메뉴 건너뛰기




Volumn 25, Issue 1, 2019, Pages 44-56

High-performance medicine: the convergence of human and artificial intelligence

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTIFICIAL INTELLIGENCE; BIG DATA; CLINICIAN; CLOUD COMPUTING; DEEP LEARNING; HUMAN; MEDICAL ERROR; PRIVACY; PRODUCTIVITY; REVIEW; WORKFLOW; ALGORITHM; DATA ANALYSIS; MEDICINE; PHYSICIAN;

EID: 85059811921     PISSN: 10788956     EISSN: 1546170X     Source Type: Journal    
DOI: 10.1038/s41591-018-0300-7     Document Type: Review
Times cited : (3543)

References (216)
  • 1
    • 85046734707 scopus 로고    scopus 로고
    • Child mortality in the US and 19 OECD comparator nations: a 50-year time-trend analysis
    • Thakrar, A. P. et al. Child mortality in the US and 19 OECD comparator nations: a 50-year time-trend analysis. Health Aff. (Millwood) 37, 140–149 (2018).
    • (2018) Health Aff. (Millwood) , vol.37 , pp. 140-149
    • Thakrar, A.P.1
  • 2
    • 85059815599 scopus 로고    scopus 로고
    • Roser, M. Link between health spending and life expectancyIn Our World in Data (2017).
    • Roser, M. Link between health spending and life expectancy: US is an outlier. In Our World in Data https://ourworldindata.org/the-link-between-life-expectancy-and-health-spending-us-focus (2017).
    • US is an outlier
  • 3
    • 84906665952 scopus 로고    scopus 로고
    • The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations
    • PID: 24742777
    • Singh, H. et al. The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations. BMJ Qual. Saf. 23, 727–731 (2014).
    • (2014) BMJ Qual. Saf. , vol.23 , pp. 727-731
    • Singh, H.1
  • 4
    • 84859544287 scopus 로고    scopus 로고
    • Eliminating waste in US health care
    • COI: 1:CAS:528:DC%2BC38XlvVWhs7k%3D, PID: 22419800
    • Berwick, D. M. & Hackbarth, A. D. Eliminating waste in US health care. JAMA 307, 1513–1516 (2012).
    • (2012) JAMA , vol.307 , pp. 1513-1516
    • Berwick, D.M.1    Hackbarth, A.D.2
  • 7
    • 85054452179 scopus 로고    scopus 로고
    • Deep learning in chest radiography: detection of findings and presence of change
    • PID: 30286097
    • Singh, R. et al. Deep learning in chest radiography: detection of findings and presence of change. PLoS ONE 13, e0204155 (2018).
    • (2018) PLoS ONE , vol.13
    • Singh, R.1
  • 9
    • 85056131427 scopus 로고    scopus 로고
    • Lindsey, R., et al. Deep neural network improves fracture detection by clinicians. Proc. Natl. AcadUSA 115, 11591–11596 (2018)
    • Lindsey, R., et al. Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. USA 115, 11591–11596 (2018).
    • Sci
  • 13
    • 85025112337 scopus 로고    scopus 로고
    • Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
    • PID: 28436741
    • Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017).
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2
  • 15
    • 85059820451 scopus 로고    scopus 로고
    • In Aunt Minnie https://www.auntminnie.com/index.aspx?sec=rca&sub=rsna_2017&pag=dis&ItemID=119166 (2017)
    • Ridley, E. L. Deep-learning algorithm can stratify lung nodule risk. In Aunt Minnie https://www.auntminnie.com/index.aspx?sec=rca&sub=rsna_2017&pag=dis&ItemID=119166 (2017).
    • Ridley, E. L. Deep-learning algorithm can stratify lung nodule risk
  • 16
    • 85042428409 scopus 로고    scopus 로고
    • Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study
    • PID: 29059036
    • Yasaka, K. et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286, 887–896 (2018).
    • (2018) Radiology , vol.286 , pp. 887-896
    • Yasaka, K.1
  • 19
    • 85059812213 scopus 로고    scopus 로고
    • Arbabshirani, M. R. et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit1, 9 (2018)
    • Arbabshirani, M. R. et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit. Med. 1, 9 (2018).
    • Med
  • 22
    • 85059813737 scopus 로고    scopus 로고
    • Lieman-Sifry, J. et al. FastVentriclePreprint at (2017).
    • Lieman-Sifry, J. et al. FastVentricle: cardiac segmentation with ENet. Preprint at https://arxiv.org/abs/1704.04296 (2017).
    • cardiac segmentation with ENet
  • 23
    • 85059802951 scopus 로고    scopus 로고
    • Madani, A. et al. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit1, 6 (2018)
    • Madani, A. et al. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit. Med. 1, 6 (2018).
    • Med
  • 26
    • 85058874023 scopus 로고    scopus 로고
    • Lehman, C. D. et al. Mammographic breast density assessment using deep learningRadiology (2018).
    • Lehman, C. D. et al. Mammographic breast density assessment using deep learning: clinical implementation. Radiology http://doi.org/10.1148/radiol.2018180694 (2018).
    • clinical implementation
  • 27
    • 85052495778 scopus 로고    scopus 로고
    • Automated deep-neural-network surveillance of cranial images for acute neurologic events
    • Titano, J. J. et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat. Med. 24, 1337–1341 (2018).
    • (2018) Nat. Med , vol.24 , pp. 1337-1341
    • Titano, J.J.1
  • 28
    • 84928911070 scopus 로고    scopus 로고
    • The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
    • PID: 25738806
    • Saito, T. & Rehmsmeier, M. The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, e0118432 (2015).
    • (2015) PLoS ONE , vol.10
    • Saito, T.1    Rehmsmeier, M.2
  • 29
    • 38949161848 scopus 로고    scopus 로고
    • Lobo, J. et al. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol17, 145–151 (2007)
    • Lobo, J. et al. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2007).
    • Biogeogr
  • 30
    • 85059822891 scopus 로고    scopus 로고
    • Keane, P. & Topol, E. With an eye to AI and autonomous diagnosis. NPJ Digit1, 40 (2018)
    • Keane, P. & Topol, E. With an eye to AI and autonomous diagnosis. NPJ Digit. Med. 1, 40 (2018).
    • Med
  • 31
    • 85059810469 scopus 로고    scopus 로고
    • Abramoff, M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. N PJ Digit1, 39 (2018)
    • Abramoff, M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. N PJ Digit. Med. 1, 39 (2018).
    • Med
  • 32
    • 85062975022 scopus 로고    scopus 로고
    • Kanagasingam, Y. et al. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary careOpen 1, e182665 (2018)
    • Kanagasingam, Y. et al. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw. Open 1, e182665 (2018).
    • JAMA Netw
  • 33
    • 85053661755 scopus 로고    scopus 로고
    • Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    • Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).
    • (2018) Nat. Med , vol.24 , pp. 1559-1567
    • Coudray, N.1
  • 35
    • 85056358333 scopus 로고    scopus 로고
    • Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer
    • Steiner, D. F., et al. Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am. J. Surg. Pathol. 42, 1636–1646 (2018).
    • (2018) Am. J. Surg. Pathol , vol.42 , pp. 1636-1646
    • Steiner, D.F.1
  • 36
    • 85053542469 scopus 로고    scopus 로고
    • Mori, Y. et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann. Intern169, 357–366 (2018)
    • Mori, Y. et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann. Intern. Med. 169, 357–366 (2018).
    • Med
  • 37
    • 85054667648 scopus 로고    scopus 로고
    • Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy
    • Wang, P. et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat. Biomed. Eng. 2, 741–748 (2018).
    • (2018) Nat. Biomed. Eng. , vol.2 , pp. 741-748
    • Wang, P.1
  • 38
    • 85025452709 scopus 로고    scopus 로고
    • An artificial intelligence platform for the multihospital collaborative management of congenital cataracts
    • Long, E. et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1, 1–8 (2017).
    • (2017) Nat. Biomed. Eng. , vol.1 , pp. 1-8
    • Long, E.1
  • 39
    • 85047445061 scopus 로고    scopus 로고
    • Not just digital pathology, intelligent digital pathology
    • PID: 29392271
    • Acs, B. & Rimm, D. L. Not just digital pathology, intelligent digital pathology. JAMA Oncol. 4, 403–404 (2018).
    • (2018) JAMA Oncol. , vol.4 , pp. 403-404
    • Acs, B.1    Rimm, D.L.2
  • 40
    • 84982218412 scopus 로고    scopus 로고
    • Predicting non–small cell lung cancer prognosis by fully automated microscopic pathology image features
    • COI: 1:CAS:528:DC%2BC28Xhtlylsb7E, PID: 27527408
    • Yu, K. H. et al. Predicting non–small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016).
    • (2016) Nat. Commun. , vol.7
    • Yu, K.H.1
  • 41
    • 85038431889 scopus 로고    scopus 로고
    • Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
    • PID: 29234806
    • Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).
    • (2017) JAMA , vol.318 , pp. 2199-2210
    • Ehteshami Bejnordi, B.1
  • 42
    • 85038218695 scopus 로고    scopus 로고
    • Deep learning algorithms for detection of lymph node metastases from breast cancer: helping artificial intelligence be seen
    • PID: 29234791
    • Golden, J. A. Deep learning algorithms for detection of lymph node metastases from breast cancer: helping artificial intelligence be seen. JAMA 318, 2184–2186 (2017).
    • (2017) JAMA , vol.318 , pp. 2184-2186
    • Golden, J.A.1
  • 43
    • 85017623447 scopus 로고    scopus 로고
    • Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent
    • COI: 1:CAS:528:DC%2BC2sXmtFKgurw%3D, PID: 28418027
    • Cruz-Roa, A. et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci. Rep. 7, 46450 (2017).
    • (2017) Sci. Rep. , vol.7
    • Cruz-Roa, A.1
  • 44
    • 85044263153 scopus 로고    scopus 로고
    • Machine learning classifies cancer
    • COI: 1:CAS:528:DC%2BC1cXlt1Oru7Y%3D, PID: 29565394
    • Wong, D. & Yip, S. Machine learning classifies cancer. Nature 555, 446–447 (2018).
    • (2018) Nature , vol.555 , pp. 446-447
    • Wong, D.1    Yip, S.2
  • 45
    • 85044262739 scopus 로고    scopus 로고
    • DNA methylation–based classification of central nervous system tumours
    • COI: 1:CAS:528:DC%2BC1cXksFegu70%3D, PID: 29539639
    • Capper, D. et al. DNA methylation–based classification of central nervous system tumours. Nature 555, 469–474 (2018).
    • (2018) Nature , vol.555 , pp. 469-474
    • Capper, D.1
  • 46
    • 85043760273 scopus 로고    scopus 로고
    • Assessing microscope image focus quality with deep learning
    • PID: 29540156
    • Yang, S. J. et al. Assessing microscope image focus quality with deep learning. BMC Bioinformatics 19, 77 (2018).
    • (2018) BMC Bioinformatics , vol.19
    • Yang, S.J.1
  • 47
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D, PID: 28117445
    • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 48
    • 85054158054 scopus 로고    scopus 로고
    • Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
    • Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018).
    • (2018) Ann. Oncol , vol.29 , pp. 1836-1842
    • Haenssle, H.A.1
  • 49
    • 85044366134 scopus 로고    scopus 로고
    • Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
    • COI: 1:CAS:528:DC%2BC1cXks12lsLc%3D, PID: 29428356
    • Han, S. S. et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Invest. Dermatol. 138, 1529–1538 (2018).
    • (2018) J. Invest. Dermatol. , vol.138 , pp. 1529-1538
    • Han, S.S.1
  • 50
    • 85007597269 scopus 로고    scopus 로고
    • Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
    • PID: 27898977
    • Wong, T. Y. & Bressler, N. M. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA 316, 2366–2367 (2016).
    • (2016) JAMA , vol.316 , pp. 2366-2367
    • Wong, T.Y.1    Bressler, N.M.2
  • 51
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • PID: 27898976
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 52
    • 85034636594 scopus 로고    scopus 로고
    • Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
    • PID: 28973096
    • Burlina, P. M. et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135, 1170–1176 (2017).
    • (2017) JAMA Ophthalmol. , vol.135 , pp. 1170-1176
    • Burlina, P.M.1
  • 53
    • 85042389905 scopus 로고    scopus 로고
    • Identifying medical diagnoses and treatable diseases by image-based deep learning
    • COI: 1:CAS:528:DC%2BC1cXjt12ltr0%3D, PID: 29474911
    • Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131.e1129 (2018).
    • (2018) Cell , vol.172 , pp. 1122-1131.e1129
    • Kermany, D.S.1
  • 54
    • 85046542182 scopus 로고    scopus 로고
    • AI for medical imaging goes deep
    • COI: 1:CAS:528:DC%2BC1cXpt1Gks7o%3D, PID: 29736024
    • Ting, D. S. W. et al. AI for medical imaging goes deep. Nat. Med. 24, 539–540 (2018).
    • (2018) Nat. Med. , vol.24 , pp. 539-540
    • Ting, D.S.W.1
  • 55
    • 85042359360 scopus 로고    scopus 로고
    • Learning from everyday images enables expert-like diagnosis of retinal diseases
    • COI: 1:CAS:528:DC%2BC1cXjt12lsbs%3D, PID: 29474917
    • Rampasek, L. & Goldenberg, A. Learning from everyday images enables expert-like diagnosis of retinal diseases. Cell 172, 893–895 (2018).
    • (2018) Cell , vol.172 , pp. 893-895
    • Rampasek, L.1    Goldenberg, A.2
  • 56
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).
    • (2018) Nat. Med , vol.24 , pp. 1342-1350
    • De Fauw, J.1
  • 57
    • 85053847816 scopus 로고    scopus 로고
    • Mutlu, U. et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study75, 1256–1263 (2018)
    • Mutlu, U. et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol. 75, 1256–1263 (2018).
    • JAMA Neurol
  • 58
    • 85042201755 scopus 로고    scopus 로고
    • Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
    • Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018).
    • (2018) Nat. Biomed. Eng. , vol.2 , pp. 158-164
    • Poplin, R.1
  • 59
    • 85065329022 scopus 로고    scopus 로고
    • All eyes are on AI. Nat. Biomed2, 139 (2018)
    • All eyes are on AI. Nat. Biomed. Eng. 2, 139 (2018).
    • Eng
  • 60
    • 85049693038 scopus 로고    scopus 로고
    • Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks
    • PID: 29801159
    • Brown, J. M. et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 136, 803–810 (2018).
    • (2018) JAMA Ophthalmol. , vol.136 , pp. 803-810
    • Brown, J.M.1
  • 61
    • 0026410610 scopus 로고
    • The diagnostic performance of computer programs for the interpretation of electrocardiograms
    • COI: 1:STN:280:DyaK38%2FkvFKgtQ%3D%3D, PID: 1834940
    • Willems, J. et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N. Engl. J. Med. 325, 1767–1773 (1991).
    • (1991) N. Engl. J. Med. , vol.325 , pp. 1767-1773
    • Willems, J.1
  • 64
    • 85053552809 scopus 로고    scopus 로고
    • Making colonoscopy smarter with standardized computer-aided diagnosis
    • Holme, Ø. & Aabakken, L. Making colonoscopy smarter with standardized computer-aided diagnosis Ann. Intern. Med. 169, 409–410 (2018).
    • (2018) Ann. Intern. Med , vol.169 , pp. 409-410
    • Holme, Ø.1    Aabakken, L.2
  • 67
    • 85054648327 scopus 로고    scopus 로고
    • Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
    • Lundberg, S. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).
    • (2018) Nat. Biomed. Eng. , vol.2 , pp. 749-760
    • Lundberg, S.1
  • 69
    • 85042131845 scopus 로고    scopus 로고
    • Enhancing next-generation sequencing-guided cancer care through cognitive computing
    • PID: 29158372
    • Patel, N. M. et al. Enhancing next-generation sequencing-guided cancer care through cognitive computing. Oncologist 23, 179–185 (2018).
    • (2018) Oncologist , vol.23 , pp. 179-185
    • Patel, N.M.1
  • 72
    • 85042418889 scopus 로고    scopus 로고
    • High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision
    • PID: 29039725
    • Bahl, M. et al. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology 286, 810–818 (2018).
    • (2018) Radiology , vol.286 , pp. 810-818
    • Bahl, M.1
  • 73
    • 85135600385 scopus 로고    scopus 로고
    • Coiera, E. et al. The digital scribe. NPJ Digit1, 58 (2018)
    • Coiera, E. et al. The digital scribe. NPJ Digit. Med. 1, 58 (2018).
    • Med
  • 76
    • 85041683479 scopus 로고    scopus 로고
    • A solution-focused research approach to achieve an implementable revolution in digital mental health
    • PID: 29238805
    • Mohr, D. C. et al. A solution-focused research approach to achieve an implementable revolution in digital mental health. JAMA Psychiatry 75, 113–114 (2018).
    • (2018) JAMA Psychiatry , vol.75 , pp. 113-114
    • Mohr, D.C.1
  • 78
    • 85018874319 scopus 로고    scopus 로고
    • Digitising the mind
    • PID: 28513442
    • Barrett, P. M. et al. Digitising the mind. Lancet 389, 1877 (2017).
    • (2017) Lancet , vol.389 , pp. 1877
    • Barrett, P.M.1
  • 80
    • 85088143488 scopus 로고    scopus 로고
    • Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial
    • PID: 28588005
    • Fitzpatrick, K. K. et al. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment. Health 4, e19 (2017).
    • (2017) JMIR Ment. Health , vol.4
    • Fitzpatrick, K.K.1
  • 81
    • 85055651042 scopus 로고    scopus 로고
    • Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl. AcadUSA 115, 11203–11208 (2018)
    • Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl. Acad. Sci. USA 115, 11203–11208 (2018).
    • Sci
  • 82
    • 84959571586 scopus 로고    scopus 로고
    • Cross-trial prediction of treatment outcome in depression: a machine learning approach
    • PID: 26803397
    • Chekroud, A. M. et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3, 243–250 (2016).
    • (2016) Lancet Psychiatry , vol.3 , pp. 243-250
    • Chekroud, A.M.1
  • 83
    • 85016980085 scopus 로고    scopus 로고
    • Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder
    • Schnyer, D. M. et al. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res. 264, 1–9 (2017).
    • (2017) Psychiatry Res. , vol.264 , pp. 1-9
    • Schnyer, D.M.1
  • 85
    • 85015307298 scopus 로고    scopus 로고
    • Imaging biomarkers and biotypes for depression
    • COI: 1:CAS:528:DC%2BC2sXltVeqsg%3D%3D, PID: 28060802
    • Wager, T. D. & Woo, C. W. Imaging biomarkers and biotypes for depression. Nat. Med. 23, 16–17 (2017).
    • (2017) Nat. Med. , vol.23 , pp. 16-17
    • Wager, T.D.1    Woo, C.W.2
  • 86
    • 85019953955 scopus 로고    scopus 로고
    • Walsh, C. G. et al. Predicting risk of suicide attempts over time through machine learning. Clin. Psychol5, 457–469 (2017)
    • Walsh, C. G. et al. Predicting risk of suicide attempts over time through machine learning. Clin. Psychol. Sci. 5, 457–469 (2017).
    • Sci
  • 87
    • 84995495684 scopus 로고    scopus 로고
    • Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
    • PID: 27841450
    • Franklin, J. C. et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol. Bull. 143, 187–232 (2017).
    • (2017) Psychol. Bull. , vol.143 , pp. 187-232
    • Franklin, J.C.1
  • 88
    • 85042741879 scopus 로고    scopus 로고
    • Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth
    • PID: 29367952
    • Just, M. A. et al. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth. Nat. Hum. Behav. 1, 911–919 (2017).
    • (2017) Nat. Hum. Behav. , vol.1 , pp. 911-919
    • Just, M.A.1
  • 90
    • 85045901059 scopus 로고    scopus 로고
    • Clinical assistant diagnosis for electronic medical record based on convolutional neural network
    • PID: 29679019
    • Yang, Z. et al. Clinical assistant diagnosis for electronic medical record based on convolutional neural network. Sci. Rep. 8, 6329 (2018).
    • (2018) Sci. Rep. , vol.8
    • Yang, Z.1
  • 92
    • 85052021167 scopus 로고    scopus 로고
    • Unsupervised machine learning to identify high likelihood of dementia in population-based surveys: development and validation study
    • PID: 29986849
    • Cleret de Langavant, L. et al. Unsupervised machine learning to identify high likelihood of dementia in population-based surveys: development and validation study. J. Med. Internet. Res. 20, e10493 (2018).
    • (2018) J. Med. Internet. Res. , vol.20
    • Cleret de Langavant, L.1
  • 93
    • 85044594960 scopus 로고    scopus 로고
    • A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers
    • PID: 29576042
    • Oh, J. et al. A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Infect. Control. Hosp. Epidemiol. 39, 425–433 (2018).
    • (2018) Infect. Control. Hosp. Epidemiol. , vol.39 , pp. 425-433
    • Oh, J.1
  • 95
    • 85065321567 scopus 로고    scopus 로고
    • Elfiky, A. et al. Development and application of a machine learning approach to assess short-term mortality risk among patients with cancer starting chemotherapyOpen 1, e180926 (2018)
    • Elfiky, A. et al. Development and application of a machine learning approach to assess short-term mortality risk among patients with cancer starting chemotherapy. JAMA Netw. Open 1, e180926 (2018).
    • JAMA Netw
  • 96
    • 85059801371 scopus 로고    scopus 로고
    • Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit1, 18 (2018)
    • Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1, 18 (2018).
    • Med
  • 97
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
    • COI: 1:CAS:528:DC%2BC28Xot1Gnu7s%3D, PID: 27185194
    • Miotto, R. et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016).
    • (2016) Sci. Rep. , vol.6
    • Miotto, R.1
  • 98
    • 85026316928 scopus 로고    scopus 로고
    • Identifying incipient dementia individuals using machine learning and amyloid imaging
    • PID: 28756942
    • Mathotaarachchi, S. et al. Identifying incipient dementia individuals using machine learning and amyloid imaging. Neurobiol. Aging. 59, 80–90 (2017).
    • (2017) Neurobiol. Aging. , vol.59 , pp. 80-90
    • Mathotaarachchi, S.1
  • 99
    • 85044763258 scopus 로고    scopus 로고
    • Personalized survival predictions via Trees of Predictors: an application to cardiac transplantation
    • PID: 29590219
    • Yoon, J. et al. Personalized survival predictions via Trees of Predictors: an application to cardiac transplantation. PLoS ONE 13, e0194985 (2018).
    • (2018) PLoS ONE , vol.13
    • Yoon, J.1
  • 100
    • 85056656223 scopus 로고    scopus 로고
    • Wong, A. et al. Development and validation of an electronic health record–based machine learning model to estimate delirium risk in newly hospitalized patients without known cognitive impairmentOpen 1, e181018 (2018)
    • Wong, A. et al. Development and validation of an electronic health record–based machine learning model to estimate delirium risk in newly hospitalized patients without known cognitive impairment. JAMA Netw. Open 1, e181018 (2018).
    • JAMA Netw
  • 101
    • 85050676780 scopus 로고    scopus 로고
    • Prognostication and risk factors for cystic fibrosis via automated machine learning
    • PID: 30050169
    • Alaa, A. M. & van der Schaar, M. Prognostication and risk factors for cystic fibrosis via automated machine learning. Sci. Rep. 8, 11242 (2018).
    • (2018) Sci. Rep. , vol.8
    • Alaa, A.M.1    van der Schaar, M.2
  • 102
    • 85017113914 scopus 로고    scopus 로고
    • Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
    • PID: 28384212
    • Horng, S. et al. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS ONE 12, e0174708 (2017).
    • (2017) PLoS ONE , vol.12
    • Horng, S.1
  • 103
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • PID: 26246167
    • Henry, K. E. et al. A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med. 7, 299ra122 (2015).
    • (2015) Sci. Transl. Med. , vol.7 , pp. 299ra122
    • Henry, K.E.1
  • 105
    • 85029127032 scopus 로고    scopus 로고
    • Multi-task prediction of disease onsets from longitudinal lab tests
    • Razavian, N. et al. Multi-task prediction of disease onsets from longitudinal lab tests. PMLR 56, 73–100 (2016).
    • (2016) PMLR , vol.56 , pp. 73-100
    • Razavian, N.1
  • 106
    • 85018435860 scopus 로고    scopus 로고
    • Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai Heart Failure Cohort
    • PID: 27896982
    • Shameer, K. et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai Heart Failure Cohort. Pac. Symp. Biocomput. 22, 276–287 (2017).
    • (2017) Pac. Symp. Biocomput. , vol.22 , pp. 276-287
    • Shameer, K.1
  • 107
    • 85054563739 scopus 로고    scopus 로고
    • Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data
    • PID: 30216352
    • Bhagwat, N. et al. Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput. Biol. 14, e1006376 (2018).
    • (2018) PLoS Comput. Biol. , vol.14
    • Bhagwat, N.1
  • 108
    • 85055475795 scopus 로고    scopus 로고
    • The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care
    • Komorowski, M. et al. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 (2018).
    • (2018) Nat. Med , vol.24 , pp. 1716-1720
    • Komorowski, M.1
  • 110
    • 84976407069 scopus 로고    scopus 로고
    • Deep biomarkers of human aging: application of deep neural networks to biomarker development
    • COI: 1:CAS:528:DC%2BC1cXmsVylt74%3D, PID: 27191382
    • Putin, E. et al. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging 8, 1021–1033 (2016).
    • (2016) Aging , vol.8 , pp. 1021-1033
    • Putin, E.1
  • 111
    • 85033378916 scopus 로고    scopus 로고
    • Predicting age by mining electronic medical records with deep learning characterizes differences between chronological and physiological age
    • PID: 29113935
    • Wang, Z. et al. Predicting age by mining electronic medical records with deep learning characterizes differences between chronological and physiological age. J. Biomed. Inform. 76, 59–68 (2017).
    • (2017) J. Biomed. Inform. , vol.76 , pp. 59-68
    • Wang, Z.1
  • 112
    • 85045201945 scopus 로고    scopus 로고
    • DNA methylation–based biomarkers and the epigenetic clock theory of ageing
    • COI: 1:CAS:528:DC%2BC1cXosVCgt7o%3D, PID: 29643443
    • Horvath, S. & Raj, K. DNA methylation–based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
    • (2018) Nat. Rev. Genet. , vol.19 , pp. 371-384
    • Horvath, S.1    Raj, K.2
  • 113
    • 85069087726 scopus 로고    scopus 로고
    • Rose, S. Machine Learning for Prediction in Electronic Health DataOpen 1, e181404(2018)
    • Rose, S. Machine Learning for Prediction in Electronic Health Data. JAMA Netw. Open 1, e181404(2018).
    • JAMA Netw
  • 114
    • 85059819759 scopus 로고    scopus 로고
    • Haque, A. et al. Towards vision-based smart hospitalsPreprint at (2017).
    • Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. Preprint at https://arxiv.org/abs/1708.00163 (2017).
    • a system for tracking and monitoring hand hygiene compliance
  • 116
    • 84909641818 scopus 로고    scopus 로고
    • Human fall detection on embedded platform using depth maps and wireless accelerometer
    • PID: 25308505
    • Kwolek, B. & Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117, 489–501 (2014).
    • (2014) Comput. Methods Programs Biomed. , vol.117 , pp. 489-501
    • Kwolek, B.1    Kepski, M.2
  • 118
    • 85044550699 scopus 로고    scopus 로고
    • Surgical data science for next-generation interventions
    • Maier-Hein, L. et al. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1, 691–696 (2017).
    • (2017) Nat. Biomed. Eng. , vol.1 , pp. 691-696
    • Maier-Hein, L.1
  • 119
    • 85051579314 scopus 로고    scopus 로고
    • Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery
    • Hung, A. J. et al. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. 153, 770–771 (2018).
    • (2018) JAMA Surg , vol.153 , pp. 770-771
    • Hung, A.J.1
  • 120
    • 85065309179 scopus 로고    scopus 로고
    • Gehlbach, P. L. Robotic surgery for the eye. Nat. Biomed2, 627–628 (2018)
    • Gehlbach, P. L. Robotic surgery for the eye. Nat. Biomed. Eng. 2, 627–628 (2018).
    • Eng
  • 122
    • 85044273620 scopus 로고    scopus 로고
    • Image reconstruction by domain-transform manifold learning
    • COI: 1:CAS:528:DC%2BC1cXlt1Oqs7g%3D, PID: 29565357
    • Zhu, B. et al. Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018).
    • (2018) Nature , vol.555 , pp. 487-492
    • Zhu, B.1
  • 123
    • 85059810231 scopus 로고    scopus 로고
    • Can AI enable a 10 minute MRI? In Towards Data Science (2018)
    • Harvey, H. Can AI enable a 10 minute MRI? In Towards Data Science https://towardsdatascience.com/can-ai-enable-a-10-minute-mri-77218f0121fe (2018).
    • Harvey, H
  • 125
    • 85007559018 scopus 로고    scopus 로고
    • Translating artificial intelligence into clinical care
    • PID: 27898974
    • Beam, A. L. & Kohane, I. S. Translating artificial intelligence into clinical care. JAMA 316, 2368–2369 (2016).
    • (2016) JAMA , vol.316 , pp. 2368-2369
    • Beam, A.L.1    Kohane, I.S.2
  • 126
    • 84855216556 scopus 로고    scopus 로고
    • Tuegel, E. J. et al. Reengineering aircraft structural life prediction using a digital twin. Int. J2011, 154798 (2011)
    • Tuegel, E. J. et al. Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. 2011, 154798 (2011).
    • Aerosp
  • 129
    • 85059820920 scopus 로고    scopus 로고
    • What did journalists overlook about the Apple Watch ‘heart monitor’ feature? In HealthNewsReview (2018)
    • Victory, J. What did journalists overlook about the Apple Watch ‘heart monitor’ feature? In HealthNewsReview https://www.healthnewsreview.org/2018/09/what-did-journalists-overlook-about-the-apple-watch-heart-monitor-feature/ (2018).
    • Victory, J
  • 134
    • 84959523025 scopus 로고    scopus 로고
    • Taking it personally: personalized utilization of the human microbiome in health and disease
    • COI: 1:CAS:528:DC%2BC28XhvFCltA%3D%3D, PID: 26764593
    • Zmora, N. et al. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell. Host. Microbe. 19, 12–20 (2016).
    • (2016) Cell. Host. Microbe. , vol.19 , pp. 12-20
    • Zmora, N.1
  • 135
    • 85020283977 scopus 로고    scopus 로고
    • Bread affects clinical parameters and induces gut microbiome–associated personal glycemic responses
    • COI: 1:CAS:528:DC%2BC2sXpslWgsbw%3D, PID: 28591632
    • Korem, T. et al. Bread affects clinical parameters and induces gut microbiome–associated personal glycemic responses. Cell. Metab. 25, 1243–1253 e1245 (2017).
    • (2017) Cell. Metab. , vol.25 , pp. 1243-1253 e1245
    • Korem, T.1
  • 136
    • 84947812071 scopus 로고    scopus 로고
    • Personalized nutrition by prediction of glycemic responses
    • COI: 1:CAS:528:DC%2BC2MXhvVyqtbvM, PID: 26590418
    • Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).
    • (2015) Cell , vol.163 , pp. 1079-1094
    • Zeevi, D.1
  • 137
    • 85051292787 scopus 로고    scopus 로고
    • Glucotypes reveal new patterns of glucose dysregulation
    • PID: 30040822
    • Hall, H. et al. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol. 16, e2005143 (2018).
    • (2018) PLoS Biol. , vol.16
    • Hall, H.1
  • 138
    • 85018307645 scopus 로고    scopus 로고
    • Personalized glucose forecasting for type 2 diabetes using data assimilation
    • PID: 28448498
    • Albers, D. J. et al. Personalized glucose forecasting for type 2 diabetes using data assimilation. PLoS. Comput. Biol. 13, e1005232 (2017).
    • (2017) PLoS. Comput. Biol. , vol.13
    • Albers, D.J.1
  • 139
    • 85030692166 scopus 로고    scopus 로고
    • Glucose patterns during an oral glucose tolerance test and associations with future diabetes, cardiovascular disease and all-cause mortality rate
    • COI: 1:CAS:528:DC%2BC2sXhsl2jtrrI, PID: 28983719
    • Hulman, A. et al. Glucose patterns during an oral glucose tolerance test and associations with future diabetes, cardiovascular disease and all-cause mortality rate. Diabetologia 61, 101–107 (2018).
    • (2018) Diabetologia , vol.61 , pp. 101-107
    • Hulman, A.1
  • 140
    • 85043240875 scopus 로고    scopus 로고
    • Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection
    • COI: 1:CAS:528:DC%2BC1cXltFehtbw%3D, PID: 29519916
    • Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).
    • (2018) Science , vol.359 , pp. 1376-1383
    • Thaiss, C.A.1
  • 141
    • 85050664500 scopus 로고    scopus 로고
    • Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer
    • COI: 1:CAS:528:DC%2BC1cXhtlClsLjE, PID: 30022161
    • Wu, D. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).
    • (2018) Nature , vol.559 , pp. 637-641
    • Wu, D.1
  • 142
    • 85051415796 scopus 로고    scopus 로고
    • Closed-loop insulin delivery for glycemic control in noncritical care
    • COI: 1:CAS:528:DC%2BC1cXhsFKnsrrK, PID: 29940126
    • Bally, L. et al. Closed-loop insulin delivery for glycemic control in noncritical care. N. Engl. J. Med. 379, 547–556 (2018).
    • (2018) N. Engl. J. Med. , vol.379 , pp. 547-556
    • Bally, L.1
  • 144
    • 85045300908 scopus 로고    scopus 로고
    • Seeing more: a future of augmented microscopy
    • COI: 1:CAS:528:DC%2BC1cXotFeht70%3D, PID: 29677507
    • Sullivan, D. P. & Lundberg, E. Seeing more: a future of augmented microscopy. Cell 173, 546–548 (2018).
    • (2018) Cell , vol.173 , pp. 546-548
    • Sullivan, D.P.1    Lundberg, E.2
  • 145
    • 85053710764 scopus 로고    scopus 로고
    • Ounkomol, C. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopyMethods 15, 917–920 (2018)
    • Ounkomol, C. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15, 917–920 (2018).
    • Nat
  • 146
    • 85053299658 scopus 로고    scopus 로고
    • Ghost cytometry
    • COI: 1:CAS:528:DC%2BC1cXhtFWltr3E, PID: 29903975
    • Ota, S. et al. Ghost cytometry. Science 360, 1246–1251 (2018).
    • (2018) Science , vol.360 , pp. 1246-1251
    • Ota, S.1
  • 147
    • 85054484004 scopus 로고    scopus 로고
    • Intelligent image-activated cell sorting
    • COI: 1:CAS:528:DC%2BC1cXhsF2ltr3I, PID: 30166209
    • Nitta, N. et al. Intelligent image-activated cell sorting. Cell 175, 266–276 e213 (2018).
    • (2018) Cell , vol.175 , pp. 266-276 e213
    • Nitta, N.1
  • 148
    • 85047829330 scopus 로고    scopus 로고
    • Weigert, M. et al. Content-aware image restorationPreprint at (2017).
    • Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Preprint at https://doi.org/10.1101/236463 (2017).
    • pushing the limits of fluorescence microscopy
  • 150
    • 85053076602 scopus 로고    scopus 로고
    • Deep learning is combined with massive-scale citizen science to improve large-scale image classification
    • COI: 1:CAS:528:DC%2BC1cXhsFChurbE, PID: 30125267
    • Sullivan, D. P. et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 36, 820–828 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 820-828
    • Sullivan, D.P.1
  • 152
    • 85050539279 scopus 로고    scopus 로고
    • Predicting the clinical impact of human mutation with deep neural networks
    • COI: 1:CAS:528:DC%2BC1cXhtlOis7zE, PID: 30038395
    • Sundaram, L. et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 50, 1161–1170 (2018).
    • (2018) Nat. Genet. , vol.50 , pp. 1161-1170
    • Sundaram, L.1
  • 153
    • 85049967126 scopus 로고    scopus 로고
    • Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
    • COI: 1:CAS:528:DC%2BC1cXhtlCmt7zO, PID: 30013180
    • Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).
    • (2018) Nat. Genet. , vol.50 , pp. 1171-1179
    • Zhou, J.1
  • 154
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • COI: 1:CAS:528:DC%2BC2MXhtlynsL%2FL, PID: 26301843
    • Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 156
    • 84949818508 scopus 로고    scopus 로고
    • Leung, M. et al. Machine learning in genomic medicine: a review of computational problems and data sets104, 176–197 (IEEE, 2016)
    • Leung, M. et al. Machine learning in genomic medicine: a review of computational problems and data sets. In Proceedings of the IEEE Vol. 104, 176–197 (IEEE, 2016).
    • In Proceedings of the IEEE Vol
  • 157
    • 85054719134 scopus 로고    scopus 로고
    • A universal SNP and small-indel variant caller using deep neural networks
    • Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).
    • (2018) Nat. Biotechnol , vol.36 , pp. 983-987
    • Poplin, R.1
  • 158
    • 85053833913 scopus 로고    scopus 로고
    • Riesselman, A. et al. Deep generative models of genetic variation capture the effects of mutationsMethods 15, 816–822 (2018)
    • Riesselman, A. et al. Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15, 816–822 (2018).
    • Nat
  • 159
    • 85052784859 scopus 로고    scopus 로고
    • Wood, D. E. et al. A machine learning approach for somatic mutation discovery. Sci. Transl10, eaar7939 (2018)
    • Wood, D. E. et al. A machine learning approach for somatic mutation discovery. Sci. Transl. Med. 10, eaar7939 (2018).
    • Med
  • 160
    • 85052827942 scopus 로고    scopus 로고
    • Machine learning identifies interacting genetic variants contributing to breast cancer risk: a case study in Finnish cases and controls
    • PID: 30177847
    • Behravan, H. et al. Machine learning identifies interacting genetic variants contributing to breast cancer risk: a case study in Finnish cases and controls. Sci. Rep. 8, 13149 (2018).
    • (2018) Sci. Rep. , vol.8
    • Behravan, H.1
  • 161
    • 85031687901 scopus 로고    scopus 로고
    • Using neural networks for reducing the dimensions of single-cell RNA-seq data
    • PID: 28973464
    • Lin, C. et al. Using neural networks for reducing the dimensions of single-cell RNA-seq data. Nucleic Acids Res. 45, e156 (2017).
    • (2017) Nucleic Acids Res. , vol.45
    • Lin, C.1
  • 162
    • 85018466550 scopus 로고    scopus 로고
    • DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
    • PID: 28395661
    • Angermueller, C. et al. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome. Biol. 18, 67 (2017).
    • (2017) Genome. Biol. , vol.18
    • Angermueller, C.1
  • 165
    • 85048881841 scopus 로고    scopus 로고
    • Recovering gene interactions from single-cell data using data diffusion
    • PID: 29961576
    • van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e727 (2018).
    • (2018) Cell , vol.174 , pp. 716-729.e727
    • van Dijk, D.1
  • 166
    • 85059811025 scopus 로고    scopus 로고
    • Zitnik, M. et al. Machine learning for integrating data in biology and medicinePreprint at (2018).
    • Zitnik, M. et al. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Preprint at https://doi.org/10.1111/joim.12746 (2018).
    • principles, practice, and opportunities
  • 167
    • 85047752833 scopus 로고    scopus 로고
    • Next-generation machine learning for biological networks
    • COI: 1:CAS:528:DC%2BC1cXhtV2ltrrI, PID: 29887378
    • Camacho, D. M. et al. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018).
    • (2018) Cell , vol.173 , pp. 1581-1592
    • Camacho, D.M.1
  • 168
    • 85042934649 scopus 로고    scopus 로고
    • Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity
    • COI: 1:CAS:528:DC%2BC1cXhvVequrw%3D, PID: 29431740
    • Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 239-241
    • Kim, H.K.1
  • 169
    • 85040314117 scopus 로고    scopus 로고
    • Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs
    • PID: 29998038
    • Listgarten, J. et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2, 38–47 (2018).
    • (2018) Nat. Biomed. Eng. , vol.2 , pp. 38-47
    • Listgarten, J.1
  • 170
    • 85052685030 scopus 로고    scopus 로고
    • Detecting repeated cancer evolution from multi-region tumor sequencing data
    • COI: 1:CAS:528:DC%2BC1cXhs1Cgt7rP, PID: 30171232
    • Caravagna, G. et al. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods 15, 707–714 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 707-714
    • Caravagna, G.1
  • 171
    • 85053806353 scopus 로고    scopus 로고
    • Manak, M. et al. Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning. Nature Biomed2, 761–772 (2018)
    • Manak, M. et al. Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning. Nature Biomed. Eng. 2, 761–772 (2018).
    • Eng
  • 172
    • 85029563607 scopus 로고    scopus 로고
    • Neuroscience-inspired artificial intelligence
    • COI: 1:CAS:528:DC%2BC2sXht1Smtb%2FE, PID: 28728020
    • Hassabis, D. et al. Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017).
    • (2017) Neuron , vol.95 , pp. 245-258
    • Hassabis, D.1
  • 173
    • 85023610188 scopus 로고    scopus 로고
    • Mapping the neural substrates of behavior
    • COI: 1:CAS:528:DC%2BC2sXhtFygtbzM, PID: 28709004
    • Robie, A. A. et al. Mapping the neural substrates of behavior. Cell 170, 393–406 e328 (2017).
    • (2017) Cell , vol.170 , pp. 393-406 e328
    • Robie, A.A.1
  • 174
    • 85033481480 scopus 로고    scopus 로고
    • A neural algorithm for a fundamental computing problem
    • COI: 1:CAS:528:DC%2BC2sXhslOnsL%2FN, PID: 29123069
    • Dasgupta, S. et al. A neural algorithm for a fundamental computing problem. Science 358, 793–796 (2017).
    • (2017) Science , vol.358 , pp. 793-796
    • Dasgupta, S.1
  • 175
    • 85049970432 scopus 로고    scopus 로고
    • High-precision automated reconstruction of neurons with flood-filling networks
    • COI: 1:CAS:528:DC%2BC1cXhtlCmt7%2FL, PID: 30013046
    • Januszewski, M. et al. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605–610 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 605-610
    • Januszewski, M.1
  • 176
    • 85046894118 scopus 로고    scopus 로고
    • AI mimics brain codes for navigation
    • COI: 1:CAS:528:DC%2BC1cXpsVCrsbc%3D, PID: 29752452
    • Savelli, F. & Knierim, J. J. AI mimics brain codes for navigation. Nature 557, 313–314 (2018).
    • (2018) Nature , vol.557 , pp. 313-314
    • Savelli, F.1    Knierim, J.J.2
  • 177
    • 85046892207 scopus 로고    scopus 로고
    • Vector-based navigation using grid-like representations in artificial agents
    • COI: 1:CAS:528:DC%2BC1cXptlarsrY%3D, PID: 29743670
    • Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018).
    • (2018) Nature , vol.557 , pp. 429-433
    • Banino, A.1
  • 178
    • 85048213150 scopus 로고    scopus 로고
    • Two artificial synapses are better than one
    • COI: 1:CAS:528:DC%2BC1cXhtV2lsr3I, PID: 29872204
    • Adam, G. C. Two artificial synapses are better than one. Nature 558, 39–40 (2018).
    • (2018) Nature , vol.558 , pp. 39-40
    • Adam, G.C.1
  • 179
    • 84968546836 scopus 로고    scopus 로고
    • Phase-change devices: crystal-clear neuronal computing
    • COI: 1:CAS:528:DC%2BC28XotV2nt78%3D, PID: 27183058
    • Wright, C. D. Phase-change devices: crystal-clear neuronal computing. Nat. Nanotechnol. 11, 655–656 (2016).
    • (2016) Nat. Nanotechnol. , vol.11 , pp. 655-656
    • Wright, C.D.1
  • 180
    • 85052583792 scopus 로고    scopus 로고
    • DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
    • COI: 1:CAS:528:DC%2BC1cXhsFGjtLnF, PID: 30127430
    • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
    • (2018) Nat. Neurosci. , vol.21 , pp. 1281-1289
    • Mathis, A.1
  • 181
    • 85048341741 scopus 로고    scopus 로고
    • AI-powered drug discovery captures pharma interest
    • COI: 1:CAS:528:DC%2BC2sXhtFOjsbjK, PID: 28700560
    • Smalley, E. AI-powered drug discovery captures pharma interest. Nat. Biotechnol. 35, 604–605 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 604-605
    • Smalley, E.1
  • 182
    • 85041303900 scopus 로고    scopus 로고
    • Automating drug discovery
    • COI: 1:CAS:528:DC%2BC2sXhvFOntbbK, PID: 29242609
    • Schneider, G. Automating drug discovery. Nat. Rev. Drug. Discov. 17, 97–113 (2018).
    • (2018) Nat. Rev. Drug. Discov. , vol.17 , pp. 97-113
    • Schneider, G.1
  • 183
    • 85033237619 scopus 로고    scopus 로고
    • Predictable response: finding optimal drugs and doses using artificial intelligence
    • COI: 1:CAS:528:DC%2BC2sXhslOntrnN, PID: 29117178
    • Chakradhar, S. Predictable response: finding optimal drugs and doses using artificial intelligence. Nat. Med. 23, 1244–1247 (2017).
    • (2017) Nat. Med. , vol.23 , pp. 1244-1247
    • Chakradhar, S.1
  • 184
    • 85044636413 scopus 로고    scopus 로고
    • AI designs organic syntheses
    • COI: 1:CAS:528:DC%2BC1cXmsVGqt7g%3D, PID: 29595793
    • Lowe, D. AI designs organic syntheses. Nature 555, 592–593 (2018).
    • (2018) Nature , vol.555 , pp. 592-593
    • Lowe, D.1
  • 185
    • 85054881735 scopus 로고    scopus 로고
    • Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility
    • Luechtefeld, T. et al. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol. Sci. 165, 198–212 (2018).
    • (2018) Toxicol. Sci , vol.165 , pp. 198-212
    • Luechtefeld, T.1
  • 186
    • 85055080393 scopus 로고    scopus 로고
    • Realizing private and practical pharmacological collaboration
    • COI: 1:CAS:528:DC%2BC1cXhvFWksbjJ, PID: 30337410
    • Hie, B. et al. Realizing private and practical pharmacological collaboration. Science 362, 347–350 (2018).
    • (2018) Science , vol.362 , pp. 347-350
    • Hie, B.1
  • 187
    • 85040953233 scopus 로고    scopus 로고
    • Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan
    • PID: 29348637
    • Bilsland, E. et al. Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Sci. Rep. 8, 1038 (2018).
    • (2018) Sci. Rep. , vol.8
    • Bilsland, E.1
  • 191
    • 84990235978 scopus 로고    scopus 로고
    • Can we open the black box of AI?
    • COI: 1:CAS:528:DC%2BC28Xhs1ehsr7F, PID: 27708329
    • Castelvecchi, D. Can we open the black box of AI? Nature 538, 20–23 (2016).
    • (2016) Nature , vol.538 , pp. 20-23
    • Castelvecchi, D.1
  • 192
    • 85022332137 scopus 로고    scopus 로고
    • In MIT Technology Review (2017)
    • Knight, W. The dark secret at the heart of AI. In MIT Technology Review https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ (2017).
    • Knight, W. The dark secret at the heart of AI
  • 194
    • 85059818403 scopus 로고    scopus 로고
    • be taught to explain itself? In The New York Times (2017)
    • Kuang, C. Can A.I. be taught to explain itself? In The New York Times https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html (2017).
    • Kuang, C. Can A.I
  • 195
    • 85011085747 scopus 로고    scopus 로고
    • Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women
    • PID: 28159391
    • Stringhini, S. et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. Lancet 389, 1229–1237 (2017).
    • (2017) Lancet , vol.389 , pp. 1229-1237
    • Stringhini, S.1
  • 198
    • 85059811911 scopus 로고    scopus 로고
    • Brundage, M. et al. The malicious use of artificial intelligencePreprint at (2018).
    • Brundage, M. et al. The malicious use of artificial intelligence: forecasting, prevention, and mitigation. Preprint at https://arxiv.org/ftp/arxiv/papers/1802/1802.07228.pdf (2018).
    • forecasting, prevention, and mitigation
  • 200
    • 85059799334 scopus 로고    scopus 로고
    • In The New York Times (2017)
    • Haun, K. & Topol, E. The health data conundrum. In The New York Times https://www.nytimes.com/2017/01/02/opinion/the-health-data-conundrum.html (2017).
    • Haun, K. & Topol, E. The health data conundrum
  • 201
    • 84941121243 scopus 로고    scopus 로고
    • Unpatients-why patients should own their medical data
    • COI: 1:CAS:528:DC%2BC2MXhsVymt7%2FP, PID: 26348958
    • Kish, L. J. & Topol, E. J. Unpatients-why patients should own their medical data. Nat. Biotechnol. 33, 921–924 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 921-924
    • Kish, L.J.1    Topol, E.J.2
  • 202
    • 85059799813 scopus 로고    scopus 로고
    • In The New Yorker (2017)
    • Heller, N. Estonia, the digital republic. In The New Yorker https://www.newyorker.com/magazine/2017/12/18/estonia-the-digital-republic (2017).
    • Heller, N. Estonia, the digital republic
  • 203
    • 84969921774 scopus 로고    scopus 로고
    • Shladover, SIn Scientific American 314, 53–57 (2016)
    • Shladover, S. The truth about “self-driving” cars. In Scientific American 314, 53–57 (2016).
    • The truth about “self-driving” cars
  • 204
    • 84960561455 scopus 로고    scopus 로고
    • Turing, A. M. On computable numbers with an application to the Entscheidungsproblem. P. Lond. Matchs2-42, 230–265 (1936)
    • Turing, A. M. On computable numbers with an application to the Entscheidungsproblem. P. Lond. Match. Soc. s2-42, 230–265 (1936).
    • Soc
  • 206
    • 51249194645 scopus 로고    scopus 로고
    • McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math5, 115–133 (1943)
    • McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).
    • Biophys
  • 207
    • 84876231242 scopus 로고    scopus 로고
    • Krizhevsky, A. et alIn NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems 1097–1105 (NIPS, 2012)
    • Krizhevsky, A. et al. ImageNet classification with deep convolutional neural networks. In NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems 1097–1105 (NIPS, 2012).
    • ImageNet classification with deep convolutional neural networks
  • 210
    • 85050102094 scopus 로고    scopus 로고
    • Deep Learning (MIT Press, Cambridge, MA
    • Goodfellow, I et al. Deep Learning (MIT Press, Cambridge, MA, USA, 2016).
    • (2016) USA
    • Goodfellow, I.1
  • 211
    • 85054494974 scopus 로고    scopus 로고
    • Artificial intelligence in healthcare
    • Yu, K.-H. et al. Artificial intelligence in healthcare. Nature Biomed. Eng. 2, 719–731 (2018).
    • (2018) Nature Biomed. Eng. , vol.2 , pp. 719-731
    • Yu, K.H.1
  • 216
    • 85059821356 scopus 로고    scopus 로고
    • Madani, A. et al. Deep echocardiography: data-efficient supervised and semisupervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit1, 59 (2018)
    • Madani, A. et al. Deep echocardiography: data-efficient supervised and semisupervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit. Med. 1, 59 (2018).
    • Med


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.