메뉴 건너뛰기




Volumn 12, Issue , 2018, Pages

Review of statistical learning methods in integrated omics studies (An integrated information science)

Author keywords

Exploratory learning; Integrated omics; Network learning; Regression; Statistical learnings

Indexed keywords

APPENDIX; CLUSTER ANALYSIS; DECISION MAKING; INFORMATION SCIENCE; NETWORK LEARNING; OMICS; PRINCIPAL COMPONENT ANALYSIS; PUBLICATION; REVIEW; SOFTWARE;

EID: 85050100656     PISSN: None     EISSN: 11779322     Source Type: Journal    
DOI: 10.1177/1177932218759292     Document Type: Review
Times cited : (51)

References (69)
  • 2
    • 84871931932 scopus 로고    scopus 로고
    • Deflation strategies for multi-block principal component analysis revisited
    • Hassani S, Hanafi M, Qannari E, Kohler A. Deflation strategies for multi-block principal component analysis revisited. Chemomet Intel Lab Syst. 2013;120:154–168.
    • (2013) Chemomet Intel Lab Syst , vol.120 , pp. 154-168
    • Hassani, S.1    Hanafi, M.2    Qannari, E.3    Kohler, A.4
  • 3
    • 84959866210 scopus 로고    scopus 로고
    • A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
    • Yang Z, Michailidis G. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics. 2015;32:1–8.
    • (2015) Bioinformatics , vol.32 , pp. 1-8
    • Yang, Z.1    Michailidis, G.2
  • 4
    • 78650178785 scopus 로고    scopus 로고
    • Analysis of omics data: Graphical interpretation-and validation tools in multi-block methods
    • Hassani S, Martens H, Qannari E, Hanafi M, Borge G, Kohler A. Analysis of omics data: graphical interpretation-and validation tools in multi-block methods. Chemomet Intel Lab Syst. 2010;104:140–153.
    • (2010) Chemomet Intel Lab Syst , vol.104 , pp. 140-153
    • Hassani, S.1    Martens, H.2    Qannari, E.3    Hanafi, M.4    Borge, G.5    Kohler, A.6
  • 5
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • ed. Multivariate Analysis. New York, NY: Academic Press
    • Wold H. Estimation of principal components and related models by iterative least squares. In: Krishnaiah, PR, ed. Multivariate Analysis. New York, NY: Academic Press; 1966:391–420.
    • (1966) Krishnaiah, PR , pp. 391-420
    • Wold, H.1
  • 10
    • 77952311570 scopus 로고    scopus 로고
    • AutoSOME: A clustering method for identifying gene expression modules without prior knowledge of cluster number
    • Newman A, Cooper J. AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number. BMC Bioinformatics. 2010;11:117.
    • (2010) BMC Bioinformatics , vol.11
    • Newman, A.1    Cooper, J.2
  • 12
    • 84876068958 scopus 로고    scopus 로고
    • Sparse integrative clustering of multiple omics dataset
    • Shen R, Wang S, Mo Q. Sparse integrative clustering of multiple omics dataset. Ann Appl Statist. 2013;7:269–294.
    • (2013) Ann Appl Statist , vol.7 , pp. 269-294
    • Shen, R.1    Wang, S.2    Mo, Q.3
  • 14
    • 84983372028 scopus 로고    scopus 로고
    • Stepwise iterative maximum likelihood clustering approach
    • Sharma A, Shigemizu D, Boroevich K, et al. Stepwise iterative maximum likelihood clustering approach. BMC Bioinformatics. 2016;17:319.
    • (2016) BMC Bioinformatics , vol.17
    • Sharma, A.1    Shigemizu, D.2    Boroevich, K.3
  • 17
    • 84881166432 scopus 로고    scopus 로고
    • Multi-omics approach for estimating metabolic networks using low-order partial correlations
    • Kayano M, Imoto S, Yamaguchi R, Miyan S. Multi-omics approach for estimating metabolic networks using low-order partial correlations. J Computat Biol. 2013;20:571–582.
    • (2013) J Computat Biol , vol.20 , pp. 571-582
    • Kayano, M.1    Imoto, S.2    Yamaguchi, R.3    Miyan, S.4
  • 18
    • 79953684044 scopus 로고    scopus 로고
    • Exploratory analysis of multiple omics datasets using the adjusted RV coefficient
    • Mayer C, Lorent J, Horgan G. Exploratory analysis of multiple omics datasets using the adjusted RV coefficient. Stat Appl Genet Molec Biol. 2011;10:14.
    • (2011) Stat Appl Genet Molec Biol , vol.10 , pp. 14
    • Mayer, C.1    Lorent, J.2    Horgan, G.3
  • 19
    • 84978924623 scopus 로고    scopus 로고
    • Multiplex methods provide effective integration of multiomic data in genome-scale models
    • Angione C, Conway M, Lió P. Multiplex methods provide effective integration of multiomic data in genome-scale models. BMC Bioinformatics. 2016;17:83.
    • (2016) BMC Bioinformatics , vol.17 , pp. 83
    • Angione, C.1    Conway, M.2    Lió, P.3
  • 20
    • 84887057120 scopus 로고    scopus 로고
    • Network-based analysis of omics with multi-objective optimization
    • Mosca E, Milanesi L. Network-based analysis of omics with multi-objective optimization. Mol BioSyst. 2013;9:2971–2980.
    • (2013) Mol Biosyst , vol.9 , pp. 2971-2980
    • Mosca, E.1    Milanesi, L.2
  • 21
    • 84899541058 scopus 로고    scopus 로고
    • NetClass: An R-package for network based, integrative biomarker signature discovery
    • Cun Y, Frohlich H. netClass: an R-package for network based, integrative biomarker signature discovery. Bioinformatics. 2014;30:1326–1326.
    • (2014) Bioinformatics , vol.30 , pp. 1326-1326
    • Cun, Y.1    Frohlich, H.2
  • 22
    • 84883383048 scopus 로고    scopus 로고
    • Network and data integration for biomarker signature discovery via network smoothed T-statistics
    • Cun Y, Frohlich H. Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS ONE. 2013;8:e73074.
    • (2013) Plos ONE , vol.8
    • Cun, Y.1    Frohlich, H.2
  • 23
    • 84941641556 scopus 로고    scopus 로고
    • Exploring causal networks underlying fat deposition and muscularity in pigs through the integration of phenotypic, genotypic and transcriptomic data
    • Peñagaricano F, Valente BD, Steibel JP, et al. Exploring causal networks underlying fat deposition and muscularity in pigs through the integration of phenotypic, genotypic and transcriptomic data. BMC Syst Biol. 2015;9:58.
    • (2015) BMC Syst Biol , vol.9 , pp. 58
    • Peñagaricano, F.1    Valente, B.D.2    Steibel, J.P.3
  • 24
    • 77954195272 scopus 로고    scopus 로고
    • Inference of specific pathway activities from multi-dimensional cancer genomics data using paradigm
    • Vaske C, Benz S, Sanborn J, Earl D, Szeto C, Zhu J. Inference of specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics. 2010;26:1237–1245.
    • (2010) Bioinformatics , vol.26 , pp. 1237-1245
    • Vaske, C.1    Benz, S.2    Sanborn, J.3    Earl, D.4    Szeto, C.5    Zhu, J.6
  • 26
    • 84866418066 scopus 로고    scopus 로고
    • Transcriptional and metabolic data integration and modeling for identification of active pathways
    • Jauhiainen A, Nerman O, Michailidis G, Jornsten R. Transcriptional and metabolic data integration and modeling for identification of active pathways. Biostatistics. 2012;13:748–761.
    • (2012) Biostatistics , vol.13 , pp. 748-761
    • Jauhiainen, A.1    Nerman, O.2    Michailidis, G.3    Jornsten, R.4
  • 27
    • 82055164075 scopus 로고    scopus 로고
    • Integrative set enrichment testing for multiple omics platforms
    • Poisson LM, Taylor JM, Ghosh D. Integrative set enrichment testing for multiple omics platforms. BMC Bioinformatics. 2011;12:459.
    • (2011) BMC Bioinformatics , vol.12 , pp. 459
    • Poisson, L.M.1    Taylor, J.M.2    Ghosh, D.3
  • 28
    • 84889040435 scopus 로고    scopus 로고
    • Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways
    • Pey J, Valgepea K, Rubio A, Beasley JE, Planes FJ. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways. BMC Systems Biology. 2013;7:134.
    • (2013) BMC Systems Biology , vol.7 , pp. 134
    • Pey, J.1    Valgepea, K.2    Rubio, A.3    Beasley, J.E.4    Planes, F.J.5
  • 31
    • 78650666244 scopus 로고    scopus 로고
    • The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping
    • Fonville JM, Richards SE, Barton RH, et al. The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemometrics. 2010;24:636–649.
    • (2010) J Chemometrics , vol.24 , pp. 636-649
    • Fonville, J.M.1    Richards, S.E.2    Barton, R.H.3
  • 32
    • 84958259693 scopus 로고    scopus 로고
    • Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data
    • Chen BS, Li CW. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data. BMC Syst Biol. 2016;10:18.
    • (2016) BMC Syst Biol , vol.10 , pp. 18
    • Chen, B.S.1    Li, C.W.2
  • 33
    • 84957882522 scopus 로고    scopus 로고
    • Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity
    • Pavel AB, Sonkin D, Reddy A. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity. BMC Syst Biol. 2016;10:16.
    • (2016) BMC Syst Biol , vol.10 , pp. 16
    • Pavel, A.B.1    Sonkin, D.2    Reddy, A.3
  • 34
    • 83555177301 scopus 로고    scopus 로고
    • Detecting disease genes based on semi-supervised learning and protein-protein interaction networks
    • Nguyen TP, Hob TB. Detecting disease genes based on semi-supervised learning and protein-protein interaction networks. Artif Intell Med. 2012;54:63–71.
    • (2012) Artif Intell Med , vol.54 , pp. 63-71
    • Nguyen, T.P.1    Hob, T.B.2
  • 36
    • 80053976986 scopus 로고    scopus 로고
    • Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA
    • Kamburov A, Cavill R, Ebbels TR, Keun HC. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics. 2011;27:2917–2918.
    • (2011) Bioinformatics , vol.27 , pp. 2917-2918
    • Kamburov, A.1    Cavill, R.2    Ebbels, T.R.3    Keun, H.C.4
  • 37
    • 84991314240 scopus 로고    scopus 로고
    • Public data and open source tools for multi-assay genomic investigation of disease
    • Kannan L, Ramos M, Re A, et al. Public data and open source tools for multi-assay genomic investigation of disease. Bioinformatics. 2016;17:603–615.
    • (2016) Bioinformatics , vol.17 , pp. 603-615
    • Kannan, L.1    Ramos, M.2    Re, A.3
  • 38
    • 79952606011 scopus 로고    scopus 로고
    • CNAmet: An R package for integration of copy number, expression and methylation data
    • Louhimo R, Hautaniemi S. CNAmet: an R package for integration of copy number, expression and methylation data. Bioinformatics. 2011;27:887–888.
    • (2011) Bioinformatics , vol.27 , pp. 887-888
    • Louhimo, R.1    Hautaniemi, S.2
  • 40
    • 85099007232 scopus 로고    scopus 로고
    • iClusterPlus: integrative clustering of type genomic data [computer program]. R package version 1.12.1; 2016
    • iClusterPlus: integrative clustering of type genomic data [computer program]. R package version 1.12.1; 2016. https://bioconductor.org/packages/release/bioc/html/iClusterPlus.html
  • 41
    • 85099008305 scopus 로고    scopus 로고
    • STATegRa: classes and methods for multi-omics data integration [computer program]. R package version 1.10.0; 2017
    • STATegRa: classes and methods for multi-omics data integration [computer program]. R package version 1.10.0; 2017. http://bioconductor.org/packages/release/bioc/html/STATegRa.html
  • 42
    • 65549104397 scopus 로고    scopus 로고
    • A roadmap of clustering algorithms: Finding a match for a biomedical application
    • Andreopoulos B, An A, Wang X, Schroeder M. A roadmap of clustering algorithms: finding a match for a biomedical application. Brief Bioinformatics. 2008;10:297–314.
    • (2008) Brief Bioinformatics , vol.10 , pp. 297-314
    • Andreopoulos, B.1    An, A.2    Wang, X.3    Schroeder, M.4
  • 43
    • 84870796415 scopus 로고    scopus 로고
    • Bayesian correlated clustering to integrate multiple datasets
    • Kirk P, Griffin J, Savage R, Ghahramani Z, Wild D. Bayesian correlated clustering to integrate multiple datasets. Bioinformatics. 2012;28:3290–3297.
    • (2012) Bioinformatics , vol.28 , pp. 3290-3297
    • Kirk, P.1    Griffin, J.2    Savage, R.3    Ghahramani, Z.4    Wild, D.5
  • 45
    • 85050612613 scopus 로고    scopus 로고
    • Integrating heterogeneous omics data via statistical inference and learning techniques
    • Ahmad A, Fröhlich H. Integrating heterogeneous omics data via statistical inference and learning techniques. Genom Comput Biol. 2016;2:e32.
    • (2016) Genom Comput Biol , vol.2 , pp. e32
    • Ahmad, A.1    Fröhlich, H.2
  • 47
    • 84987718199 scopus 로고    scopus 로고
    • Integration and visualization of translational medicine data for better understanding of human diseases
    • Satagopam V, Gu W, Eifes S, et al. Integration and visualization of translational medicine data for better understanding of human diseases. Big Data. 2016;4:97–108.
    • (2016) Big Data , vol.4 , pp. 97-108
    • Satagopam, V.1    Gu, W.2    Eifes, S.3
  • 48
    • 84879966311 scopus 로고    scopus 로고
    • OmixAnalyzer: A web based system for management and analysis of high-throughput omics data sets
    • Stoltmann T, Zimmermann K, Koschmieder A, Leser U. OmixAnalyzer: a web based system for management and analysis of high-throughput omics data sets. Lecture Notes Comp Sci. 2013;7970:46–53.
    • (2013) Lecture Notes Comp Sci , vol.7970 , pp. 46-53
    • Stoltmann, T.1    Zimmermann, K.2    Koschmieder, A.3    Leser, U.4
  • 49
    • 84868514445 scopus 로고    scopus 로고
    • VANTED V2: A framework for systems biology applications
    • Rohn H, Junker A, Hartmann A, et al. VANTED V2: a framework for systems biology applications. BMC Syst Biol. 2012;6:139.
    • (2012) BMC Syst Biol , vol.6 , pp. 139
    • Rohn, H.1    Junker, A.2    Hartmann, A.3
  • 51
    • 84924370895 scopus 로고    scopus 로고
    • Integrative multi-omics module network inference with lemon-tree
    • Bonnet E, Calzone L, Michoel T. Integrative multi-omics module network inference with lemon-tree. PLoS Comp Biol. 2015;11:e1003983.
    • (2015) Plos Comp Biol , vol.11
    • Bonnet, E.1    Calzone, L.2    Michoel, T.3
  • 52
    • 70350694448 scopus 로고    scopus 로고
    • IntegrOmics: An R package to unravel relationships between two omics datasets
    • Lê Cao KA, Ignacio González I, Déjean S. IntegrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics. 2009;25:2855–2856.
    • (2009) Bioinformatics , vol.25 , pp. 2855-2856
    • Lê Cao, K.A.1    Ignacio González, I.2    Déjean, S.3
  • 53
    • 79551634069 scopus 로고    scopus 로고
    • Mayday seaSight: Combined analysis of deep sequencing and microarray data
    • Battke F, Nieselt K. Mayday seaSight: combined analysis of deep sequencing and microarray data. PLoS ONE. 2011;6:e16345.
    • (2011) Plos ONE , vol.6
    • Battke, F.1    Nieselt, K.2
  • 54
    • 77951961369 scopus 로고    scopus 로고
    • DASS-GUI: A user interface for identification and analysis of significant patterns in non-sequential data
    • Hollunder J, Friedel M, Kuiper M, Wilhelm T. DASS-GUI: a user interface for identification and analysis of significant patterns in non-sequential data. Bioinformatics. 2010;26:987–989.
    • (2010) Bioinformatics , vol.26 , pp. 987-989
    • Hollunder, J.1    Friedel, M.2    Kuiper, M.3    Wilhelm, T.4
  • 55
    • 84969922810 scopus 로고    scopus 로고
    • Multi-omics enrichment analysis using the GeneTrail 2 web service
    • Stöckel D, Kehl T, Trampert P, et al. Multi-omics enrichment analysis using the GeneTrail 2 web service. Bioinformatics. 2016;32:1502–1508.
    • (2016) Bioinformatics , vol.32 , pp. 1502-1508
    • Stöckel, D.1    Kehl, T.2    Trampert, P.3
  • 56
    • 78449299426 scopus 로고    scopus 로고
    • OmicsAnalyzer: A cytoscape plug-in suite for modeling omics data
    • Xia T, Hemert JV, Dickerson JA. OmicsAnalyzer: a cytoscape plug-in suite for modeling omics data. Bioinformatics. 2010;26:2995–2996.
    • (2010) Bioinformatics , vol.26 , pp. 2995-2996
    • Xia, T.1    Hemert, J.V.2    Dickerson, J.A.3
  • 57
    • 85099007937 scopus 로고    scopus 로고
    • specmine [computer program]. Version 1.0: R; 2015
    • specmine [computer program]. Version 1.0: R; 2015. https://github.com/cran/specmine
  • 58
    • 84865552798 scopus 로고    scopus 로고
    • ImDEV: A graphical user interface to R multivariate analysis tools in Microsoft Excel
    • Grapov D, Newman JW. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel. Bioinformatics. 2012;28:2288–2290.
    • (2012) Bioinformatics , vol.28 , pp. 2288-2290
    • Grapov, D.1    Newman, J.W.2
  • 59
    • 85099007710 scopus 로고    scopus 로고
    • XMRF [computer program]. Version 1.0: R; 2015
    • XMRF [computer program]. Version 1.0: R; 2015. https://cran.r-project.org/web/packages/XMRF
  • 60
    • 84939618574 scopus 로고    scopus 로고
    • Automatically visualise and analyse data on pathways using pathVisioRPC from any programming environment
    • Bohler A, Eijssen LMT, van Iersel MP, et al. Automatically visualise and analyse data on pathways using pathVisioRPC from any programming environment. BMC Bioinformatics. 2015;16:267.
    • (2015) BMC Bioinformatics , vol.16 , pp. 267
    • Bohler, A.1    Eijssen, L.M.T.2    van Iersel, M.P.3
  • 61
  • 62
    • 84880335552 scopus 로고    scopus 로고
    • 3Omics: A web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data
    • Kuo TC, Tian TF, Tseng YJ. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst Biol. 2013;7:64.
    • (2013) BMC Syst Biol , vol.7 , pp. 64
    • Kuo, T.C.1    Tian, T.F.2    Tseng, Y.J.3
  • 63
    • 78650572031 scopus 로고    scopus 로고
    • Paintomics: A web based tool for the joint visualization of transcriptomics and metabolomics data
    • García-Alcalde F, García-López F, Dopazo J, Conesa A. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics. 2011;27:137–139.
    • (2011) Bioinformatics , vol.27 , pp. 137-139
    • García-Alcalde, F.1    García-López, F.2    Dopazo, J.3    Conesa, A.4
  • 64
    • 84904751123 scopus 로고    scopus 로고
    • COEUS: “semantic web in a box” for biomedical applications
    • Lopes P, Luís Oliveira J. COEUS: “semantic web in a box” for biomedical applications. J Biomed Semant. 2012;3:11.
    • (2012) J Biomed Semant , vol.3 , pp. 11
    • Lopes, P.1    Luís Oliveira, J.2
  • 65
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2.8: New features for data integration and network visualization
    • Smoot M, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–432.
    • (2011) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.1    Ono, K.2    Ruscheinski, J.3    Wang, P.L.4    Ideker, T.5
  • 66
    • 79961182650 scopus 로고    scopus 로고
    • MGV: A generic graph viewer for comparative omics data
    • Symons S, Nieselt K. MGV: a generic graph viewer for comparative omics data. Bioinformatics. 2011;27:2248–2255.
    • (2011) Bioinformatics , vol.27 , pp. 2248-2255
    • Symons, S.1    Nieselt, K.2
  • 67
    • 79960342167 scopus 로고    scopus 로고
    • Visualizing multi-omics data in metabolic networks with the software Omix: A case study
    • Droste P, Miebach S, Niedenführ S, Wiechert W, Nöh K. Visualizing multi-omics data in metabolic networks with the software Omix: a case study. BioSys-tems. 2011;105:154–161.
    • (2011) Biosys-Tems , vol.105 , pp. 154-161
    • Droste, P.1    Miebach, S.2    Niedenführ, S.3    Wiechert, W.4    Nöh, K.5
  • 69
    • 84890485602 scopus 로고    scopus 로고
    • ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
    • Kim D, Li R, Dudek SM, Ritchie MD. ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Mining. 2013;6:23.
    • (2013) Biodata Mining , vol.6 , pp. 23
    • Kim, D.1    Li, R.2    Dudek, S.M.3    Ritchie, M.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.