메뉴 건너뛰기




Volumn 8, Issue 1, 2018, Pages

Machine learning methods for analysis of metabolic data and metabolic pathway modeling

Author keywords

Genomics; Machine learning; Metabolism modeling; Metabolomics; System biology

Indexed keywords

BIOINFORMATICS; ESCHERICHIA COLI; GENE EXPRESSION; GENE REGULATORY NETWORK; KINETICS; MACHINE LEARNING; METABOLOMICS; PROTEIN PROTEIN INTERACTION; REVIEW; STOICHIOMETRY; SUPPORT VECTOR MACHINE; SYSTEM ANALYSIS;

EID: 85041021273     PISSN: None     EISSN: 22181989     Source Type: Journal    
DOI: 10.3390/metabo8010004     Document Type: Review
Times cited : (129)

References (89)
  • 2
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [CrossRef]
    • (1959) IBM J. Res. Dev , vol.3 , pp. 210-229
    • Samuel, A.L.1
  • 3
  • 5
    • 79955076643 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Kotsiantis, S.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Front. Artif. Intell. Appl. 2007, 160, 3–24.
    • (2007) Front. Artif. Intell. Appl , vol.160 , pp. 3-24
    • Kotsiantis, S.1    Zaharakis, I.2    Pintelas, P.3
  • 7
    • 84862017669 scopus 로고    scopus 로고
    • 1H-NMR metabolomics analysis of glioblastoma subtypes: Correlation between metabolomics and gene expression characteristics
    • Cuperlovic-Culf, M.; Ferguson, D.; Culf, A.; Morin, P., Jr.; Touaibia, M. 1H-NMR metabolomics analysis of glioblastoma subtypes: Correlation between metabolomics and gene expression characteristics. J. Biol. Chem. 2012, 287, 20164–20175. [CrossRef] [PubMed]
    • (2012) J. Biol. Chem , vol.287 , pp. 20164-20175
    • Cuperlovic-Culf, M.1    Ferguson, D.2    Culf, A.3    Morin, P.4    Touaibia, M.5
  • 8
    • 0037292138 scopus 로고    scopus 로고
    • Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps
    • Beckonert, O.; Monnerjahn, J.; Bonk, U.; Leibfritz, D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 2003, 16, 1–11. [CrossRef] [PubMed]
    • (2003) NMR Biomed , vol.16 , pp. 1-11
    • Beckonert, O.1    Monnerjahn, J.2    Bonk, U.3    Leibfritz, D.4
  • 9
    • 54749109964 scopus 로고    scopus 로고
    • Analysis of metabolomic data using support vector machines
    • Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of metabolomic data using support vector machines. Anal. Chem. 2008, 80, 7562–7570. [CrossRef] [PubMed]
    • (2008) Anal. Chem , vol.80 , pp. 7562-7570
    • Mahadevan, S.1    Shah, S.L.2    Marrie, T.J.3    Slupsky, C.M.4
  • 10
    • 85032362121 scopus 로고    scopus 로고
    • PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data
    • Bujak, R.; Daghir-Wojtkowiak, E.; Kaliszan, R.; Markuszewski, M.J. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data. Front. Mol. Biosci. 2016, 3, 1–10. [CrossRef] [PubMed]
    • (2016) Front. Mol. Biosci , vol.3 , pp. 1-10
    • Bujak, R.1    Daghir-Wojtkowiak, E.2    Kaliszan, R.3    Markuszewski, M.J.4
  • 12
    • 15944363863 scopus 로고    scopus 로고
    • Modelling of classification rules on metabolic patterns including machine learning and expert knowledge
    • Baumgartner, C.; Böhm, C.; Baumgartner, D. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J. Biomed. Inform. 2005, 38, 89–98.
    • (2005) J. Biomed. Inform. , vol.38 , pp. 89-98
    • Baumgartner, C.1    Böhm, C.2    Baumgartner, D.3
  • 15
    • 77957844973 scopus 로고    scopus 로고
    • Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance
    • Brougham, D.F.; Ivanova, G.; Gottschalk, M.; Collins, D.M.; Eustace, A.J.; O’Connor, R.; Havel, J. Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance. J. Biomed. Biotechnol. 2011, 2011, 158094. [CrossRef] [PubMed]
    • (2011) J. Biomed. Biotechnol , vol.2011 , pp. 158094
    • Brougham, D.F.1    Ivanova, G.2    Gottschalk, M.3    Collins, D.M.4    Eustace, A.J.5    O’Connor, R.6    Havel, J.7
  • 16
    • 84929335742 scopus 로고    scopus 로고
    • Optimizing artificial neural network models for metabolomics and systems biology: An example using HPLC retention index data
    • Hall, L.M.; Hill, D.W.; Menikarachchi, L.C.; Chen, M.H.; Hall, L.H.; Grant, D.F. Optimizing artificial neural network models for metabolomics and systems biology: An example using HPLC retention index data. Bioanalysis 2015, 7, 939–955. [CrossRef] [PubMed]
    • (2015) Bioanalysis , vol.7 , pp. 939-955
    • Hall, L.M.1    Hill, D.W.2    Menikarachchi, L.C.3    Chen, M.H.4    Hall, L.H.5    Grant, D.F.6
  • 17
    • 0000359679 scopus 로고    scopus 로고
    • Variable selection in discriminant partial least-squares analysis
    • Alsberg, B.K.; Kell, D.B.; Goodacre, R. Variable selection in discriminant partial least-squares analysis. Anal. Chem. 1998, 70, 4126–4133. [CrossRef] [PubMed]
    • (1998) Anal. Chem , vol.70 , pp. 4126-4133
    • Alsberg, B.K.1    Kell, D.B.2    Goodacre, R.3
  • 18
    • 38949209075 scopus 로고    scopus 로고
    • NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology
    • Coen, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem. Res. Toxicol. 2008, 21, 9–27. [CrossRef] [PubMed]
    • (2008) Chem. Res. Toxicol , vol.21 , pp. 9-27
    • Coen, M.1    Holmes, E.2    Lindon, J.C.3    Nicholson, J.K.4
  • 19
    • 85020208122 scopus 로고    scopus 로고
    • Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data
    • Grissa, D.; Pétéra, M.; Brandolini, M.; Napoli, A.; Comte, B.; Pujos-Guillot, E. Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data. Front. Mol. Biosci. 2016, 3, 30. [CrossRef] [PubMed]
    • (2016) Front. Mol. Biosci , vol.3 , pp. 30
    • Grissa, D.1    Pétéra, M.2    Brandolini, M.3    Napoli, A.4    Comte, B.5    Pujos-Guillot, E.6
  • 20
    • 85040193110 scopus 로고    scopus 로고
    • Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data
    • Alakwaa, F.M.; Chaudhary, K.; Garmire, L.X. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data. J. Proteom. Res. 2018, 17, 337–347. [CrossRef] [PubMed]
    • (2018) J. Proteom. Res , vol.17 , pp. 337-347
    • Alakwaa, F.M.1    Chaudhary, K.2    Garmire, L.X.3
  • 21
    • 84896700791 scopus 로고    scopus 로고
    • Metabolite identification through machine learning—Tackling CASMI challenge using fingerID
    • Shen, H.; Zamboni, N.; Heinonen, M.; Rousu, J. Metabolite identification through machine learning—Tackling CASMI challenge using fingerID. Metabolites 2013, 3, 484–505. [CrossRef] [PubMed]
    • (2013) Metabolites , vol.3 , pp. 484-505
    • Shen, H.1    Zamboni, N.2    Heinonen, M.3    Rousu, J.4
  • 23
    • 84865144924 scopus 로고    scopus 로고
    • BATMAN—An R package for the automated quantification ofmetabolites fromNMR spectra using a Bayesianmodel
    • Hao, J.; Astle, W.; DeIorio, M.; Ebbels, T. BATMAN—An R package for the automated quantification ofmetabolites fromNMR spectra using a Bayesianmodel. Bioinformatics 2012, 28, 2088–2090. [CrossRef] [PubMed]
    • (2012) Bioinformatics , vol.28 , pp. 2088-2090
    • Hao, J.1    Astle, W.2    Deiorio, M.3    Ebbels, T.4
  • 24
    • 58049209789 scopus 로고    scopus 로고
    • Genetic algorithms for simultaneous variable and sample selection inmetabonomics
    • Cavill, R.; Keun, H.C.; Holmes, E.; Lindon, J.C.; Nicholson, J.K.; Ebbels, T.M. Genetic algorithms for simultaneous variable and sample selection inmetabonomics. Bioinformatics 2009, 25, 112–118. [CrossRef] [PubMed]
    • (2009) Bioinformatics , vol.25 , pp. 112-118
    • Cavill, R.1    Keun, H.C.2    Holmes, E.3    Lindon, J.C.4    Nicholson, J.K.5    Ebbels, T.M.6
  • 25
    • 84890226269 scopus 로고    scopus 로고
    • Multivariate analysis in metabolomics
    • Worley, B.; Powers, R. Multivariate analysis in metabolomics. Curr. Metabol. 2013, 1, 92–107.
    • (2013) Curr. Metabol , vol.1 , pp. 92-107
    • Worley, B.1    Powers, R.2
  • 27
    • 85041040395 scopus 로고    scopus 로고
    • Machine learning in systems biology
    • D’Alche-Buc, F.; Wehenkel, L. Machine learning in systems biology. BMC Proc. 2008, 2, S1. Available online: https://bmcproc.biomedcentral.com/articles/10.1186/1753-6561-2-S4-S1 (accessed on 8 January 2018).
    • (2008) BMC Proc , vol.2
    • D’alche-Buc, F.1    Wehenkel, L.2
  • 28
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [CrossRef] [PubMed]
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 29
    • 84899570854 scopus 로고    scopus 로고
    • Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis
    • Smolinska, A.; Hauschild, A.-C.; Fijten, R.R.R.; Dallinga, J.W.; Baumbach, J.; Schooten, F.J. Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis. J. Breath Res. 2014, 8, 27105. [CrossRef] [PubMed]
    • (2014) J. Breath Res. , vol.8 , pp. 27105
    • Smolinska, A.1    Hauschild, A.-C.2    Fijten, R.R.R.3    Dallinga, J.W.4    Baumbach, J.5    Schooten, F.J.6
  • 30
    • 33644959172 scopus 로고    scopus 로고
    • Metabolomics, modelling and machine learning in systems biology—Towards an understanding of the languages of cells
    • Kell, D.B. Metabolomics, modelling and machine learning in systems biology—Towards an understanding of the languages of cells. FEBS J. 2006, 273, 873–894. [CrossRef] [PubMed]
    • (2006) FEBS J , vol.273 , pp. 873-894
    • Kell, D.B.1
  • 31
    • 85041089041 scopus 로고    scopus 로고
    • Understanding the languages of cells
    • Kell, D.B. Understanding the languages of cells. Syst. Biol. 2011, 7, 4–7.
    • (2011) Syst. Biol , vol.7 , pp. 4-7
    • Kell, D.B.1
  • 32
    • 72549095180 scopus 로고    scopus 로고
    • Chemometrics in metabolomics—A review in human disease diagnosis
    • Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics—A review in human disease diagnosis. Anal. Chim. Acta 2010, 659, 23–33. [CrossRef] [PubMed]
    • (2010) Anal. Chim. Acta , vol.659 , pp. 23-33
    • Madsen, R.1    Lundstedt, T.2    Trygg, J.3
  • 33
    • 85025463270 scopus 로고    scopus 로고
    • Metabolomics for the masses: The future of metabolomics in a personalized world
    • Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz. Transl. Med. 2017, 3, 294–305. [CrossRef] [PubMed]
    • (2017) New Horiz. Transl. Med , vol.3 , pp. 294-305
    • Trivedi, D.K.1    Hollywood, K.A.2    Goodacre, R.3
  • 34
    • 84997521933 scopus 로고    scopus 로고
    • Integration of metabolomics, lipidomics and clinical data using a machine learning method
    • Acharjee, A.; Ament, Z.; West, J.A.; Stanley, E.; Griffin, J.L. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinform. 2016, 17, 37–49. [CrossRef] [PubMed]
    • (2016) BMC Bioinform , vol.17 , pp. 37-49
    • Acharjee, A.1    Ament, Z.2    West, J.A.3    Stanley, E.4    Griffin, J.L.5
  • 35
    • 85041080232 scopus 로고    scopus 로고
    • Metabolomics Software and Servers. Available online: http://metabolomicssociety.org/resources/metabolomics-software (accessed on 8 January 2018).
    • Metabolomics Software and Servers
  • 36
    • 85041068878 scopus 로고    scopus 로고
    • Metabolomic Software. Available online: http://pmv.org.au/metabolomics/metabolomic-software/ (accessed on 8 January 2018).
    • Metabolomic Software
  • 37
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype–phenotype interactions
    • Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of integrating data to uncover genotype–phenotype interactions. Nat. Rev. Genet. 2015, 16, 85–97. [CrossRef] [PubMed]
    • (2015) Nat. Rev. Genet , vol.16 , pp. 85-97
    • Ritchie, M.D.1    Holzinger, E.R.2    Li, R.3    Pendergrass, S.A.4    Kim, D.5
  • 38
    • 84961231007 scopus 로고    scopus 로고
    • Metabolomics: Beyond biomarkers and towards mechanisms
    • Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [CrossRef] [PubMed]
    • (2016) Nat. Rev. Mol. Cell Biol , vol.17 , pp. 451-459
    • Johnson, C.H.1    Ivanisevic, J.2    Siuzdak, G.3
  • 41
    • 85025589371 scopus 로고    scopus 로고
    • Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with theWorkflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics
    • Guitton, Y.; Tremblay-Franco, M.; Le Corguillé, G.; Martin, J.F.; Pétéra, M.; Roger-Mele, P.; Delabrière, A.; Goulitquer, S.; Monsoor, M.; Duperier, C.; et al. Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with theWorkflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int. J. Biochem. Cell Biol. 2017, 93, 89–101. [CrossRef] [PubMed]
    • (2017) Int. J. Biochem. Cell Biol. , vol.93 , pp. 89-101
    • Guitton, Y.1    Tremblay-Franco, M.2    Le Corguillé, G.3    Martin, J.F.4    Pétéra, M.5    Roger-Mele, P.6    Delabrière, A.7    Goulitquer, S.8    Monsoor, M.9    Duperier, C.10
  • 42
    • 84866437252 scopus 로고    scopus 로고
    • Metabolite identification and molecular fingerprint prediction through machine learning
    • Heinonen, M.; Shen, H.; Zamboni, N.; Rousu, J. Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics 2012, 28, 2333–2341. [CrossRef] [PubMed]
    • (2012) Bioinformatics , vol.28 , pp. 2333-2341
    • Heinonen, M.1    Shen, H.2    Zamboni, N.3    Rousu, J.4
  • 43
    • 84958110559 scopus 로고    scopus 로고
    • Fragmentation trees reloaded
    • Dührkop, K.; Böcker, S. Fragmentation trees reloaded. J. Cheminform. 2016, 8, 5.
    • (2016) J. Cheminform , vol.8 , pp. 5
    • Dührkop, K.1    Böcker, S.2
  • 44
    • 85029425714 scopus 로고    scopus 로고
    • Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis
    • Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1–14.10.91.
    • (2016) Curr. Protoc. Bioinform , vol.55 , pp. 1-14
    • Xia, J.1    Wishart, D.S.2
  • 45
    • 84947869905 scopus 로고    scopus 로고
    • Learning to classify organic and conventional wheat—A machine learning driven approach using the MeltDB 2.0 metabolomics analysis platform
    • Kessler, N.; Dührkop, K. Learning to classify organic and conventional wheat—A machine learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Front. Bioeng. Biotechnol. 2015, 3, 35. [CrossRef] [PubMed]
    • (2015) Front. Bioeng. Biotechnol , vol.3 , pp. 35
    • Kessler, N.1    Dührkop, K.2
  • 47
    • 33747061013 scopus 로고    scopus 로고
    • Structural kinetic modeling of metabolic networks
    • Steuer, R.; Gross, T.; Selbig, J.; Blasius, B. Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci. USA 2006, 103, 11868–11873. [CrossRef] [PubMed]
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 11868-11873
    • Steuer, R.1    Gross, T.2    Selbig, J.3    Blasius, B.4
  • 48
    • 84898806978 scopus 로고    scopus 로고
    • Solving the differential biochemical Jacobian from metabolomics covariance data
    • Nagele, T.; Mair, A.; Sun, X.; Fragner, L.; Teige, M.; Weckwerth, W. Solving the differential biochemical Jacobian from metabolomics covariance data. PLoS ONE 2014, 9, e92299. [CrossRef] [PubMed]
    • (2014) Plos ONE , vol.9
    • Nagele, T.1    Mair, A.2    Sun, X.3    Fragner, L.4    Teige, M.5    Weckwerth, W.6
  • 50
    • 33947507091 scopus 로고    scopus 로고
    • Computational systems biology in drug discovery and development: Methods and applications
    • Materi, W.; Wishart, D.S. Computational systems biology in drug discovery and development: Methods and applications. Drug Discov. Today 2007, 12, 295–303. [CrossRef] [PubMed]
    • (2007) Drug Discov. Today , vol.12 , pp. 295-303
    • Materi, W.1    Wishart, D.S.2
  • 51
    • 78649903919 scopus 로고    scopus 로고
    • Petri nets for modelling metabolic pathways: A survey
    • Baldan, P.; Cocco, N.; Marin, A.; Simeoni, M. Petri nets for modelling metabolic pathways: A survey. Nat. Comput. 2010, 9, 955–989. [CrossRef]
    • (2010) Nat. Comput. , vol.9 , pp. 955-989
    • Baldan, P.1    Cocco, N.2    Marin, A.3    Simeoni, M.4
  • 52
    • 85057522434 scopus 로고    scopus 로고
    • Seeing the wood for the trees: A forest of methods for optimization and omic-network integration in metabolic modelling
    • Vijayakumar, S.; Conway, M.; Lió, P.; Angione, C. Seeing the wood for the trees: A forest of methods for optimization and omic-network integration in metabolic modelling. Brief. Bioinform. 2017, 1–18. [CrossRef] [PubMed]
    • (2017) Brief. Bioinform , pp. 1-18
    • Vijayakumar, S.1    Conway, M.2    Lió, P.3    Angione, C.4
  • 53
    • 84863230581 scopus 로고    scopus 로고
    • Metabolic network modeling and simulation for drug targeting and discovery
    • Kim, H.U.; Sohn, S.B.; Lee, S.Y. Metabolic network modeling and simulation for drug targeting and discovery. Biotechnol. J. 2012, 7, 330–342. [CrossRef] [PubMed]
    • (2012) Biotechnol. J , vol.7 , pp. 330-342
    • Kim, H.U.1    Sohn, S.B.2    Lee, S.Y.3
  • 55
    • 85015242037 scopus 로고    scopus 로고
    • Control and regulation of pathways via negative feedback—Supplementary
    • Sauro, H.M. Control and regulation of pathways via negative feedback—Supplementary. J. R. Soc. Interface 2017, 14. [CrossRef]
    • (2017) J. R. Soc. Interface , vol.14
    • Sauro, H.M.1
  • 56
    • 26944473632 scopus 로고    scopus 로고
    • Proceedings of the 15th International Conference on Inductive Logic Programming, Bonn, Germany
    • Muggleton, S.H. Machine Learning for Systems Biology. In Proceedings of the 15th International Conference on Inductive Logic Programming, Bonn, Germany, 10–13 August 2005; pp. 416–423.
    • (2005) Machine Learning for Systems Biology , pp. 416-423
    • Muggleton, S.H.1
  • 57
    • 84964679066 scopus 로고    scopus 로고
    • Predicting essential genes and proteins based on machine learning and network topological features: A comprehensive review
    • Zhang, X.; Acencio, M.L.; Lemke, N. Predicting essential genes and proteins based on machine learning and network topological features: A comprehensive review. Front. Physiol. 2016, 7, 1–11.
    • (2016) Front. Physiol. , vol.7 , pp. 1-11
    • Zhang, X.1    Acencio, M.L.2    Lemke, N.3
  • 58
    • 84978711445 scopus 로고    scopus 로고
    • Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
    • Saa, P.A.; Nielsen, L.K. Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach. Sci. Rep. 2016, 6, 29635. [CrossRef] [PubMed]
    • (2016) Sci. Rep , vol.6 , pp. 29635
    • Saa, P.A.1    Nielsen, L.K.2
  • 59
    • 85033687968 scopus 로고    scopus 로고
    • Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data
    • Sriyudthsak, K.; Shiraishi, F.; Hirai, M.Y. Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data. Front. Mol. Biosci. 2016, 3, 1–11. [CrossRef] [PubMed]
    • (2016) Front. Mol. Biosci , vol.3 , pp. 1-11
    • Sriyudthsak, K.1    Shiraishi, F.2    Hirai, M.Y.3
  • 60
    • 84929485233 scopus 로고    scopus 로고
    • A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions
    • Saa, P.; Nielsen, L.K. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions. PLoS Comput. Biol. 2015, 11, e1004195. [CrossRef] [PubMed]
    • (2015) Plos Comput. Biol , vol.11
    • Saa, P.1    Nielsen, L.K.2
  • 61
    • 84867296080 scopus 로고    scopus 로고
    • A MATLAB toolbox for structural kinetic modeling
    • Girbig, D.; Selbig, J.; Grimbs, S. A MATLAB toolbox for structural kinetic modeling. Bioinformatics 2012, 28, 2546–2547. [CrossRef] [PubMed]
    • (2012) Bioinformatics , vol.28 , pp. 2546-2547
    • Girbig, D.1    Selbig, J.2    Grimbs, S.3
  • 62
    • 84859727210 scopus 로고    scopus 로고
    • Systematic analysis of stability patterns in plant primary metabolism
    • Girbig, D.; Grimbs, S.; Selbig, J. Systematic analysis of stability patterns in plant primary metabolism. PLoS ONE 2012, 7, e34686. [CrossRef] [PubMed]
    • (2012) Plos ONE , vol.7
    • Girbig, D.1    Grimbs, S.2    Selbig, J.3
  • 63
    • 84940557767 scopus 로고    scopus 로고
    • Constructing kinetic models of metabolism at genome-scales: A review
    • Srinivasan, S.; Cluett, W.R.; Mahadevan, R. Constructing kinetic models of metabolism at genome-scales: A review. Biotechnol. J. 2015, 10, 1345–1359. [CrossRef] [PubMed]
    • (2015) Biotechnol. J. , vol.10 , pp. 1345-1359
    • Srinivasan, S.1    Cluett, W.R.2    Mahadevan, R.3
  • 64
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [CrossRef] [PubMed]
    • (2010) Nat. Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.Ø.3
  • 65
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele, I.; Palsson, B.Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 2010, 5, 93–121. [CrossRef] [PubMed]
    • (2010) Nat. Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.Ø.2
  • 66
    • 84856231790 scopus 로고    scopus 로고
    • Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS)
    • Paglia, G.; Hrafnsdóttir, S.; Magnúsdóttir, M.; Fleming, R.M.; Thorlacius, S.; Palsson, B.Ø.; Thiele, I. Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS). Anal. Bioanal. Chem. 2012, 402, 1183–1198. [CrossRef] [PubMed]
    • (2012) Anal. Bioanal. Chem , vol.402 , pp. 1183-1198
    • Paglia, G.1    Hrafnsdóttir, S.2    Magnúsdóttir, M.3    Fleming, R.M.4    Thorlacius, S.5    Palsson, B.Ø.6    Thiele, I.7
  • 68
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • Bordbar, A.; Monk, J.M.; King, Z.A.; Palsson, B.O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 2014, 15, 107–120. [CrossRef] [PubMed]
    • (2014) Nat. Rev. Genet , vol.15 , pp. 107-120
    • Bordbar, A.1    Monk, J.M.2    King, Z.A.3    Palsson, B.O.4
  • 70
    • 84912569105 scopus 로고    scopus 로고
    • An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models
    • Chindelevitch, L.; Trigg, J.; Regev, A.; Berger, B. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models. Nat. Commun. 2014, 5, 4893. [CrossRef] [PubMed]
    • (2014) Nat. Commun , vol.5 , pp. 4893
    • Chindelevitch, L.1    Trigg, J.2    Regev, A.3    Berger, B.4
  • 71
    • 84964607629 scopus 로고    scopus 로고
    • Integration of metabolic modeling with gene co-expression Reveals Transcriptionally programmed reactions explaining robustness in Mycobacterium tuberculosis
    • Puniya, B.L.; Kulshreshtha, D.; Mittal, I.; Mobeen, A.; Ramachandran, S. Integration of metabolic modeling with gene co-expression Reveals Transcriptionally programmed reactions explaining robustness in Mycobacterium tuberculosis. Sci. Rep. 2016, 6, 1–21.
    • (2016) Sci. Rep , vol.6 , pp. 1-21
    • Puniya, B.L.1    Kulshreshtha, D.2    Mittal, I.3    Mobeen, A.4    Ramachandran, S.5
  • 74
    • 84952637898 scopus 로고    scopus 로고
    • ISCHRUNK—In silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks
    • Andreozzi, S.; Miskovic, L.; Hatzimanikatis, V. ISCHRUNK—In silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metab. Eng. 2016, 33, 158–168. [CrossRef] [PubMed]
    • (2016) Metab. Eng , vol.33 , pp. 158-168
    • Andreozzi, S.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 75
    • 85026307146 scopus 로고    scopus 로고
    • An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features
    • Nandi, S.; Subramanian, A.; Sarkar, R. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features. Mol. BioSyst. 2017, 13, 1584–1596. [CrossRef] [PubMed]
    • (2017) Mol. Biosyst , vol.13 , pp. 1584-1596
    • Nandi, S.1    Subramanian, A.2    Sarkar, R.3
  • 76
    • 51049105047 scopus 로고    scopus 로고
    • Machine learning based analyses on metabolic networks supports high-throughput knockout screens
    • Plaimas, K.; Mallm, J.-P.; Oswald, M.; Svara, F.; Sourjik, V.; Eils, R.; König, R. Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst. Boil. 2008, 2, 67. [CrossRef] [PubMed]
    • (2008) BMC Syst. Boil , vol.2 , pp. 67
    • Plaimas, K.1    Mallm, J.-P.2    Oswald, M.3    Svara, F.4    Sourjik, V.5    Eils, R.6    König, R.7
  • 77
    • 84904296838 scopus 로고    scopus 로고
    • Ensemble modeling for robustness analysis in engineering non-native metabolic pathways
    • Lee, Y.; Rivera, J.G.; Liao, J.C. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab. Eng. 2014, 25, 63–71. [CrossRef] [PubMed]
    • (2014) Metab. Eng , vol.25 , pp. 63-71
    • Lee, Y.1    Rivera, J.G.2    Liao, J.C.3
  • 78
    • 85014202761 scopus 로고    scopus 로고
    • Data-driven reverse engineering of signaling pathways using ensembles of dynamicmodels
    • Henriques, D.; Villaverde, A.F.; Rocha, M.; Saez-Rodriguez, J.; Banga, J.R. Data-driven reverse engineering of signaling pathways using ensembles of dynamicmodels. PLoS Comput. Biol. 2017, 13, e1005379. [CrossRef] [PubMed]
    • (2017) Plos Comput. Biol , vol.13
    • Henriques, D.1    Villaverde, A.F.2    Rocha, M.3    Saez-Rodriguez, J.4    Banga, J.R.5
  • 79
    • 33748281132 scopus 로고    scopus 로고
    • Application of abductive ILP to learningmetabolic network inhibition fromtemporal data
    • Tamaddoni-Nezhad, A.; Chaleil, R.; Kakas, A.; Muggleton, S. Application of abductive ILP to learningmetabolic network inhibition fromtemporal data.Mach. Learn. 2006, 64, 209–230. [CrossRef]
    • (2006) Mach. Learn. , vol.64 , pp. 209-230
    • Tamaddoni-Nezhad, A.1    Chaleil, R.2    Kakas, A.3    Muggleton, S.4
  • 80
    • 22944452109 scopus 로고    scopus 로고
    • Modelling inhibition in metabolic pathways through abduction and induction
    • Tamaddoni-Nezhad, A.; Kakas, A.; Muggleton, S.; Pazos, F. Modelling inhibition in metabolic pathways through abduction and induction. Lect. Notes Artif. Intell. 2004, 3194, 305–322.
    • (2004) Lect. Notes Artif. Intell , vol.3194 , pp. 305-322
    • Tamaddoni-Nezhad, A.1    Kakas, A.2    Muggleton, S.3    Pazos, F.4
  • 81
    • 85073466506 scopus 로고    scopus 로고
    • Deep metabolism: A deep learning system to predict phenotype from genome sequencing
    • Guo, W.; Xu, Y.; Feng, X. Deep metabolism: A deep learning system to predict phenotype from genome sequencing. Bioarxiv 2017, 1–7. [CrossRef]
    • (2017) Bioarxiv , pp. 1-7
    • Guo, W.1    Xu, Y.2    Feng, X.3
  • 82
    • 77249139318 scopus 로고    scopus 로고
    • Machine learning methods for metabolic pathway prediction
    • Dale, J.M.; Popescu, L.; Karp, P.D. Machine learning methods for metabolic pathway prediction. BMC Bioinform. 2010, 11, 15. [CrossRef] [PubMed]
    • (2010) BMC Bioinform , vol.11 , pp. 15
    • Dale, J.M.1    Popescu, L.2    Karp, P.D.3
  • 83
    • 84962140627 scopus 로고    scopus 로고
    • Metabolic network prediction of drug side effects
    • Shaked, I.; Oberhardt, M.A.; Atias, N.; Sharan, R.; Ruppin, E. Metabolic network prediction of drug side effects. Cell Syst. 2016, 2, 209–213. [CrossRef] [PubMed]
    • (2016) Cell Syst , vol.2 , pp. 209-213
    • Shaked, I.1    Oberhardt, M.A.2    Atias, N.3    Sharan, R.4    Ruppin, E.5
  • 84
    • 26444542527 scopus 로고    scopus 로고
    • Modelling metabolic pathways using stochastic logic programs-based ensemble methods
    • Lodhi, H.; Muggleton, S. Modelling metabolic pathways using stochastic logic programs-based ensemble methods. Lect. Notes Bioinform. 2005, 3082, 119–133.
    • (2005) Lect. Notes Bioinform , vol.3082 , pp. 119-133
    • Lodhi, H.1    Muggleton, S.2
  • 85
    • 50649120827 scopus 로고    scopus 로고
    • Learning probabilistic logic models from probabilistic examples
    • Chen, J.; Muggleton, S.; Santos, J. Learning probabilistic logic models from probabilistic examples. Mach. Learn. 2008, 73, 55–85. [CrossRef] [PubMed]
    • (2008) Mach. Learn , vol.73 , pp. 55-85
    • Chen, J.1    Muggleton, S.2    Santos, J.3
  • 86
    • 34547175927 scopus 로고    scopus 로고
    • Automated reverse engineering of nonlinear dynamical systems
    • Bongard, J.; Lipson, H. Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2007, 104, 9943–9948. [CrossRef] [PubMed]
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 9943-9948
    • Bongard, J.1    Lipson, H.2
  • 87
    • 84941365835 scopus 로고    scopus 로고
    • Genomic, proteomic, and metabolomic data integration strategies.
    • Wanichthanarak, K.; Fahrmann, J.F.; Grapov, D. Genomic, proteomic, and metabolomic data integration strategies. Biomark. Insights 2015, 10, 1–6. [CrossRef] [PubMed]
    • (2015) Biomark. Insights , vol.10 , pp. 1-6
    • Wanichthanarak, K.1    Fahrmann, J.F.2    Grapov, D.3
  • 88
    • 85020192349 scopus 로고    scopus 로고
    • Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration
    • Cambiaghi, A.; Ferrario, M.; Masseroli, M. Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration. Brief. Bioinform. 2017, 18, 498–510. [CrossRef] [PubMed]
    • (2017) Brief. Bioinform , vol.18 , pp. 498-510
    • Cambiaghi, A.1    Ferrario, M.2    Masseroli, M.3
  • 89
    • 85023744571 scopus 로고    scopus 로고
    • Computational dynamic approaches for temporal omics data with applications to systems medicine
    • Liang, Y.; Kelemen, A. Computational dynamic approaches for temporal omics data with applications to systems medicine. BioData Min. 2017, 10, 1–20. [CrossRef] [PubMed]
    • (2017) Biodata Min , vol.10 , pp. 1-20
    • Liang, Y.1    Kelemen, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.