol Prog 2001;17(5):791-7.
    • (2001) Biotechnol Prog , vol.17 , Issue.5 , pp. 791-797
    • Burgard, A.P.1    Vaidyaraman, S.2    Maranas, C.D.3
  • 59
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R, Schilling C. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003;5(4):264-76.
    • (2003) Metab Eng , vol.5 , Issue.4 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.2
  • 60
    • 33847797256 scopus 로고    scopus 로고
    • Thermodynamics-based metabolic flux analysis
    • Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophys J 2007;92(5):1792-805.
    • (2007) Biophys J , vol.92 , Issue.5 , pp. 1792-1805
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 61
    • 84941198229 scopus 로고    scopus 로고
    • Heading in the right direction: Thermodynamics-based network analysis and pathway engineering
    • Ataman M, Hatzimanikatis V. Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr Opin Biotechnol 2015;36:176-82.
    • (2015) Curr Opin Biotechnol , vol.36 , pp. 176-182
    • Ataman, M.1    Hatzimanikatis, V.2
  • 62
    • 0036840340 scopus 로고    scopus 로고
    • Extreme pathways and Kirchhoff's second law
    • Price ND, Famili I, Beard DA, et al. Extreme pathways and Kirchhoff's second law. Biophys J 2002;83(5):2879.
    • (2002) Biophys J , vol.83 , Issue.5 , pp. 2879
    • Price, N.D.1    Famili, I.2    Beard, D.A.3
  • 63
    • 79551676901 scopus 로고    scopus 로고
    • Elimination of thermodynamically infeasible loops in steady-state metabolic models
    • Schellenberger J, Lewis NE, Palsson B>. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 2011;100(3):544-53.
    • (2011) Biophys J , vol.100 , Issue.3 , pp. 544-553
    • Schellenberger, J.1    Lewis, N.E.2    Palsson, B.3    Oslash4
  • 64
    • 0036286631 scopus 로고    scopus 로고
    • Energy balance for analysis of complex metabolic networks
    • Beard DA, Liang S, Qian H. Energy balance for analysis of complex metabolic networks. Biophys J 2002;83(1):79-86.
    • (2002) Biophys J , vol.83 , Issue.1 , pp. 79-86
    • Beard, D.A.1    Liang, S.2    Qian, H.3
  • 65
    • 84875625255 scopus 로고    scopus 로고
    • Fast thermodynamically constrained flux variability analysis
    • Müller AC, Bockmayr A. Fast thermodynamically constrained flux variability analysis. Bioinformatics 2013;29:903-9.
    • (2013) Bioinformatics , vol.29 , pp. 903-909
    • Müller, A.C.1    Bockmayr, A.2
  • 66
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. Coli are consistent with computed optimal growth from genome-scale models
    • Lewis NE, Hixson KK, Conrad TM, et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010;6(1):390.
    • (2010) Mol Syst Biol , vol.6 , Issue.1 , pp. 390
    • Lewis, N.E.1    Hixson, K.K.2    Conrad, T.M.3
  • 67
    • 84945144145 scopus 로고    scopus 로고
    • Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA
    • Rügen M, Bockmayr A, Steuer R. Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA. Sci Rep 2015;5:15247
    • (2015) Sci Rep , vol.5 , pp. 15247
    • Rügen, M.1    Bockmayr, A.2    Steuer, R.3
  • 69
    • 80052076284 scopus 로고    scopus 로고
    • Bacterial growth rate reflects a bottleneck in resource allocation
    • Goelzer A, Fromion V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim Biophys Acta 2011;1810(10):978-88.
    • (2011) Biochim Biophys Acta , vol.1810 , Issue.10 , pp. 978-988
    • Goelzer, A.1    Fromion, V.2
  • 70
    • 84978791333 scopus 로고    scopus 로고
    • Constrained allocation flux balance analysis
    • Mori M, Hwa T, Martin OC, et al. Constrained allocation flux balance analysis. PLoS Comput Biol 2016;12(6):e1004913.
    • (2016) PLoS Comput Biol , vol.12 , Issue.6
    • Mori, M.1    Hwa, T.2    Martin, O.C.3
  • 71
    • 84949117400 scopus 로고    scopus 로고
    • Predicting internal cell fluxes at suboptimal growth
    • Schultz A, Qutub AA. Predicting internal cell fluxes at suboptimal growth. BMC Syst Biol 2015;9(1):18.
    • (2015) BMC Syst Biol , vol.9 , Issue.1 , pp. 18
    • Schultz, A.1    Qutub, A.A.2
  • 72
    • 84880783396 scopus 로고    scopus 로고
    • Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM
    • Dreyfuss JM, Zucker JD, Hood HM, et al. Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLoS Comput Biol 2013;9(7):e1003126.
    • (2013) PLoS Comput Biol , vol.9 , Issue.7
    • Dreyfuss, J.M.1    Zucker, J.D.2    Hood, H.M.3
  • 73
    • 34547683819 scopus 로고    scopus 로고
    • Bayesian flux balance analysis applied to a skeletal muscle metabolic model
    • Heino J, Tunyan K, Calvetti D, et al. Bayesian flux balance analysis applied to a skeletal muscle metabolic model. J Theor Biol 2007;248(1):91-110.
    • (2007) J Theor Biol , vol.248 , Issue.1 , pp. 91-110
    • Heino, J.1    Tunyan, K.2    Calvetti, D.3
  • 74
    • 74649085658 scopus 로고    scopus 로고
    • Metabolica: A statistical research tool for analyzing metabolic networks
    • Heino J, Calvetti D, Somersalo E. Metabolica: a statistical research tool for analyzing metabolic networks. Comput Methods Programs Biomed 2010;97(2):151-67.
    • (2010) Comput Methods Programs Biomed , vol.97 , Issue.2 , pp. 151-167
    • Heino, J.1    Calvetti, D.2    Somersalo, E.3
  • 75
    • 84891650773 scopus 로고    scopus 로고
    • Incorporation of flexible objectives and time-linked simulation with flux balance analysis
    • Birch EW, Udell M, Covert MW. Incorporation of flexible objectives and time-linked simulation with flux balance analysis. J Theor Biol 2014;345:12-21.
    • (2014) J Theor Biol , vol.345 , pp. 12-21
    • Birch, E.W.1    Udell, M.2    Covert, M.W.3
  • 76
    • 34247183123 scopus 로고    scopus 로고
    • A genome-scale computational study of the interplay between transcriptional regulation and metabolism
    • Shlomi T, Eisenberg Y, Sharan R, et al. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 2007;3(1):101.
    • (2007) Mol Syst Biol , vol.3 , Issue.1 , pp. 101
    • Shlomi, T.1    Eisenberg, Y.2    Sharan, R.3
  • 77
    • 51749113592 scopus 로고    scopus 로고
    • Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli
    • Covert MW, Xiao N, Chen TJ, et al. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 2008;24(18):2044-50.
    • (2008) Bioinformatics , vol.24 , Issue.18 , pp. 2044-2050
    • Covert, M.W.1    Xiao, N.2    Chen, T.J.3
  • 78
    • 44949247269 scopus 로고    scopus 로고
    • Dynamic analysis of integrated signaling, metabolic, and regulatory networks
    • Lee JM, Gianchandani EP, Eddy JA, et al. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 2008;4(5):e1000086.
    • (2008) PLoS Comput Biol , vol.4 , Issue.5
    • Lee, J.M.1    Gianchandani, E.P.2    Eddy, J.A.3
  • 79
    • 78049255973 scopus 로고    scopus 로고
    • Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
    • Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2010;107(41):17845-50.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.41 , pp. 17845-17850
    • Chandrasekaran, S.1    Price, N.D.2
  • 80
    • 84892690947 scopus 로고    scopus 로고
    • Metabolic constraint-based refinement of transcriptional regulatory networks
    • Chandrasekaran S, Price ND. Metabolic constraint-based refinement of transcriptional regulatory networks. PLoS Comput Biol 2013;9(12):e1003370.
    • (2013) PLoS Comput Biol , vol.9 , Issue.12
    • Chandrasekaran, S.1    Price, N.D.2
  • 81
    • 84984994793 scopus 로고    scopus 로고
    • FlexFlux: Combining metabolic flux and regulatory network analyses
    • Marmiesse L, Peyraud R, Cottret L. FlexFlux: combining metabolic flux and regulatory network analyses. BMC Syst Biol 2015;9(1):93.
    • (2015) BMC Syst Biol , vol.9 , Issue.1 , pp. 93
    • Marmiesse, L.1    Peyraud, R.2    Cottret, L.3
  • 82
    • 85030102047 scopus 로고    scopus 로고
    • Mufins: Multi-formalism interaction network simulator
    • Wu H, Von Kamp A, Leoncikas V, et al. MUFINS: multi-formalism interaction network simulator. NPJ Syst Biol Appl 2016;2:16032.
    • (2016) NPJ Syst Biol Appl , vol.2 , pp. 16032
    • Wu, H.1    Von Kamp, A.2    Leoncikas, V.3
  • 83
    • 84895952176 scopus 로고    scopus 로고
    • QSSPN: Dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells
    • Fisher CP, Plant NJ, Moore JB, et al. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells. Bioinformatics 2013;29(24):3181-90.
    • (2013) Bioinformatics , vol.29 , Issue.24 , pp. 3181-3190
    • Fisher, C.P.1    Plant, N.J.2    Moore, J.B.3
  • 84
    • 78449291015 scopus 로고    scopus 로고
    • Predicting metabolic fluxes using gene expression differences as constraints
    • van Berlo RJ, de Ridder D, Daran JM, et al. Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans Comput Biol Bioinform 2011;8(1):206-16.
    • (2011) IEEE/ACM Trans Comput Biol Bioinform , vol.8 , Issue.1 , pp. 206-216
    • Van Berlo, R.J.1    De Ridder, D.2    Daran, J.M.3
  • 85
    • 85019116437 scopus 로고    scopus 로고
    • TRFBA: An algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data
    • Motamedian E, Mohammadi M, Shojaosadati SA, et al. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data. Bioinformatics 2017;33:1057-63.
    • (2017) Bioinformatics , vol.33 , pp. 1057-1063
    • Motamedian, E.1    Mohammadi, M.2    Shojaosadati, S.A.3
  • 86
    • 84874271270 scopus 로고    scopus 로고
    • NCBI GEO: Archive for functional genomics data sets-update
    • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Rese 2013;41(D1):D991-5.
    • (2013) Nucleic Acids Rese , vol.41 , Issue.D1 , pp. D991-D995
    • Barrett, T.1    Wilhite, S.E.2    Ledoux, P.3
  • 87
    • 84941103248 scopus 로고    scopus 로고
    • ArrayExpress update-simplifying data submissions
    • Kolesnikov N, Hastings E, Keays M, et al. ArrayExpress update-simplifying data submissions. Nucleic Acids Res 2015;43:D1113-6.
    • (2015) Nucleic Acids Res , vol.43 , pp. D1113-D1116
    • Kolesnikov, N.1    Hastings, E.2    Keays, M.3
  • 88
    • 84872596110 scopus 로고    scopus 로고
    • Reuse of public genome-wide gene expression data
    • Rung J, Brazma A. Reuse of public genome-wide gene expression data. Nat Rev Genet 2013;14(2):89-99.
    • (2013) Nat Rev Genet , vol.14 , Issue.2 , pp. 89-99
    • Rung, J.1    Brazma, A.2
  • 89
    • 84976878197 scopus 로고    scopus 로고
    • Expression Atlas update-an integrated database of gene and protein expression in humans, animals and plants
    • Petryszak R, Keays M, Tang YA, et al. Expression Atlas update-an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 2016;44:D746-52.
    • (2016) Nucleic Acids Res , vol.44 , pp. D746-D752
    • Petryszak, R.1    Keays, M.2    Tang, Y.A.3
  • 90
    • 62349088493 scopus 로고    scopus 로고
    • GeneChaser: Identifying all biological and clinical conditions in which genes of interest are differentially expressed
    • Chen R, Mallelwar R, Thosar A, et al. GeneChaser: identifying all biological and clinical conditions in which genes of interest are differentially expressed. BMC Bioinformatics 2008;9(1):548.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 548
    • Chen, R.1    Mallelwar, R.2    Thosar, A.3
  • 91
    • 82255164258 scopus 로고    scopus 로고
    • Profilechaser: Searching microarray repositories based on genome-wide patterns of differential expression
    • Engreitz JM, Chen R, Morgan AA, et al. ProfileChaser: searching microarray repositories based on genome-wide patterns of differential expression. Bioinformatics 2011;27(23):3317-18.
    • (2011) Bioinformatics , vol.27 , Issue.23 , pp. 3317-3318
    • Engreitz, J.M.1    Chen, R.2    Morgan, A.A.3
  • 92
    • 1642377561 scopus 로고    scopus 로고
    • Oncomine: A cancer microarray database and integrated data-mining platform
    • Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004;6(1):1-6.
    • (2004) Neoplasia , vol.6 , Issue.1 , pp. 1-6
    • Rhodes, D.R.1    Yu, J.2    Shanker, K.3
  • 93
    • 85016154437 scopus 로고    scopus 로고
    • The mouse Gene Expression Database (GXD): 2017 update
    • Finger JH, Smith CM, Hayamizu TF, et al. The mouse Gene Expression Database (GXD): 2017 update. Nucleic Acids Res 2017;45(D1):D730-6.
    • (2017) Nucleic Acids Res , vol.45 , Issue.D1 , pp. D730-D736
    • Finger, J.H.1    Smith, C.M.2    Hayamizu, T.F.3
  • 94
    • 84891787981 scopus 로고    scopus 로고
    • The pancreatic expression database: Recent extensions and updates
    • Ullah AZD, Cutts RJ, Ghetia M, et al. The pancreatic expression database: recent extensions and updates. Nucleic Acids Res 2014;42(D1):D944-9.
    • (2014) Nucleic Acids Res , vol.42 , Issue.D1 , pp. D944-D949
    • Ullah, A.Z.D.1    Cutts, R.J.2    Ghetia, M.3
  • 95
    • 84909608024 scopus 로고    scopus 로고
    • Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: A genome-scale metabolic model (GSMM) approach
    • Salehzadeh-Yazdi A, Asgari Y, Saboury AA, et al. Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: a genome-scale metabolic model (GSMM) approach. PloS One 2014;9(11):e111686.
    • (2014) PloS One , vol.9 , Issue.11
    • Salehzadeh-Yazdi, A.1    Asgari, Y.2    Saboury, A.A.3
  • 96
    • 84974663176 scopus 로고    scopus 로고
    • Advances in the integration of transcriptional regulatory information into genome-scale metabolic models
    • Vivek-Ananth R, Samal A. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems 2016;147:1-10.
    • (2016) Biosystems , vol.147 , pp. 1-10
    • Vivek-Ananth, R.1    Samal, A.2
  • 97
    • 84928412434 scopus 로고    scopus 로고
    • Methods for integration of transcriptomic data in genome-scale metabolic models
    • Kim MK, Lun DS. Methods for integration of transcriptomic data in genome-scale metabolic models. Comput Struct Biotechnol J 2014;11(18):59-65.
    • (2014) Comput Struct Biotechnol J , vol.11 , Issue.18 , pp. 59-65
    • Kim, M.K.1    Lun, D.S.2
  • 98
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 2008;4(5):e1000082.
    • (2008) PLoS Comput Biol , vol.4 , Issue.5
    • Becker, S.A.1    Palsson, B.O.2
  • 99
    • 84890092837 scopus 로고    scopus 로고
    • GIm3E: Condition-specific models of cellular metabolism developed from metabolomics and expression data
    • Schmidt BJ, Ebrahim A, Metz TO, et al. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 2013;29(22):2900-8.
    • (2013) Bioinformatics , vol.29 , Issue.22 , pp. 2900-2908
    • Schmidt, B.J.1    Ebrahim, A.2    Metz, T.O.3
  • 100
    • 51349092391 scopus 로고    scopus 로고
    • Network-based prediction of human tissue-specific metabolism
    • Shlomi T, Cabili MN, Herrgård MJ, et al. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008;26(9):1003-10.
    • (2008) Nat Biotechnol , vol.26 , Issue.9 , pp. 1003-1010
    • Shlomi, T.1    Cabili, M.N.2    Herrgård, M.J.3
  • 101
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • Blazier AS, Papin JA. Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 2012;3:299.
    • (2012) Front Physiol , vol.3 , pp. 299
    • Blazier, A.S.1    Papin, J.A.2
  • 102
    • 79951745716 scopus 로고    scopus 로고
    • IMAT: An integrative metabolic analysis tool
    • Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool. Bioinformatics 2010;26(24):3140-2.
    • (2010) Bioinformatics , vol.26 , Issue.24 , pp. 3140-3142
    • Zur, H.1    Ruppin, E.2    Shlomi, T.3
  • 103
    • 84875977583 scopus 로고    scopus 로고
    • Inferring metabolic states in uncharacterized environments using gene-expression measurements
    • Rossell S, Huynen MA, Notebaart RA. Inferring metabolic states in uncharacterized environments using gene-expression measurements. PLoS Comput Biol 2013;9(3):e1002988.
    • (2013) PLoS Comput Biol , vol.9 , Issue.3
    • Rossell, S.1    Huynen, M.A.2    Notebaart, R.A.3
  • 104
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • Agren R, Bordel S, Mardinoglu A, et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 2012;8(5):e1002518.
    • (2012) PLoS Comput Biol , vol.8 , Issue.5
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3
  • 105
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado D, Herrgård M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 2014;10(4):e1003580.
    • (2014) PLoS Comput Biol , vol.10 , Issue.4
    • Machado, D.1    Herrgård, M.2
  • 106
    • 84898663879 scopus 로고    scopus 로고
    • Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
    • Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol 2014;10(3):721.
    • (2014) Mol Syst Biol , vol.10 , Issue.3 , pp. 721
    • Agren, R.1    Mardinoglu, A.2    Asplund, A.3
  • 107
    • 79951536020 scopus 로고    scopus 로고
    • Functional integration of a metabolic network model and expression data without arbitrary thresholding
    • Jensen PA, Papin JA. Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 2011;27(4):541-7.
    • (2011) Bioinformatics , vol.27 , Issue.4 , pp. 541-547
    • Jensen, P.A.1    Papin, J.A.2
  • 108
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production
    • Colijn C, Brandes A, Zucker J, et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 2009;5(8):e1000489.
    • (2009) PLoS Comput Biol , vol.5 , Issue.8
    • Colijn, C.1    Brandes, A.2    Zucker, J.3
  • 109
    • 84976868799 scopus 로고    scopus 로고
    • E-Flux2 and SPOT: Validated methods for inferring intracellular metabolic flux distributions from transcriptomic data
    • Kim MK, Lane A, Kelley JJ, et al. E-Flux2 and SPOT: validated methods for inferring intracellular metabolic flux distributions from transcriptomic data. PLoS One 2016;11(6):e0157101.
    • (2016) PLoS One , vol.11 , Issue.6
    • Kim, M.K.1    Lane, A.2    Kelley, J.J.3
  • 110
    • 84944727589 scopus 로고    scopus 로고
    • Predictive analytics of environmental adaptability in multi-omic network models
    • Angione C, Lio P. Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 2015;5:15147.
    • (2015) Sci Rep , vol.5 , pp. 15147
    • Angione, C.1    Lio, P.2
  • 111
    • 84941702360 scopus 로고    scopus 로고
    • A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data
    • Barker BE, Sadagopan N, Wang Y, et al. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Comput Biol Chem 2015;59:98-112.
    • (2015) Comput Biol Chem , vol.59 , pp. 98-112
    • Barker, B.E.1    Sadagopan, N.2    Wang, Y.3
  • 112
    • 84862301363 scopus 로고    scopus 로고
    • Improving metabolic flux predictions using absolute gene expression data
    • Lee D, Smallbone K, Dunn WB, et al. Improving metabolic flux predictions using absolute gene expression data. BMC Syst Biol 2012;6(1):73.
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 73
    • Lee, D.1    Smallbone, K.2    Dunn, W.B.3
  • 113
    • 84930377006 scopus 로고    scopus 로고
    • Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer
    • Yizhak K, Gaude E, Le Dévédec S, et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. Elife 2014;3:e03641.
    • (2014) Elife , vol.3
    • Yizhak, K.1    Gaude, E.2    Le Dévédec, S.3
  • 114
    • 84911888355 scopus 로고    scopus 로고
    • Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle
    • Song HS, Reifman J, Wallqvist A. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle. PloS One 2014;9(11):e112524.
    • (2014) PloS One , vol.9 , Issue.11
    • Song, H.S.1    Reifman, J.2    Wallqvist, A.3
  • 115
    • 85013046059 scopus 로고    scopus 로고
    • Making life difficult for Clostridium difficile: Augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization
    • Kashaf SS, Angione C, Lio P. Making life difficult for Clostridium difficile: augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization. BMC Syst Biol 2017;11(1):25.
    • (2017) BMC Syst Biol , vol.11 , Issue.1 , pp. 25
    • Kashaf, S.S.1    Angione, C.2    Lio, P.3
  • 116
    • 77956417789 scopus 로고    scopus 로고
    • Computational reconstruction of tissue-specific metabolic models: Application to human liver metabolism
    • Jerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 2010;6(1):401.
    • (2010) Mol Syst Biol , vol.6 , Issue.1 , pp. 401
    • Jerby, L.1    Shlomi, T.2    Ruppin, E.3
  • 117
    • 84896701551 scopus 로고    scopus 로고
    • Fast reconstruction of compact context-specific metabolic network models
    • Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 2014;10(1):e1003424.
    • (2014) PLoS Comput Biol , vol.10 , Issue.1
    • Vlassis, N.1    Pacheco, M.P.2    Sauter, T.3
  • 118
    • 84870933131 scopus 로고    scopus 로고
    • Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
    • Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 2012;6(1):153.
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 153
    • Wang, Y.1    Eddy, J.A.2    Price, N.D.3
  • 119
    • 84945186280 scopus 로고    scopus 로고
    • Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network
    • Pacheco MP, John E, Kaoma T, et al. Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network. BMC Genomics 2015;16(1):809.
    • (2015) BMC Genomics , vol.16 , Issue.1 , pp. 809
    • Pacheco, M.P.1    John, E.2    Kaoma, T.3
  • 120
    • 84962059544 scopus 로고    scopus 로고
    • Reconstruction of tissue-specific metabolic networks using CORDA
    • Schultz A, Qutub AA. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 2016;12(3):e1004808.
    • (2016) PLoS Comput Biol , vol.12 , Issue.3
    • Schultz, A.1    Qutub, A.A.2
  • 121
    • 84941312579 scopus 로고    scopus 로고
    • Context-specific metabolic model extraction based on regularized least squares optimization
    • Estévez SR, Nikoloski Z. Context-specific metabolic model extraction based on regularized least squares optimization. PloS One 2015;10(7):e0131875.
    • (2015) PloS One , vol.10 , Issue.7
    • Estévez, S.R.1    Nikoloski, Z.2
  • 122
    • 85062462389 scopus 로고    scopus 로고
    • Gene-centric constraint of metabolic models
    • Fyson N, Kim MK, Lun D, et al. Gene-centric constraint of metabolic models. bioRxiv 2017, 116558.
    • (2017) bioRxiv , pp. 116558
    • Fyson, N.1    Kim, M.K.2    Lun, D.3
  • 123
    • 85021732951 scopus 로고    scopus 로고
    • Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function
    • press
    • Zhang SW, Gou WL, Li Y. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function. Mol Biosyst 2017, in press.
    • (2017) Mol Biosyst
    • Zhang, S.W.1    Gou, W.L.2    Li, Y.3
  • 124
    • 84964582904 scopus 로고    scopus 로고
    • OM-FBA: Integrate transcriptomics data with flux balance analysis to decipher the cell metabolism
    • Guo W, Feng X. OM-FBA: integrate transcriptomics data with flux balance analysis to decipher the cell metabolism. PloS One 2016;11(4):e0154188.
    • (2016) PloS One , vol.11 , Issue.4
    • Guo, W.1    Feng, X.2
  • 125
    • 48249142459 scopus 로고    scopus 로고
    • Can single knockouts accurately single out gene functions?
    • Deutscher D, Meilijson I, Schuster S, et al. Can single knockouts accurately single out gene functions? BMC Syst Biol 2008;2(1):50.
    • (2008) BMC Syst Biol , vol.2 , Issue.1 , pp. 50
    • Deutscher, D.1    Meilijson, I.2    Schuster, S.3
  • 126
    • 78650890720 scopus 로고    scopus 로고
    • Synthetic lethality: General principles, utility and detection using genetic screens in human cells
    • Nijman S. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett 2011;585(1):1-6.
    • (2011) FEBS Lett , vol.585 , Issue.1 , pp. 1-6
    • Nijman, S.1
  • 127
    • 69249102097 scopus 로고    scopus 로고
    • Genome-scale gene/ reaction essentiality and synthetic lethality analysis
    • Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/ reaction essentiality and synthetic lethality analysis. Mol Syst Biol 2009;5:301.
    • (2009) Mol Syst Biol , vol.5 , pp. 301
    • Suthers, P.F.1    Zomorrodi, A.2    Maranas, C.D.3
  • 128
    • 84947716970 scopus 로고    scopus 로고
    • Fast-SL: An efficient algorithm to identify synthetic lethal sets in metabolic networks
    • Pratapa A, Balachandran S, Raman K. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics 2015;31:3299-305.
    • (2015) Bioinformatics , vol.31 , pp. 3299-3305
    • Pratapa, A.1    Balachandran, S.2    Raman, K.3
  • 129
    • 85007247161 scopus 로고    scopus 로고
    • Direct calculation of minimal cut sets involving a specific reaction knock-out
    • Tobalina L, Pey J, Planes FJ. Direct calculation of minimal cut sets involving a specific reaction knock-out. Bioinformatics 2016;32(13):2001-7.
    • (2016) Bioinformatics , vol.32 , Issue.13 , pp. 2001-2007
    • Tobalina, L.1    Pey, J.2    Planes, F.J.3
  • 130
    • 84907333139 scopus 로고    scopus 로고
    • Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality
    • Jerby-Arnon L, Pfetzer N, Waldman YY, et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 2014;158(5):1199-209.
    • (2014) Cell , vol.158 , Issue.5 , pp. 1199-1209
    • Jerby-Arnon, L.1    Pfetzer, N.2    Waldman, Y.Y.3
  • 131
    • 84942693276 scopus 로고    scopus 로고
    • Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival
    • Megchelenbrink W, Katzir R, Lu X, et al. Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival. Proc Natl Acad Sci USA 2015;112(39):12217-22.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.39 , pp. 12217-12222
    • Megchelenbrink, W.1    Katzir, R.2    Lu, X.3
  • 132
    • 84860822839 scopus 로고    scopus 로고
    • Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico
    • McAnulty MJ, Yen JY, Freedman BG, et al. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 2012;6(1):42.
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 42
    • McAnulty, M.J.1    Yen, J.Y.2    Freedman, B.G.3
  • 133
    • 84877134633 scopus 로고    scopus 로고
    • Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints
    • Yen JY, Nazem-Bokaee H, Freedman BG, et al. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Biotechnol J 2013;8(5):581-94.
    • (2013) Biotechnol J , vol.8 , Issue.5 , pp. 581-594
    • Yen, J.Y.1    Nazem-Bokaee, H.2    Freedman, B.G.3
  • 134
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 2002;99(23):15112-17.
    • (2002) Proc Natl Acad Sci , vol.99 , Issue.23 , pp. 15112-15117
    • Segre, D.1    Vitkup, D.2    Church, G.M.3
  • 136
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • Yizhak K, Benyamini T, Liebermeister W, et al. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 2010;26(12):i255-60.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i255-i260
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3
  • 137
    • 19644386033 scopus 로고    scopus 로고
    • Regulatory on/off minimization of metabolic flux changes after genetic perturbations
    • Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 2005;102(21):7695-700.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.21 , pp. 7695-7700
    • Shlomi, T.1    Berkman, O.2    Ruppin, E.3
  • 138
    • 84866539049 scopus 로고    scopus 로고
    • Relatch: Relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations
    • Kim J, Reed JL. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome Biol 2012;13(9):R78.
    • (2012) Genome Biol , vol.13 , Issue.9 , pp. R78
    • Kim, J.1    Reed, J.L.2
  • 139
    • 84939810702 scopus 로고    scopus 로고
    • A hybrid of metabolic flux analysis and Bayesian factor modeling for multiomic temporal pathway activation
    • Angione C, Pratanwanich N, Lio P. A hybrid of metabolic flux analysis and Bayesian factor modeling for multiomic temporal pathway activation. ACS Synth Biol 2015;4(8):880-9.
    • (2015) ACS Synth Biol , vol.4 , Issue.8 , pp. 880-889
    • Angione, C.1    Pratanwanich, N.2    Lio, P.3
  • 141
    • 33847307148 scopus 로고    scopus 로고
    • Bayesian-based selection of metabolic objective functions
    • Knorr AL, Jain R, Srivastava R. Bayesian-based selection of metabolic objective functions. Bioinformatics 2007;23(3):351-7.
    • (2007) Bioinformatics , vol.23 , Issue.3 , pp. 351-357
    • Knorr, A.L.1    Jain, R.2    Srivastava, R.3
  • 142
    • 77953296954 scopus 로고    scopus 로고
    • Multi-objective mixed integer strategy for the optimisation of biological networks
    • Sendin J, Exler O, Banga JR. Multi-objective mixed integer strategy for the optimisation of biological networks. IET Syst Biol 2010;4(3):236-48.
    • (2010) IET Syst Biol , vol.4 , Issue.3 , pp. 236-248
    • Sendin, J.1    Exler, O.2    Banga, J.R.3
  • 144
    • 84945579497 scopus 로고    scopus 로고
    • Multi-target analysis and design of mitochondrial metabolism
    • Angione C, Costanza J, Carapezza G, et al. Multi-target analysis and design of mitochondrial metabolism. PloS One 2015;10(9):e0133825.
    • (2015) PloS One , vol.10 , Issue.9
    • Angione, C.1    Costanza, J.2    Carapezza, G.3
  • 145
    • 84891553151 scopus 로고    scopus 로고
    • Global dynamic optimization approach to predict activation in metabolic pathways
    • de Hijas-Liste GM, Klipp E, Balsa-Canto E, et al. Global dynamic optimization approach to predict activation in metabolic pathways. BMC Syst Biol 2014;8(1):1.
    • (2014) BMC Syst Biol , vol.8 , Issue.1 , pp. 1
    • De Hijas-Liste, G.M.1    Klipp, E.2    Balsa-Canto, E.3
  • 147
    • 67651098861 scopus 로고    scopus 로고
    • Multi-objective optimisation of metabolic productivity and thermodynamic performance
    • Xu M, Bhat S, Smith R, et al. Multi-objective optimisation of metabolic productivity and thermodynamic performance. Comput Chem Eng 2009;33(9):1438-50.
    • (2009) Comput Chem Eng , vol.33 , Issue.9 , pp. 1438-1450
    • Xu, M.1    Bhat, S.2    Smith, R.3
  • 148
    • 33746828943 scopus 로고    scopus 로고
    • Model based optimization of biochemical systems using multiple objectives: A comparison of several solution strategies
    • Sendın OH, Vera J, Torres NV, et al. Model based optimization of biochemical systems using multiple objectives: a comparison of several solution strategies. Math Comput Model Dyn Syst 2006;12(5):469-87.
    • (2006) Math Comput Model Dyn Syst , vol.12 , Issue.5 , pp. 469-487
    • Sendın, O.H.1    Vera, J.2    Torres, N.V.3
  • 149
  • 150
    • 84870461031 scopus 로고    scopus 로고
    • Robust design of microbial strains
    • Costanza J, Carapezza G, Angione C, et al. Robust design of microbial strains. Bioinformatics 2012;28(23):3097-104.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3097-3104
    • Costanza, J.1    Carapezza, G.2    Angione, C.3
  • 151
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans Evol Comp 2002;6(2):182-97. Available from: http://dx.doi.org/10.1109/4235.996017.
    • (2002) Trans Evol Comp , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3
  • 154
    • 0242487787 scopus 로고    scopus 로고
    • OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003;84(6):647-57.
    • (2003) Biotechnol Bioeng , vol.84 , Issue.6 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 155
    • 0347762731 scopus 로고    scopus 로고
    • Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock
    • Pharkya P, Burgard AP, Maranas CD. Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 2003;84(7):887-99.
    • (2003) Biotechnol Bioeng , vol.84 , Issue.7 , pp. 887-899
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 156
    • 77949495880 scopus 로고    scopus 로고
    • Predicting metabolic engineering knockout strategies for chemical production: Accounting for competing pathways
    • Tepper N, Shlomi T. Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 2010;26(4):536-43.
    • (2010) Bioinformatics , vol.26 , Issue.4 , pp. 536-543
    • Tepper, N.1    Shlomi, T.2
  • 157
    • 77954590959 scopus 로고    scopus 로고
    • Optforce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 2010;6(4):e1000744.
    • (2010) PLoS Comput Biol , vol.6 , Issue.4
    • Ranganathan, S.1    Suthers, P.F.2    Maranas, C.D.3
  • 158
    • 84895756673 scopus 로고    scopus 로고
    • K-Optforce: Integrating kinetics with flux balance analysis for strain design
    • Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol 2014;10(2):e1003487.
    • (2014) PLoS Comput Biol , vol.10 , Issue.2
    • Chowdhury, A.1    Zomorrodi, A.R.2    Maranas, C.D.3
  • 159
    • 84892598828 scopus 로고    scopus 로고
    • Reacknock: Identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network
    • Xu Z, Zheng P, Sun J, et al. ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network. PloS One 2013;8(12):e72150.
    • (2013) PloS One , vol.8 , Issue.12
    • Xu, Z.1    Zheng, P.2    Sun, J.3
  • 160
    • 8744224466 scopus 로고    scopus 로고
    • Optstrain: A computational framework for redesign of microbial production systems
    • Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial production systems. Genome Res 2004;14(11):2367-76.
    • (2004) Genome Res , vol.14 , Issue.11 , pp. 2367-2376
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 161
    • 80052573483 scopus 로고    scopus 로고
    • Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
    • Kim J, Reed JL, Maravelias CT. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 2011;6(9):e24162.
    • (2011) PLoS One , vol.6 , Issue.9
    • Kim, J.1    Reed, J.L.2    Maravelias, C.T.3
  • 162
    • 69249146187 scopus 로고    scopus 로고
    • Large-scale identification of genetic design strategies using local search
    • Lun DS, Rockwell G, Guido NJ, et al. Large-scale identification of genetic design strategies using local search. Mol Syst Biol 2009;5:296.
    • (2009) Mol Syst Biol , vol.5 , pp. 296
    • Lun, D.S.1    Rockwell, G.2    Guido, N.J.3
  • 163
    • 67650660144 scopus 로고    scopus 로고
    • Increased malonyl co-enzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
    • Fowler ZL, Gikandi WW, Koffas MA. Increased malonyl co-enzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 2009;75(18):5831-9.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.18 , pp. 5831-5839
    • Fowler, Z.L.1    Gikandi, W.W.2    Koffas, M.A.3
  • 164
    • 58149307906 scopus 로고    scopus 로고
    • Natural computation meta-heuristics for the in silico optimization of microbial strains
    • Rocha M, Maia P, Mendes R, et al. Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 2008;9(1):499.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 499
    • Rocha, M.1    Maia, P.2    Mendes, R.3
  • 165
    • 77955653535 scopus 로고    scopus 로고
    • Soft constraints-based multiobjective framework for flux balance analysis
    • Nagrath D, Avila-Elchiver M, Berthiaume F, et al. Soft constraints-based multiobjective framework for flux balance analysis. Metab Eng 2010;12(5):429-45.
    • (2010) Metab Eng , vol.12 , Issue.5 , pp. 429-445
    • Nagrath, D.1    Avila-Elchiver, M.2    Berthiaume, F.3
  • 166
    • 84866090747 scopus 로고    scopus 로고
    • Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks
    • Kelk SM, Olivier BG, Stougie L, et al. Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci Rep 2012;2:580.
    • (2012) Sci Rep , vol.2 , pp. 580
    • Kelk, S.M.1    Olivier, B.G.2    Stougie, L.3
  • 167
    • 84929485274 scopus 로고    scopus 로고
    • Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models
    • Maarleveld TR, Wortel MT, Olivier BG, et al. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models. PLoS Comput Biol 2015;11(4):e1004166.
    • (2015) PLoS Comput Biol , vol.11 , Issue.4
    • Maarleveld, T.R.1    Wortel, M.T.2    Olivier, B.G.3
  • 168
    • 84861180223 scopus 로고    scopus 로고
    • OpTCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities
    • Zomorrodi AR, Maranas CD. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 2012;8(2):e1002363.
    • (2012) PLoS Comput Biol , vol.8 , Issue.2
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 169
    • 84878575301 scopus 로고    scopus 로고
    • Community flux balance analysis for microbial consortia at balanced growth
    • Khandelwal RA, Olivier BG, Röling WF, et al. Community flux balance analysis for microbial consortia at balanced growth. PLoS One 2013;8(5):e64567.
    • (2013) PLoS One , vol.8 , Issue.5
    • Khandelwal, R.A.1    Olivier, B.G.2    Röling, W.F.3
  • 170
    • 85006107025 scopus 로고    scopus 로고
    • Constraint-based stoichiometric modelling from single organisms to microbial communities
    • Gottstein W, Olivier BG, Bruggeman FJ, et al. Constraint-based stoichiometric modelling from single organisms to microbial communities. J R Soc Interface 2016;13(124):20160627.
    • (2016) J R Soc Interface , vol.13 , Issue.124 , pp. 20160627
    • Gottstein, W.1    Olivier, B.G.2    Bruggeman, F.J.3
  • 171
    • 84938586730 scopus 로고    scopus 로고
    • Quantifying diet-induced metabolic changes of the human gut microbiome
    • Shoaie S, Ghaffari P, Kovatcheva-Datchary P, et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab 2015;22(2):320-31.
    • (2015) Cell Metab , vol.22 , Issue.2 , pp. 320-331
    • Shoaie, S.1    Ghaffari, P.2    Kovatcheva-Datchary, P.3
  • 172
    • 84946615442 scopus 로고    scopus 로고
    • Calibration and analysis of genome-based models for microbial ecology
    • Louca S, Doebeli M. Calibration and analysis of genome-based models for microbial ecology. Elife 2015;4:e08208.
    • (2015) Elife , vol.4
    • Louca, S.1    Doebeli, M.2
  • 173
    • 84901273253 scopus 로고    scopus 로고
    • Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics
    • Harcombe WR, Riehl WJ, Dukovski I, et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 2014;7(4):1104-15.
    • (2014) Cell Rep , vol.7 , Issue.4 , pp. 1104-1115
    • Harcombe, W.R.1    Riehl, W.J.2    Dukovski, I.3
  • 174
    • 84918789208 scopus 로고    scopus 로고
    • MetDFBA: Incorporating time-resolved metabolomics measurements into dynamic flux balance analysis
    • Willemsen AM, Hendrickx DM, Hoefsloot HC, et al. MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis. Mol Biosyst 2015;11(1):137-45.
    • (2015) Mol Biosyst , vol.11 , Issue.1 , pp. 137-145
    • Willemsen, A.M.1    Hendrickx, D.M.2    Hoefsloot, H.C.3
  • 175
    • 84899012698 scopus 로고    scopus 로고
    • D-OpTCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities
    • Zomorrodi AR, Islam MM, Maranas CD. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 2014;3(4):247-57.
    • (2014) ACS Synth Biol , vol.3 , Issue.4 , pp. 247-257
    • Zomorrodi, A.R.1    Islam, M.M.2    Maranas, C.D.3
  • 176
    • 84994681134 scopus 로고    scopus 로고
    • AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology
    • Balsa-Canto E, Henriques D, Gabor A, et al. AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology. Bioinformatics 2016;32:3357-3359.
    • (2016) Bioinformatics , vol.32 , pp. 3357-3359
    • Balsa-Canto, E.1    Henriques, D.2    Gabor, A.3
  • 177
    • 58749106454 scopus 로고    scopus 로고
    • Ensemble modeling of metabolic networks
    • Tran LM, Rizk ML, Liao JC. Ensemble modeling of metabolic networks. Biophys J 2008;95(12):5606-17.
    • (2008) Biophys J , vol.95 , Issue.12 , pp. 5606-5617
    • Tran, L.M.1    Rizk, M.L.2    Liao, J.C.3
  • 178
    • 84904296838 scopus 로고    scopus 로고
    • Ensemble modeling for robustness analysis in engineering non-native metabolic pathways
    • Lee Y, Rivera JGL, Liao JC. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab Eng 2014;25:63-71.
    • (2014) Metab Eng , vol.25 , pp. 63-71
    • Lee, Y.1    Rivera, J.G.L.2    Liao, J.C.3
  • 179
    • 69149110444 scopus 로고    scopus 로고
    • Multiobjective flux balancing using the NISE method for metabolic network analysis
    • Oh YG, Lee DY, Lee SY, et al. Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnol Prog 2009;25(4):999-1008.
    • (2009) Biotechnol Prog , vol.25 , Issue.4 , pp. 999-1008
    • Oh, Y.G.1    Lee, D.Y.2    Lee, S.Y.3
  • 180
    • 79960710926 scopus 로고    scopus 로고
    • Optimal performance of the heat-shock gene regulatory network
    • El Samad H, Khammash M, Homescu C, et al. Optimal performance of the heat-shock gene regulatory network. IFAC Proc Vol 2005;38(1):19-24.
    • (2005) IFAC Proc , vol.38 , Issue.1 , pp. 19-24
    • El Samad, H.1    Khammash, M.2    Homescu, C.3
  • 182
    • 77951996338 scopus 로고    scopus 로고
    • A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems
    • Zhang HX, Goutsias J. A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems. BMC Bioinformatics 2010; 11(1):246.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 246
    • Zhang, H.X.1    Goutsias, J.2
  • 183
    • 33747889036 scopus 로고    scopus 로고
    • Sensitivity analysis of differential-algebraic equations and partial differential equations
    • Petzold L, Li S, Cao Y, et al. Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput Chem Eng 2006;30(10):1553-9.
    • (2006) Comput Chem Eng , vol.30 , Issue.10 , pp. 1553-1559
    • Petzold, L.1    Li, S.2    Cao, Y.3
  • 184
    • 85008259039 scopus 로고    scopus 로고
    • Thermodynamics-based metabolite sensitivity analysis in metabolic networks
    • Kiparissides A, Hatzimanikatis V. Thermodynamics-based metabolite sensitivity analysis in metabolic networks. Metab Eng 2017;39:117-27.
    • (2017) Metab Eng , vol.39 , pp. 117-127
    • Kiparissides, A.1    Hatzimanikatis, V.2
  • 185
    • 77955058605 scopus 로고    scopus 로고
    • Production of biofuels and biochemicals: In need of an ORACLE
    • Miskovic L, Hatzimanikatis V. Production of biofuels and biochemicals: in need of an ORACLE. Trends Biotechnol 2010;28(8):391-7.
    • (2010) Trends Biotechnol , vol.28 , Issue.8 , pp. 391-397
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 186
    • 84952637898 scopus 로고    scopus 로고
    • ISCHRUNK-In Silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
    • Andreozzi S, Miskovic L, Hatzimanikatis V. iSCHRUNK-In Silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metab Eng 2016;33:158-68.
    • (2016) Metab Eng , vol.33 , pp. 158-168
    • Andreozzi, S.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 190
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S. A survey of multi-view machine learning. Neural Comput Appl 2013;23(7-8):2031-8.
    • (2013) Neural Comput Appl , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 192
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype-phenotype interactions
    • Ritchie MD, Holzinger ER, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 2015;16(2):85-97.
    • (2015) Nat Rev Genet , vol.16 , Issue.2 , pp. 85-97
    • Ritchie, M.D.1    Holzinger, E.R.2    Li, R.3
  • 193
    • 84939481400 scopus 로고    scopus 로고
    • MVDA: A multi-view genomic data integration methodology
    • Serra A, Fratello M, Fortino V, et al. MVDA: a multi-view genomic data integration methodology. BMC Bioinformatics 2015;16(1):261.
    • (2015) BMC Bioinformatics , vol.16 , Issue.1 , pp. 261
    • Serra, A.1    Fratello, M.2    Fortino, V.3
  • 194
    • 84964674890 scopus 로고    scopus 로고
    • Pan-cancer sub-typing in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics
    • Taskesen E, Huisman SM, Mahfouz A, et al. Pan-cancer sub-typing in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics. Sci Rep 2016;6(24949):1-13.
    • (2016) Sci Rep , vol.6 , Issue.24949 , pp. 1-13
    • Taskesen, E.1    Huisman, S.M.2    Mahfouz, A.3
  • 195
    • 84931091190 scopus 로고    scopus 로고
    • Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
    • Speicher NK, Pfeifer N. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics 2015;31(12):i268-75.
    • (2015) Bioinformatics , vol.31 , Issue.12 , pp. i268-i275
    • Speicher, N.K.1    Pfeifer, N.2
  • 197
    • 84874615171 scopus 로고    scopus 로고
    • TW-k-means: Automated two-level variable weighting clustering algorithm for multiview data
    • Chen X, Xu X, Huang JZ, et al. TW-k-means: automated two-level variable weighting clustering algorithm for multiview data. IEEE Trans Knowl Data Eng 2013;25(4):932-44.
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.4 , pp. 932-944
    • Chen, X.1    Xu, X.2    Huang, J.Z.3
  • 198
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009;25(22):2906-12.
    • (2009) Bioinformatics , vol.25 , Issue.22 , pp. 2906-2912
    • Shen, R.1    Olshen, A.B.2    Ladanyi, M.3
  • 200
    • 84895516704 scopus 로고    scopus 로고
    • Similarity network fusion for aggregating data types on a genomic scale
    • Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11(3):333-7.
    • (2014) Nat Methods , vol.11 , Issue.3 , pp. 333-337
    • Wang, B.1    Mezlini, A.M.2    Demir, F.3
  • 201
    • 84978924623 scopus 로고    scopus 로고
    • Multiplex methods provide effective integration of multi-omic data in genome-scale models
    • Angione C, Conway M, Lio P. Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinformatics 2016;17(4):257.
    • (2016) BMC Bioinformatics , vol.17 , Issue.4 , pp. 257
    • Angione, C.1    Conway, M.2    Lio, P.3
  • 202
    • 84881143897 scopus 로고    scopus 로고
    • Data integration model for cancer subtype identification using Kernel Dimensionality Reduction-Support Vector Machine (KDR-SVM)
    • IEEE, New York
    • Wasito I, Istiqlal AN, Budi I. Data integration model for cancer subtype identification using Kernel Dimensionality Reduction-Support Vector Machine (KDR-SVM). In: 2012 7th International Conference on Computing and Convergence Technology (ICCCT). 2012, 876-80. IEEE, New York.
    • (2012) 2012 7th International Conference on Computing and Convergence Technology (ICCCT) , pp. 876-880
    • Wasito, I.1    Istiqlal, A.N.2    Budi, I.3
  • 203
    • 85018416206 scopus 로고    scopus 로고
    • A review on machine learning principles for multi-view biological data integration
    • press
    • Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integration. Brief Bioinformatics 2016, in press.
    • (2016) Brief Bioinformatics
    • Li, Y.1    Wu, F.X.2    Ngom, A.3
  • 204
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001;45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 205
    • 84907452523 scopus 로고    scopus 로고
    • A robust and accurate method for feature selection and prioritization from multi-class OMICs data
    • Fortino V, Kinaret P, Fyhrquist N, et al. A robust and accurate method for feature selection and prioritization from multi-class OMICs data. PloS One 2014;9(9):e107801.
    • (2014) PloS One , vol.9 , Issue.9
    • Fortino, V.1    Kinaret, P.2    Fyhrquist, N.3
  • 206
    • 84997521933 scopus 로고    scopus 로고
    • Integration of metabolomics, lipidomics and clinical data using a machine learning method
    • Acharjee A, Ament Z, West JA, et al. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinformatics 2016;17(15):37.
    • (2016) BMC Bioinformatics , vol.17 , Issue.15 , pp. 37
    • Acharjee, A.1    Ament, Z.2    West, J.A.3
  • 207
    • 84908543129 scopus 로고    scopus 로고
    • Exploring the complexity of pathway-drug relationships using latent Dirichlet allocation
    • Pratanwanich N, Lio P. Exploring the complexity of pathway-drug relationships using latent Dirichlet allocation. Comput Biol Chem 2014;53:144-52.
    • (2014) Comput Biol Chem , vol.53 , pp. 144-152
    • Pratanwanich, N.1    Lio, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.