-
1
-
-
84940974070
-
Plasma metabolomic profiles enhance precision medicine for volunteers of normal health
-
Guo, L.; Milburn, M.V.; Ryals, J.A.; Lonergan, S.C.; Mitchell, M.W.; Wulff, J.E.; Alexander, D.C.; Evans, A.M.; Bridgewater, B.; Miller, L.; et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc. Natl. Acad. Sci. USA 2015, 112, E4901–E4910. [CrossRef] [PubMed]
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
-
-
Guo, L.1
Milburn, M.V.2
Ryals, J.A.3
Lonergan, S.C.4
Mitchell, M.W.5
Wulff, J.E.6
Alexander, D.C.7
Evans, A.M.8
Bridgewater, B.9
Miller, L.10
-
2
-
-
0001201756
-
Some studies in machine learning using the game of checkers
-
Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [CrossRef]
-
(1959)
IBM J. Res. Dev
, vol.3
, pp. 210-229
-
-
Samuel, A.L.1
-
3
-
-
0004255908
-
-
McGraw-Hill: New York, NY, USA
-
Michell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997.
-
(1997)
Machine Learning
-
-
Michell, T.M.1
-
5
-
-
79955076643
-
Supervised machine learning: A review of classification techniques
-
Kotsiantis, S.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Front. Artif. Intell. Appl. 2007, 160, 3–24.
-
(2007)
Front. Artif. Intell. Appl
, vol.160
, pp. 3-24
-
-
Kotsiantis, S.1
Zaharakis, I.2
Pintelas, P.3
-
6
-
-
85041093308
-
-
IOS Press: Amsterdam, The Netherlands
-
Forssen, H.; Patel, R.; Fitzpatrick, N.; Hingorani, A.; Timmis, A.; Hemingway, H.; Denaxas, S. Evaluation of Machine Learning Methods to Predict Coronary Artery Disease Using Metabolomic Data; IOS Press: Amsterdam, The Netherlands, 2017; pp. 1–5.
-
(2017)
Evaluation of Machine Learning Methods to Predict Coronary Artery Disease Using Metabolomic Data
, pp. 1-5
-
-
Forssen, H.1
Patel, R.2
Fitzpatrick, N.3
Hingorani, A.4
Timmis, A.5
Hemingway, H.6
Denaxas, S.7
-
7
-
-
84862017669
-
1H-NMR metabolomics analysis of glioblastoma subtypes: Correlation between metabolomics and gene expression characteristics
-
Cuperlovic-Culf, M.; Ferguson, D.; Culf, A.; Morin, P., Jr.; Touaibia, M. 1H-NMR metabolomics analysis of glioblastoma subtypes: Correlation between metabolomics and gene expression characteristics. J. Biol. Chem. 2012, 287, 20164–20175. [CrossRef] [PubMed]
-
(2012)
J. Biol. Chem
, vol.287
, pp. 20164-20175
-
-
Cuperlovic-Culf, M.1
Ferguson, D.2
Culf, A.3
Morin, P.4
Touaibia, M.5
-
8
-
-
0037292138
-
Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps
-
Beckonert, O.; Monnerjahn, J.; Bonk, U.; Leibfritz, D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 2003, 16, 1–11. [CrossRef] [PubMed]
-
(2003)
NMR Biomed
, vol.16
, pp. 1-11
-
-
Beckonert, O.1
Monnerjahn, J.2
Bonk, U.3
Leibfritz, D.4
-
9
-
-
54749109964
-
Analysis of metabolomic data using support vector machines
-
Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of metabolomic data using support vector machines. Anal. Chem. 2008, 80, 7562–7570. [CrossRef] [PubMed]
-
(2008)
Anal. Chem
, vol.80
, pp. 7562-7570
-
-
Mahadevan, S.1
Shah, S.L.2
Marrie, T.J.3
Slupsky, C.M.4
-
10
-
-
85032362121
-
PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data
-
Bujak, R.; Daghir-Wojtkowiak, E.; Kaliszan, R.; Markuszewski, M.J. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data. Front. Mol. Biosci. 2016, 3, 1–10. [CrossRef] [PubMed]
-
(2016)
Front. Mol. Biosci
, vol.3
, pp. 1-10
-
-
Bujak, R.1
Daghir-Wojtkowiak, E.2
Kaliszan, R.3
Markuszewski, M.J.4
-
11
-
-
84903164197
-
A metabolomic profile is associated with the risk of incident coronary heart disease
-
Vaarhorst, A.A.; Verhoeven, A.; Weller, C.M.; Böhringer, S.; Göraler, S.; Meissner, A.; Deelder, A.M.; Henneman, P.; Gorgels, A.P.; van den Brandt, P.A.; et al. A metabolomic profile is associated with the risk of incident coronary heart disease. Am. Heart J. 2014, 168, 45–52. [CrossRef] [PubMed]
-
(2014)
Am. Heart J
, vol.168
, pp. 45-52
-
-
Vaarhorst, A.A.1
Verhoeven, A.2
Weller, C.M.3
Böhringer, S.4
Göraler, S.5
Meissner, A.6
Deelder, A.M.7
Henneman, P.8
Gorgels, A.P.9
Van Den Brandt, P.A.10
-
12
-
-
15944363863
-
Modelling of classification rules on metabolic patterns including machine learning and expert knowledge
-
Baumgartner, C.; Böhm, C.; Baumgartner, D. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J. Biomed. Inform. 2005, 38, 89–98.
-
(2005)
J. Biomed. Inform.
, vol.38
, pp. 89-98
-
-
Baumgartner, C.1
Böhm, C.2
Baumgartner, D.3
-
13
-
-
34249849281
-
A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data
-
Vehtari, A.; Makinen, V.P.; Soininen, P.; Ingman, P.; Makela, S.M.; Savolainen, M.J.; Hannuksela, M.L.; Kaski, K.; Ala-Korpela, M. A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data. BMC Bioinform. 2007, 8, S8. [CrossRef] [PubMed]
-
(2007)
BMC Bioinform
, vol.8
-
-
Vehtari, A.1
Makinen, V.P.2
Soininen, P.3
Ingman, P.4
Makela, S.M.5
Savolainen, M.J.6
Hannuksela, M.L.7
Kaski, K.8
Ala-Korpela, M.9
-
14
-
-
68249109591
-
Association analysis techniques for bioinformatics problems
-
First International Conference, BICoB 2009, New Orleans, LA, USA
-
Atluri, G.; Gupta, R.; Fang, G.; Pandey, G.; Steinbach, M.; Kumar, V. Association analysis techniques for bioinformatics problems. In Proceedings of the Bioinformatics and Computational Biology: First International Conference, BICoB 2009, New Orleans, LA, USA, 8–10 April 2009.
-
(2009)
Proceedings of the Bioinformatics and Computational Biology
-
-
Atluri, G.1
Gupta, R.2
Fang, G.3
Pandey, G.4
Steinbach, M.5
Kumar, V.6
-
15
-
-
77957844973
-
Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance
-
Brougham, D.F.; Ivanova, G.; Gottschalk, M.; Collins, D.M.; Eustace, A.J.; O’Connor, R.; Havel, J. Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance. J. Biomed. Biotechnol. 2011, 2011, 158094. [CrossRef] [PubMed]
-
(2011)
J. Biomed. Biotechnol
, vol.2011
, pp. 158094
-
-
Brougham, D.F.1
Ivanova, G.2
Gottschalk, M.3
Collins, D.M.4
Eustace, A.J.5
O’Connor, R.6
Havel, J.7
-
16
-
-
84929335742
-
Optimizing artificial neural network models for metabolomics and systems biology: An example using HPLC retention index data
-
Hall, L.M.; Hill, D.W.; Menikarachchi, L.C.; Chen, M.H.; Hall, L.H.; Grant, D.F. Optimizing artificial neural network models for metabolomics and systems biology: An example using HPLC retention index data. Bioanalysis 2015, 7, 939–955. [CrossRef] [PubMed]
-
(2015)
Bioanalysis
, vol.7
, pp. 939-955
-
-
Hall, L.M.1
Hill, D.W.2
Menikarachchi, L.C.3
Chen, M.H.4
Hall, L.H.5
Grant, D.F.6
-
17
-
-
0000359679
-
Variable selection in discriminant partial least-squares analysis
-
Alsberg, B.K.; Kell, D.B.; Goodacre, R. Variable selection in discriminant partial least-squares analysis. Anal. Chem. 1998, 70, 4126–4133. [CrossRef] [PubMed]
-
(1998)
Anal. Chem
, vol.70
, pp. 4126-4133
-
-
Alsberg, B.K.1
Kell, D.B.2
Goodacre, R.3
-
18
-
-
38949209075
-
NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology
-
Coen, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem. Res. Toxicol. 2008, 21, 9–27. [CrossRef] [PubMed]
-
(2008)
Chem. Res. Toxicol
, vol.21
, pp. 9-27
-
-
Coen, M.1
Holmes, E.2
Lindon, J.C.3
Nicholson, J.K.4
-
19
-
-
85020208122
-
Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data
-
Grissa, D.; Pétéra, M.; Brandolini, M.; Napoli, A.; Comte, B.; Pujos-Guillot, E. Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data. Front. Mol. Biosci. 2016, 3, 30. [CrossRef] [PubMed]
-
(2016)
Front. Mol. Biosci
, vol.3
, pp. 30
-
-
Grissa, D.1
Pétéra, M.2
Brandolini, M.3
Napoli, A.4
Comte, B.5
Pujos-Guillot, E.6
-
20
-
-
85040193110
-
Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data
-
Alakwaa, F.M.; Chaudhary, K.; Garmire, L.X. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data. J. Proteom. Res. 2018, 17, 337–347. [CrossRef] [PubMed]
-
(2018)
J. Proteom. Res
, vol.17
, pp. 337-347
-
-
Alakwaa, F.M.1
Chaudhary, K.2
Garmire, L.X.3
-
21
-
-
84896700791
-
Metabolite identification through machine learning—Tackling CASMI challenge using fingerID
-
Shen, H.; Zamboni, N.; Heinonen, M.; Rousu, J. Metabolite identification through machine learning—Tackling CASMI challenge using fingerID. Metabolites 2013, 3, 484–505. [CrossRef] [PubMed]
-
(2013)
Metabolites
, vol.3
, pp. 484-505
-
-
Shen, H.1
Zamboni, N.2
Heinonen, M.3
Rousu, J.4
-
22
-
-
84952866458
-
Accurate, fully-automated NMR spectral profiling for metabolomics
-
Ravanbakhsh, S.; Liu, P.; Bjorndahl, T.C.; Mandal, R.; Grant, J.R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, X.; Luchinat, C.; et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE 2015, 10, e0124219. [CrossRef] [PubMed]
-
(2015)
Plos ONE
, vol.10
-
-
Ravanbakhsh, S.1
Liu, P.2
Bjorndahl, T.C.3
Mandal, R.4
Grant, J.R.5
Wilson, M.6
Eisner, R.7
Sinelnikov, I.8
Hu, X.9
Luchinat, C.10
-
23
-
-
84865144924
-
BATMAN—An R package for the automated quantification ofmetabolites fromNMR spectra using a Bayesianmodel
-
Hao, J.; Astle, W.; DeIorio, M.; Ebbels, T. BATMAN—An R package for the automated quantification ofmetabolites fromNMR spectra using a Bayesianmodel. Bioinformatics 2012, 28, 2088–2090. [CrossRef] [PubMed]
-
(2012)
Bioinformatics
, vol.28
, pp. 2088-2090
-
-
Hao, J.1
Astle, W.2
Deiorio, M.3
Ebbels, T.4
-
24
-
-
58049209789
-
Genetic algorithms for simultaneous variable and sample selection inmetabonomics
-
Cavill, R.; Keun, H.C.; Holmes, E.; Lindon, J.C.; Nicholson, J.K.; Ebbels, T.M. Genetic algorithms for simultaneous variable and sample selection inmetabonomics. Bioinformatics 2009, 25, 112–118. [CrossRef] [PubMed]
-
(2009)
Bioinformatics
, vol.25
, pp. 112-118
-
-
Cavill, R.1
Keun, H.C.2
Holmes, E.3
Lindon, J.C.4
Nicholson, J.K.5
Ebbels, T.M.6
-
25
-
-
84890226269
-
Multivariate analysis in metabolomics
-
Worley, B.; Powers, R. Multivariate analysis in metabolomics. Curr. Metabol. 2013, 1, 92–107.
-
(2013)
Curr. Metabol
, vol.1
, pp. 92-107
-
-
Worley, B.1
Powers, R.2
-
26
-
-
84898548748
-
Reflections on univariate and multivariate analysis of metabolomics data
-
Saccenti, E.; Hoefsloot, H.C.J.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M.W.B. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 2014, 10, 361–374. [CrossRef]
-
(2014)
Metabolomics
, vol.10
, pp. 361-374
-
-
Saccenti, E.1
Hoefsloot, H.C.J.2
Smilde, A.K.3
Westerhuis, J.A.4
Hendriks, M.M.W.B.5
-
27
-
-
85041040395
-
Machine learning in systems biology
-
D’Alche-Buc, F.; Wehenkel, L. Machine learning in systems biology. BMC Proc. 2008, 2, S1. Available online: https://bmcproc.biomedcentral.com/articles/10.1186/1753-6561-2-S4-S1 (accessed on 8 January 2018).
-
(2008)
BMC Proc
, vol.2
-
-
D’alche-Buc, F.1
Wehenkel, L.2
-
28
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [CrossRef] [PubMed]
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 321-332
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
29
-
-
84899570854
-
Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis
-
Smolinska, A.; Hauschild, A.-C.; Fijten, R.R.R.; Dallinga, J.W.; Baumbach, J.; Schooten, F.J. Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis. J. Breath Res. 2014, 8, 27105. [CrossRef] [PubMed]
-
(2014)
J. Breath Res.
, vol.8
, pp. 27105
-
-
Smolinska, A.1
Hauschild, A.-C.2
Fijten, R.R.R.3
Dallinga, J.W.4
Baumbach, J.5
Schooten, F.J.6
-
30
-
-
33644959172
-
Metabolomics, modelling and machine learning in systems biology—Towards an understanding of the languages of cells
-
Kell, D.B. Metabolomics, modelling and machine learning in systems biology—Towards an understanding of the languages of cells. FEBS J. 2006, 273, 873–894. [CrossRef] [PubMed]
-
(2006)
FEBS J
, vol.273
, pp. 873-894
-
-
Kell, D.B.1
-
31
-
-
85041089041
-
Understanding the languages of cells
-
Kell, D.B. Understanding the languages of cells. Syst. Biol. 2011, 7, 4–7.
-
(2011)
Syst. Biol
, vol.7
, pp. 4-7
-
-
Kell, D.B.1
-
32
-
-
72549095180
-
Chemometrics in metabolomics—A review in human disease diagnosis
-
Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics—A review in human disease diagnosis. Anal. Chim. Acta 2010, 659, 23–33. [CrossRef] [PubMed]
-
(2010)
Anal. Chim. Acta
, vol.659
, pp. 23-33
-
-
Madsen, R.1
Lundstedt, T.2
Trygg, J.3
-
33
-
-
85025463270
-
Metabolomics for the masses: The future of metabolomics in a personalized world
-
Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz. Transl. Med. 2017, 3, 294–305. [CrossRef] [PubMed]
-
(2017)
New Horiz. Transl. Med
, vol.3
, pp. 294-305
-
-
Trivedi, D.K.1
Hollywood, K.A.2
Goodacre, R.3
-
34
-
-
84997521933
-
Integration of metabolomics, lipidomics and clinical data using a machine learning method
-
Acharjee, A.; Ament, Z.; West, J.A.; Stanley, E.; Griffin, J.L. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinform. 2016, 17, 37–49. [CrossRef] [PubMed]
-
(2016)
BMC Bioinform
, vol.17
, pp. 37-49
-
-
Acharjee, A.1
Ament, Z.2
West, J.A.3
Stanley, E.4
Griffin, J.L.5
-
35
-
-
85041080232
-
-
Metabolomics Software and Servers. Available online: http://metabolomicssociety.org/resources/metabolomics-software (accessed on 8 January 2018).
-
Metabolomics Software and Servers
-
-
-
36
-
-
85041068878
-
-
Metabolomic Software. Available online: http://pmv.org.au/metabolomics/metabolomic-software/ (accessed on 8 January 2018).
-
Metabolomic Software
-
-
-
37
-
-
84925031191
-
Methods of integrating data to uncover genotype–phenotype interactions
-
Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of integrating data to uncover genotype–phenotype interactions. Nat. Rev. Genet. 2015, 16, 85–97. [CrossRef] [PubMed]
-
(2015)
Nat. Rev. Genet
, vol.16
, pp. 85-97
-
-
Ritchie, M.D.1
Holzinger, E.R.2
Li, R.3
Pendergrass, S.A.4
Kim, D.5
-
38
-
-
84961231007
-
Metabolomics: Beyond biomarkers and towards mechanisms
-
Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [CrossRef] [PubMed]
-
(2016)
Nat. Rev. Mol. Cell Biol
, vol.17
, pp. 451-459
-
-
Johnson, C.H.1
Ivanisevic, J.2
Siuzdak, G.3
-
39
-
-
84880851838
-
Predicting network activity from high throughput metabolomics
-
Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Bali Pulendran, B. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [CrossRef] [PubMed]
-
(2013)
Plos Comput. Biol
, vol.9
-
-
Li, S.1
Park, Y.2
Duraisingham, S.3
Strobel, F.H.4
Khan, N.5
Soltow, Q.A.6
Jones, D.P.7
Bali Pulendran, B.8
-
40
-
-
0242490780
-
Cytoscape: A software environment for integrated models of biomolecular interaction networks
-
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef] [PubMed]
-
(2003)
Genome Res.
, vol.13
, pp. 2498-2504
-
-
Shannon, P.1
Markiel, A.2
Ozier, O.3
Baliga, N.S.4
Wang, J.T.5
Ramage, D.6
Amin, N.7
Schwikowski, B.8
Ideker, T.9
-
41
-
-
85025589371
-
Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with theWorkflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics
-
Guitton, Y.; Tremblay-Franco, M.; Le Corguillé, G.; Martin, J.F.; Pétéra, M.; Roger-Mele, P.; Delabrière, A.; Goulitquer, S.; Monsoor, M.; Duperier, C.; et al. Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with theWorkflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int. J. Biochem. Cell Biol. 2017, 93, 89–101. [CrossRef] [PubMed]
-
(2017)
Int. J. Biochem. Cell Biol.
, vol.93
, pp. 89-101
-
-
Guitton, Y.1
Tremblay-Franco, M.2
Le Corguillé, G.3
Martin, J.F.4
Pétéra, M.5
Roger-Mele, P.6
Delabrière, A.7
Goulitquer, S.8
Monsoor, M.9
Duperier, C.10
-
42
-
-
84866437252
-
Metabolite identification and molecular fingerprint prediction through machine learning
-
Heinonen, M.; Shen, H.; Zamboni, N.; Rousu, J. Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics 2012, 28, 2333–2341. [CrossRef] [PubMed]
-
(2012)
Bioinformatics
, vol.28
, pp. 2333-2341
-
-
Heinonen, M.1
Shen, H.2
Zamboni, N.3
Rousu, J.4
-
43
-
-
84958110559
-
Fragmentation trees reloaded
-
Dührkop, K.; Böcker, S. Fragmentation trees reloaded. J. Cheminform. 2016, 8, 5.
-
(2016)
J. Cheminform
, vol.8
, pp. 5
-
-
Dührkop, K.1
Böcker, S.2
-
44
-
-
85029425714
-
Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis
-
Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1–14.10.91.
-
(2016)
Curr. Protoc. Bioinform
, vol.55
, pp. 1-14
-
-
Xia, J.1
Wishart, D.S.2
-
45
-
-
84947869905
-
Learning to classify organic and conventional wheat—A machine learning driven approach using the MeltDB 2.0 metabolomics analysis platform
-
Kessler, N.; Dührkop, K. Learning to classify organic and conventional wheat—A machine learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Front. Bioeng. Biotechnol. 2015, 3, 35. [CrossRef] [PubMed]
-
(2015)
Front. Bioeng. Biotechnol
, vol.3
, pp. 35
-
-
Kessler, N.1
Dührkop, K.2
-
46
-
-
85019278512
-
-
4th ed.; Morgan Kaufmann: Cambridge, MA, USA
-
Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th ed.; Morgan Kaufmann: Cambridge, MA, USA, 2016.
-
(2016)
The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”
-
-
Frank, E.1
Hall, M.A.2
Witten, I.H.3
-
47
-
-
33747061013
-
Structural kinetic modeling of metabolic networks
-
Steuer, R.; Gross, T.; Selbig, J.; Blasius, B. Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci. USA 2006, 103, 11868–11873. [CrossRef] [PubMed]
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 11868-11873
-
-
Steuer, R.1
Gross, T.2
Selbig, J.3
Blasius, B.4
-
48
-
-
84898806978
-
Solving the differential biochemical Jacobian from metabolomics covariance data
-
Nagele, T.; Mair, A.; Sun, X.; Fragner, L.; Teige, M.; Weckwerth, W. Solving the differential biochemical Jacobian from metabolomics covariance data. PLoS ONE 2014, 9, e92299. [CrossRef] [PubMed]
-
(2014)
Plos ONE
, vol.9
-
-
Nagele, T.1
Mair, A.2
Sun, X.3
Fragner, L.4
Teige, M.5
Weckwerth, W.6
-
49
-
-
0027902978
-
Petri net representations in metabolic pathways
-
Reddy, V.N.; Mavrovouniotis, M.L.; Liebman, M.N. Petri net representations in metabolic pathways. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1993, 1, 328–336. [PubMed]
-
(1993)
Proc. Int. Conf. Intell. Syst. Mol. Biol
, vol.1
, pp. 328-336
-
-
Reddy, V.N.1
Mavrovouniotis, M.L.2
Liebman, M.N.3
-
50
-
-
33947507091
-
Computational systems biology in drug discovery and development: Methods and applications
-
Materi, W.; Wishart, D.S. Computational systems biology in drug discovery and development: Methods and applications. Drug Discov. Today 2007, 12, 295–303. [CrossRef] [PubMed]
-
(2007)
Drug Discov. Today
, vol.12
, pp. 295-303
-
-
Materi, W.1
Wishart, D.S.2
-
51
-
-
78649903919
-
Petri nets for modelling metabolic pathways: A survey
-
Baldan, P.; Cocco, N.; Marin, A.; Simeoni, M. Petri nets for modelling metabolic pathways: A survey. Nat. Comput. 2010, 9, 955–989. [CrossRef]
-
(2010)
Nat. Comput.
, vol.9
, pp. 955-989
-
-
Baldan, P.1
Cocco, N.2
Marin, A.3
Simeoni, M.4
-
52
-
-
85057522434
-
Seeing the wood for the trees: A forest of methods for optimization and omic-network integration in metabolic modelling
-
Vijayakumar, S.; Conway, M.; Lió, P.; Angione, C. Seeing the wood for the trees: A forest of methods for optimization and omic-network integration in metabolic modelling. Brief. Bioinform. 2017, 1–18. [CrossRef] [PubMed]
-
(2017)
Brief. Bioinform
, pp. 1-18
-
-
Vijayakumar, S.1
Conway, M.2
Lió, P.3
Angione, C.4
-
53
-
-
84863230581
-
Metabolic network modeling and simulation for drug targeting and discovery
-
Kim, H.U.; Sohn, S.B.; Lee, S.Y. Metabolic network modeling and simulation for drug targeting and discovery. Biotechnol. J. 2012, 7, 330–342. [CrossRef] [PubMed]
-
(2012)
Biotechnol. J
, vol.7
, pp. 330-342
-
-
Kim, H.U.1
Sohn, S.B.2
Lee, S.Y.3
-
54
-
-
78650002545
-
Large-scale in silico modeling of metabolic interactions between cell types in the human brain
-
Lewis, N.E.; Schramm, G.; Bordbar, A.; Schellenberger, J.; Andersen, M.P.; Cheng, J.K.; Patel, N.; Yee, A.; Lewis, R.A.; Eils, R.; et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat. Biotechnol. 2010, 28, 1279–1285. [CrossRef] [PubMed]
-
(2010)
Nat. Biotechnol
, vol.28
, pp. 1279-1285
-
-
Lewis, N.E.1
Schramm, G.2
Bordbar, A.3
Schellenberger, J.4
Andersen, M.P.5
Cheng, J.K.6
Patel, N.7
Yee, A.8
Lewis, R.A.9
Eils, R.10
-
55
-
-
85015242037
-
Control and regulation of pathways via negative feedback—Supplementary
-
Sauro, H.M. Control and regulation of pathways via negative feedback—Supplementary. J. R. Soc. Interface 2017, 14. [CrossRef]
-
(2017)
J. R. Soc. Interface
, vol.14
-
-
Sauro, H.M.1
-
56
-
-
26944473632
-
-
Proceedings of the 15th International Conference on Inductive Logic Programming, Bonn, Germany
-
Muggleton, S.H. Machine Learning for Systems Biology. In Proceedings of the 15th International Conference on Inductive Logic Programming, Bonn, Germany, 10–13 August 2005; pp. 416–423.
-
(2005)
Machine Learning for Systems Biology
, pp. 416-423
-
-
Muggleton, S.H.1
-
57
-
-
84964679066
-
Predicting essential genes and proteins based on machine learning and network topological features: A comprehensive review
-
Zhang, X.; Acencio, M.L.; Lemke, N. Predicting essential genes and proteins based on machine learning and network topological features: A comprehensive review. Front. Physiol. 2016, 7, 1–11.
-
(2016)
Front. Physiol.
, vol.7
, pp. 1-11
-
-
Zhang, X.1
Acencio, M.L.2
Lemke, N.3
-
58
-
-
84978711445
-
Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
-
Saa, P.A.; Nielsen, L.K. Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach. Sci. Rep. 2016, 6, 29635. [CrossRef] [PubMed]
-
(2016)
Sci. Rep
, vol.6
, pp. 29635
-
-
Saa, P.A.1
Nielsen, L.K.2
-
59
-
-
85033687968
-
Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data
-
Sriyudthsak, K.; Shiraishi, F.; Hirai, M.Y. Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Front. Mol. Biosci. 2016, 3, 1–11. [CrossRef] [PubMed]
-
(2016)
Front. Mol. Biosci
, vol.3
, pp. 1-11
-
-
Sriyudthsak, K.1
Shiraishi, F.2
Hirai, M.Y.3
-
60
-
-
84929485233
-
A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions
-
Saa, P.; Nielsen, L.K. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions. PLoS Comput. Biol. 2015, 11, e1004195. [CrossRef] [PubMed]
-
(2015)
Plos Comput. Biol
, vol.11
-
-
Saa, P.1
Nielsen, L.K.2
-
61
-
-
84867296080
-
A MATLAB toolbox for structural kinetic modeling
-
Girbig, D.; Selbig, J.; Grimbs, S. A MATLAB toolbox for structural kinetic modeling. Bioinformatics 2012, 28, 2546–2547. [CrossRef] [PubMed]
-
(2012)
Bioinformatics
, vol.28
, pp. 2546-2547
-
-
Girbig, D.1
Selbig, J.2
Grimbs, S.3
-
62
-
-
84859727210
-
Systematic analysis of stability patterns in plant primary metabolism
-
Girbig, D.; Grimbs, S.; Selbig, J. Systematic analysis of stability patterns in plant primary metabolism. PLoS ONE 2012, 7, e34686. [CrossRef] [PubMed]
-
(2012)
Plos ONE
, vol.7
-
-
Girbig, D.1
Grimbs, S.2
Selbig, J.3
-
63
-
-
84940557767
-
Constructing kinetic models of metabolism at genome-scales: A review
-
Srinivasan, S.; Cluett, W.R.; Mahadevan, R. Constructing kinetic models of metabolism at genome-scales: A review. Biotechnol. J. 2015, 10, 1345–1359. [CrossRef] [PubMed]
-
(2015)
Biotechnol. J.
, vol.10
, pp. 1345-1359
-
-
Srinivasan, S.1
Cluett, W.R.2
Mahadevan, R.3
-
64
-
-
77749320898
-
What is flux balance analysis?
-
Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [CrossRef] [PubMed]
-
(2010)
Nat. Biotechnol
, vol.28
, pp. 245-248
-
-
Orth, J.D.1
Thiele, I.2
Palsson, B.Ø.3
-
65
-
-
75149129569
-
A protocol for generating a high-quality genome-scale metabolic reconstruction
-
Thiele, I.; Palsson, B.Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 2010, 5, 93–121. [CrossRef] [PubMed]
-
(2010)
Nat. Protoc
, vol.5
, pp. 93-121
-
-
Thiele, I.1
Palsson, B.Ø.2
-
66
-
-
84856231790
-
Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS)
-
Paglia, G.; Hrafnsdóttir, S.; Magnúsdóttir, M.; Fleming, R.M.; Thorlacius, S.; Palsson, B.Ø.; Thiele, I. Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS). Anal. Bioanal. Chem. 2012, 402, 1183–1198. [CrossRef] [PubMed]
-
(2012)
Anal. Bioanal. Chem
, vol.402
, pp. 1183-1198
-
-
Paglia, G.1
Hrafnsdóttir, S.2
Magnúsdóttir, M.3
Fleming, R.M.4
Thorlacius, S.5
Palsson, B.Ø.6
Thiele, I.7
-
67
-
-
84864843180
-
In silico method for modelling metabolism and gene product expression at genome scale
-
Lerman, J.; Hyduke, D.R.; Latif, H.; Portnoy, V.A.; Lewis, N.E.; Orth, J.D.; Schrimpe-Rutledge, A.C.; Smith, R.D.; Adkins, J.N.; Zengler, K.; et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat. Commun. 2012, 3, 929. [CrossRef] [PubMed]
-
(2012)
Nat. Commun
, vol.3
, pp. 929
-
-
Lerman, J.1
Hyduke, D.R.2
Latif, H.3
Portnoy, V.A.4
Lewis, N.E.5
Orth, J.D.6
Schrimpe-Rutledge, A.C.7
Smith, R.D.8
Adkins, J.N.9
Zengler, K.10
-
68
-
-
84892788440
-
Constraint-based models predict metabolic and associated cellular functions
-
Bordbar, A.; Monk, J.M.; King, Z.A.; Palsson, B.O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 2014, 15, 107–120. [CrossRef] [PubMed]
-
(2014)
Nat. Rev. Genet
, vol.15
, pp. 107-120
-
-
Bordbar, A.1
Monk, J.M.2
King, Z.A.3
Palsson, B.O.4
-
69
-
-
79551662521
-
Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0
-
Schellenberger, J.; Que, R.; Fleming, R.M.; Thiele, I.; Orth, J.D.; Feist, A.M.; Zielinski, D.C.; Bordbar, A.; Lewis, N.E.; Rahmanian, S.; et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 2011, 6, 1290–1307. [CrossRef] [PubMed]
-
(2011)
Nat. Protoc
, vol.6
, pp. 1290-1307
-
-
Schellenberger, J.1
Que, R.2
Fleming, R.M.3
Thiele, I.4
Orth, J.D.5
Feist, A.M.6
Zielinski, D.C.7
Bordbar, A.8
Lewis, N.E.9
Rahmanian, S.10
-
70
-
-
84912569105
-
An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models
-
Chindelevitch, L.; Trigg, J.; Regev, A.; Berger, B. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models. Nat. Commun. 2014, 5, 4893. [CrossRef] [PubMed]
-
(2014)
Nat. Commun
, vol.5
, pp. 4893
-
-
Chindelevitch, L.1
Trigg, J.2
Regev, A.3
Berger, B.4
-
71
-
-
84964607629
-
Integration of metabolic modeling with gene co-expression Reveals Transcriptionally programmed reactions explaining robustness in Mycobacterium tuberculosis
-
Puniya, B.L.; Kulshreshtha, D.; Mittal, I.; Mobeen, A.; Ramachandran, S. Integration of metabolic modeling with gene co-expression Reveals Transcriptionally programmed reactions explaining robustness in Mycobacterium tuberculosis. Sci. Rep. 2016, 6, 1–21.
-
(2016)
Sci. Rep
, vol.6
, pp. 1-21
-
-
Puniya, B.L.1
Kulshreshtha, D.2
Mittal, I.3
Mobeen, A.4
Ramachandran, S.5
-
72
-
-
70049110173
-
Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production
-
Colijn, C.; Brandes, A.; Zucker, J.; Lun, D.S.; Weiner, B.; Farhat, M.R.; Cheng, T.-Y.; Moody, D.B.; Murray, M.; Galagan, J.E. Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol. 2009, 5, e1000489. [CrossRef] [PubMed]
-
(2009)
Plos Comput. Biol
, vol.5
-
-
Colijn, C.1
Brandes, A.2
Zucker, J.3
Lun, D.S.4
Weiner, B.5
Farhat, M.R.6
Cheng, T.-Y.7
Moody, D.B.8
Murray, M.9
Galagan, J.E.10
-
73
-
-
79959687662
-
An integrated approach to characterize genetic interaction networks in yeast metabolism
-
Szappanos, B.; Kovács, K.; Szamecz, B.; Honti, F.; Costanzo, M.; Baryshnikova, A.; Gelius-Dietrich, G.; Lercher, M.J.; Jelasity, M.; Myers, C.L.; et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat. Genet. 2011, 43, 656–662. [CrossRef] [PubMed]
-
(2011)
Nat. Genet
, vol.43
, pp. 656-662
-
-
Szappanos, B.1
Kovács, K.2
Szamecz, B.3
Honti, F.4
Costanzo, M.5
Baryshnikova, A.6
Gelius-Dietrich, G.7
Lercher, M.J.8
Jelasity, M.9
Myers, C.L.10
-
74
-
-
84952637898
-
ISCHRUNK—In silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
-
Andreozzi, S.; Miskovic, L.; Hatzimanikatis, V. ISCHRUNK—In silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metab. Eng. 2016, 33, 158–168. [CrossRef] [PubMed]
-
(2016)
Metab. Eng
, vol.33
, pp. 158-168
-
-
Andreozzi, S.1
Miskovic, L.2
Hatzimanikatis, V.3
-
75
-
-
85026307146
-
An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features
-
Nandi, S.; Subramanian, A.; Sarkar, R. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features. Mol. BioSyst. 2017, 13, 1584–1596. [CrossRef] [PubMed]
-
(2017)
Mol. Biosyst
, vol.13
, pp. 1584-1596
-
-
Nandi, S.1
Subramanian, A.2
Sarkar, R.3
-
76
-
-
51049105047
-
Machine learning based analyses on metabolic networks supports high-throughput knockout screens
-
Plaimas, K.; Mallm, J.-P.; Oswald, M.; Svara, F.; Sourjik, V.; Eils, R.; König, R. Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst. Boil. 2008, 2, 67. [CrossRef] [PubMed]
-
(2008)
BMC Syst. Boil
, vol.2
, pp. 67
-
-
Plaimas, K.1
Mallm, J.-P.2
Oswald, M.3
Svara, F.4
Sourjik, V.5
Eils, R.6
König, R.7
-
77
-
-
84904296838
-
Ensemble modeling for robustness analysis in engineering non-native metabolic pathways
-
Lee, Y.; Rivera, J.G.; Liao, J.C. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab. Eng. 2014, 25, 63–71. [CrossRef] [PubMed]
-
(2014)
Metab. Eng
, vol.25
, pp. 63-71
-
-
Lee, Y.1
Rivera, J.G.2
Liao, J.C.3
-
78
-
-
85014202761
-
Data-driven reverse engineering of signaling pathways using ensembles of dynamicmodels
-
Henriques, D.; Villaverde, A.F.; Rocha, M.; Saez-Rodriguez, J.; Banga, J.R. Data-driven reverse engineering of signaling pathways using ensembles of dynamicmodels. PLoS Comput. Biol. 2017, 13, e1005379. [CrossRef] [PubMed]
-
(2017)
Plos Comput. Biol
, vol.13
-
-
Henriques, D.1
Villaverde, A.F.2
Rocha, M.3
Saez-Rodriguez, J.4
Banga, J.R.5
-
79
-
-
33748281132
-
Application of abductive ILP to learningmetabolic network inhibition fromtemporal data
-
Tamaddoni-Nezhad, A.; Chaleil, R.; Kakas, A.; Muggleton, S. Application of abductive ILP to learningmetabolic network inhibition fromtemporal data.Mach. Learn. 2006, 64, 209–230. [CrossRef]
-
(2006)
Mach. Learn.
, vol.64
, pp. 209-230
-
-
Tamaddoni-Nezhad, A.1
Chaleil, R.2
Kakas, A.3
Muggleton, S.4
-
80
-
-
22944452109
-
Modelling inhibition in metabolic pathways through abduction and induction
-
Tamaddoni-Nezhad, A.; Kakas, A.; Muggleton, S.; Pazos, F. Modelling inhibition in metabolic pathways through abduction and induction. Lect. Notes Artif. Intell. 2004, 3194, 305–322.
-
(2004)
Lect. Notes Artif. Intell
, vol.3194
, pp. 305-322
-
-
Tamaddoni-Nezhad, A.1
Kakas, A.2
Muggleton, S.3
Pazos, F.4
-
81
-
-
85073466506
-
Deep metabolism: A deep learning system to predict phenotype from genome sequencing
-
Guo, W.; Xu, Y.; Feng, X. Deep metabolism: A deep learning system to predict phenotype from genome sequencing. Bioarxiv 2017, 1–7. [CrossRef]
-
(2017)
Bioarxiv
, pp. 1-7
-
-
Guo, W.1
Xu, Y.2
Feng, X.3
-
82
-
-
77249139318
-
Machine learning methods for metabolic pathway prediction
-
Dale, J.M.; Popescu, L.; Karp, P.D. Machine learning methods for metabolic pathway prediction. BMC Bioinform. 2010, 11, 15. [CrossRef] [PubMed]
-
(2010)
BMC Bioinform
, vol.11
, pp. 15
-
-
Dale, J.M.1
Popescu, L.2
Karp, P.D.3
-
83
-
-
84962140627
-
Metabolic network prediction of drug side effects
-
Shaked, I.; Oberhardt, M.A.; Atias, N.; Sharan, R.; Ruppin, E. Metabolic network prediction of drug side effects. Cell Syst. 2016, 2, 209–213. [CrossRef] [PubMed]
-
(2016)
Cell Syst
, vol.2
, pp. 209-213
-
-
Shaked, I.1
Oberhardt, M.A.2
Atias, N.3
Sharan, R.4
Ruppin, E.5
-
84
-
-
26444542527
-
Modelling metabolic pathways using stochastic logic programs-based ensemble methods
-
Lodhi, H.; Muggleton, S. Modelling metabolic pathways using stochastic logic programs-based ensemble methods. Lect. Notes Bioinform. 2005, 3082, 119–133.
-
(2005)
Lect. Notes Bioinform
, vol.3082
, pp. 119-133
-
-
Lodhi, H.1
Muggleton, S.2
-
85
-
-
50649120827
-
Learning probabilistic logic models from probabilistic examples
-
Chen, J.; Muggleton, S.; Santos, J. Learning probabilistic logic models from probabilistic examples. Mach. Learn. 2008, 73, 55–85. [CrossRef] [PubMed]
-
(2008)
Mach. Learn
, vol.73
, pp. 55-85
-
-
Chen, J.1
Muggleton, S.2
Santos, J.3
-
86
-
-
34547175927
-
Automated reverse engineering of nonlinear dynamical systems
-
Bongard, J.; Lipson, H. Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2007, 104, 9943–9948. [CrossRef] [PubMed]
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 9943-9948
-
-
Bongard, J.1
Lipson, H.2
-
87
-
-
84941365835
-
Genomic, proteomic, and metabolomic data integration strategies.
-
Wanichthanarak, K.; Fahrmann, J.F.; Grapov, D. Genomic, proteomic, and metabolomic data integration strategies. Biomark. Insights 2015, 10, 1–6. [CrossRef] [PubMed]
-
(2015)
Biomark. Insights
, vol.10
, pp. 1-6
-
-
Wanichthanarak, K.1
Fahrmann, J.F.2
Grapov, D.3
-
88
-
-
85020192349
-
Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration
-
Cambiaghi, A.; Ferrario, M.; Masseroli, M. Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration. Brief. Bioinform. 2017, 18, 498–510. [CrossRef] [PubMed]
-
(2017)
Brief. Bioinform
, vol.18
, pp. 498-510
-
-
Cambiaghi, A.1
Ferrario, M.2
Masseroli, M.3
-
89
-
-
85023744571
-
Computational dynamic approaches for temporal omics data with applications to systems medicine
-
Liang, Y.; Kelemen, A. Computational dynamic approaches for temporal omics data with applications to systems medicine. BioData Min. 2017, 10, 1–20. [CrossRef] [PubMed]
-
(2017)
Biodata Min
, vol.10
, pp. 1-20
-
-
Liang, Y.1
Kelemen, A.2
|