-
1
-
-
85046734707
-
Child mortality in the US and 19 OECD comparator nations: a 50-year time-trend analysis
-
Thakrar, A. P. et al. Child mortality in the US and 19 OECD comparator nations: a 50-year time-trend analysis. Health Aff. (Millwood) 37, 140–149 (2018).
-
(2018)
Health Aff. (Millwood)
, vol.37
, pp. 140-149
-
-
Thakrar, A.P.1
-
2
-
-
85059815599
-
-
Roser, M. Link between health spending and life expectancyIn Our World in Data (2017).
-
Roser, M. Link between health spending and life expectancy: US is an outlier. In Our World in Data https://ourworldindata.org/the-link-between-life-expectancy-and-health-spending-us-focus (2017).
-
US is an outlier
-
-
-
3
-
-
84906665952
-
The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations
-
PID: 24742777
-
Singh, H. et al. The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations. BMJ Qual. Saf. 23, 727–731 (2014).
-
(2014)
BMJ Qual. Saf.
, vol.23
, pp. 727-731
-
-
Singh, H.1
-
4
-
-
84859544287
-
Eliminating waste in US health care
-
COI: 1:CAS:528:DC%2BC38XlvVWhs7k%3D, PID: 22419800
-
Berwick, D. M. & Hackbarth, A. D. Eliminating waste in US health care. JAMA 307, 1513–1516 (2012).
-
(2012)
JAMA
, vol.307
, pp. 1513-1516
-
-
Berwick, D.M.1
Hackbarth, A.D.2
-
7
-
-
85054452179
-
Deep learning in chest radiography: detection of findings and presence of change
-
PID: 30286097
-
Singh, R. et al. Deep learning in chest radiography: detection of findings and presence of change. PLoS ONE 13, e0204155 (2018).
-
(2018)
PLoS ONE
, vol.13
-
-
Singh, R.1
-
9
-
-
85056131427
-
-
Lindsey, R., et al. Deep neural network improves fracture detection by clinicians. Proc. Natl. AcadUSA 115, 11591–11596 (2018)
-
Lindsey, R., et al. Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. USA 115, 11591–11596 (2018).
-
Sci
-
-
-
13
-
-
85025112337
-
Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
-
PID: 28436741
-
Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017).
-
(2017)
Radiology
, vol.284
, pp. 574-582
-
-
Lakhani, P.1
Sundaram, B.2
-
15
-
-
85059820451
-
-
In Aunt Minnie https://www.auntminnie.com/index.aspx?sec=rca&sub=rsna_2017&pag=dis&ItemID=119166 (2017)
-
Ridley, E. L. Deep-learning algorithm can stratify lung nodule risk. In Aunt Minnie https://www.auntminnie.com/index.aspx?sec=rca&sub=rsna_2017&pag=dis&ItemID=119166 (2017).
-
Ridley, E. L. Deep-learning algorithm can stratify lung nodule risk
-
-
-
16
-
-
85042428409
-
Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study
-
PID: 29059036
-
Yasaka, K. et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286, 887–896 (2018).
-
(2018)
Radiology
, vol.286
, pp. 887-896
-
-
Yasaka, K.1
-
19
-
-
85059812213
-
-
Arbabshirani, M. R. et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit1, 9 (2018)
-
Arbabshirani, M. R. et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit. Med. 1, 9 (2018).
-
Med
-
-
-
22
-
-
85059813737
-
-
Lieman-Sifry, J. et al. FastVentriclePreprint at (2017).
-
Lieman-Sifry, J. et al. FastVentricle: cardiac segmentation with ENet. Preprint at https://arxiv.org/abs/1704.04296 (2017).
-
cardiac segmentation with ENet
-
-
-
23
-
-
85059802951
-
-
Madani, A. et al. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit1, 6 (2018)
-
Madani, A. et al. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit. Med. 1, 6 (2018).
-
Med
-
-
-
26
-
-
85058874023
-
-
Lehman, C. D. et al. Mammographic breast density assessment using deep learningRadiology (2018).
-
Lehman, C. D. et al. Mammographic breast density assessment using deep learning: clinical implementation. Radiology http://doi.org/10.1148/radiol.2018180694 (2018).
-
clinical implementation
-
-
-
27
-
-
85052495778
-
Automated deep-neural-network surveillance of cranial images for acute neurologic events
-
Titano, J. J. et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat. Med. 24, 1337–1341 (2018).
-
(2018)
Nat. Med
, vol.24
, pp. 1337-1341
-
-
Titano, J.J.1
-
28
-
-
84928911070
-
The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
-
PID: 25738806
-
Saito, T. & Rehmsmeier, M. The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, e0118432 (2015).
-
(2015)
PLoS ONE
, vol.10
-
-
Saito, T.1
Rehmsmeier, M.2
-
29
-
-
38949161848
-
-
Lobo, J. et al. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol17, 145–151 (2007)
-
Lobo, J. et al. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2007).
-
Biogeogr
-
-
-
30
-
-
85059822891
-
-
Keane, P. & Topol, E. With an eye to AI and autonomous diagnosis. NPJ Digit1, 40 (2018)
-
Keane, P. & Topol, E. With an eye to AI and autonomous diagnosis. NPJ Digit. Med. 1, 40 (2018).
-
Med
-
-
-
31
-
-
85059810469
-
-
Abramoff, M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. N PJ Digit1, 39 (2018)
-
Abramoff, M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. N PJ Digit. Med. 1, 39 (2018).
-
Med
-
-
-
32
-
-
85062975022
-
-
Kanagasingam, Y. et al. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary careOpen 1, e182665 (2018)
-
Kanagasingam, Y. et al. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw. Open 1, e182665 (2018).
-
JAMA Netw
-
-
-
33
-
-
85053661755
-
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
-
Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).
-
(2018)
Nat. Med
, vol.24
, pp. 1559-1567
-
-
Coudray, N.1
-
35
-
-
85056358333
-
Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer
-
Steiner, D. F., et al. Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am. J. Surg. Pathol. 42, 1636–1646 (2018).
-
(2018)
Am. J. Surg. Pathol
, vol.42
, pp. 1636-1646
-
-
Steiner, D.F.1
-
36
-
-
85053542469
-
-
Mori, Y. et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann. Intern169, 357–366 (2018)
-
Mori, Y. et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann. Intern. Med. 169, 357–366 (2018).
-
Med
-
-
-
37
-
-
85054667648
-
Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy
-
Wang, P. et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat. Biomed. Eng. 2, 741–748 (2018).
-
(2018)
Nat. Biomed. Eng.
, vol.2
, pp. 741-748
-
-
Wang, P.1
-
38
-
-
85025452709
-
An artificial intelligence platform for the multihospital collaborative management of congenital cataracts
-
Long, E. et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1, 1–8 (2017).
-
(2017)
Nat. Biomed. Eng.
, vol.1
, pp. 1-8
-
-
Long, E.1
-
39
-
-
85047445061
-
Not just digital pathology, intelligent digital pathology
-
PID: 29392271
-
Acs, B. & Rimm, D. L. Not just digital pathology, intelligent digital pathology. JAMA Oncol. 4, 403–404 (2018).
-
(2018)
JAMA Oncol.
, vol.4
, pp. 403-404
-
-
Acs, B.1
Rimm, D.L.2
-
40
-
-
84982218412
-
Predicting non–small cell lung cancer prognosis by fully automated microscopic pathology image features
-
COI: 1:CAS:528:DC%2BC28Xhtlylsb7E, PID: 27527408
-
Yu, K. H. et al. Predicting non–small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016).
-
(2016)
Nat. Commun.
, vol.7
-
-
Yu, K.H.1
-
41
-
-
85038431889
-
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
-
PID: 29234806
-
Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).
-
(2017)
JAMA
, vol.318
, pp. 2199-2210
-
-
Ehteshami Bejnordi, B.1
-
42
-
-
85038218695
-
Deep learning algorithms for detection of lymph node metastases from breast cancer: helping artificial intelligence be seen
-
PID: 29234791
-
Golden, J. A. Deep learning algorithms for detection of lymph node metastases from breast cancer: helping artificial intelligence be seen. JAMA 318, 2184–2186 (2017).
-
(2017)
JAMA
, vol.318
, pp. 2184-2186
-
-
Golden, J.A.1
-
43
-
-
85017623447
-
Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent
-
COI: 1:CAS:528:DC%2BC2sXmtFKgurw%3D, PID: 28418027
-
Cruz-Roa, A. et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci. Rep. 7, 46450 (2017).
-
(2017)
Sci. Rep.
, vol.7
-
-
Cruz-Roa, A.1
-
44
-
-
85044263153
-
Machine learning classifies cancer
-
COI: 1:CAS:528:DC%2BC1cXlt1Oru7Y%3D, PID: 29565394
-
Wong, D. & Yip, S. Machine learning classifies cancer. Nature 555, 446–447 (2018).
-
(2018)
Nature
, vol.555
, pp. 446-447
-
-
Wong, D.1
Yip, S.2
-
45
-
-
85044262739
-
DNA methylation–based classification of central nervous system tumours
-
COI: 1:CAS:528:DC%2BC1cXksFegu70%3D, PID: 29539639
-
Capper, D. et al. DNA methylation–based classification of central nervous system tumours. Nature 555, 469–474 (2018).
-
(2018)
Nature
, vol.555
, pp. 469-474
-
-
Capper, D.1
-
46
-
-
85043760273
-
Assessing microscope image focus quality with deep learning
-
PID: 29540156
-
Yang, S. J. et al. Assessing microscope image focus quality with deep learning. BMC Bioinformatics 19, 77 (2018).
-
(2018)
BMC Bioinformatics
, vol.19
-
-
Yang, S.J.1
-
47
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D, PID: 28117445
-
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
-
48
-
-
85054158054
-
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
-
Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018).
-
(2018)
Ann. Oncol
, vol.29
, pp. 1836-1842
-
-
Haenssle, H.A.1
-
49
-
-
85044366134
-
Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
-
COI: 1:CAS:528:DC%2BC1cXks12lsLc%3D, PID: 29428356
-
Han, S. S. et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Invest. Dermatol. 138, 1529–1538 (2018).
-
(2018)
J. Invest. Dermatol.
, vol.138
, pp. 1529-1538
-
-
Han, S.S.1
-
50
-
-
85007597269
-
Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
-
PID: 27898977
-
Wong, T. Y. & Bressler, N. M. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA 316, 2366–2367 (2016).
-
(2016)
JAMA
, vol.316
, pp. 2366-2367
-
-
Wong, T.Y.1
Bressler, N.M.2
-
51
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
PID: 27898976
-
Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
-
52
-
-
85034636594
-
Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
-
PID: 28973096
-
Burlina, P. M. et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135, 1170–1176 (2017).
-
(2017)
JAMA Ophthalmol.
, vol.135
, pp. 1170-1176
-
-
Burlina, P.M.1
-
53
-
-
85042389905
-
Identifying medical diagnoses and treatable diseases by image-based deep learning
-
COI: 1:CAS:528:DC%2BC1cXjt12ltr0%3D, PID: 29474911
-
Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131.e1129 (2018).
-
(2018)
Cell
, vol.172
, pp. 1122-1131.e1129
-
-
Kermany, D.S.1
-
54
-
-
85046542182
-
AI for medical imaging goes deep
-
COI: 1:CAS:528:DC%2BC1cXpt1Gks7o%3D, PID: 29736024
-
Ting, D. S. W. et al. AI for medical imaging goes deep. Nat. Med. 24, 539–540 (2018).
-
(2018)
Nat. Med.
, vol.24
, pp. 539-540
-
-
Ting, D.S.W.1
-
55
-
-
85042359360
-
Learning from everyday images enables expert-like diagnosis of retinal diseases
-
COI: 1:CAS:528:DC%2BC1cXjt12lsbs%3D, PID: 29474917
-
Rampasek, L. & Goldenberg, A. Learning from everyday images enables expert-like diagnosis of retinal diseases. Cell 172, 893–895 (2018).
-
(2018)
Cell
, vol.172
, pp. 893-895
-
-
Rampasek, L.1
Goldenberg, A.2
-
56
-
-
85052522615
-
Clinically applicable deep learning for diagnosis and referral in retinal disease
-
De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).
-
(2018)
Nat. Med
, vol.24
, pp. 1342-1350
-
-
De Fauw, J.1
-
57
-
-
85053847816
-
-
Mutlu, U. et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study75, 1256–1263 (2018)
-
Mutlu, U. et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol. 75, 1256–1263 (2018).
-
JAMA Neurol
-
-
-
58
-
-
85042201755
-
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
-
Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018).
-
(2018)
Nat. Biomed. Eng.
, vol.2
, pp. 158-164
-
-
Poplin, R.1
-
59
-
-
85065329022
-
-
All eyes are on AI. Nat. Biomed2, 139 (2018)
-
All eyes are on AI. Nat. Biomed. Eng. 2, 139 (2018).
-
Eng
-
-
-
60
-
-
85049693038
-
Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks
-
PID: 29801159
-
Brown, J. M. et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 136, 803–810 (2018).
-
(2018)
JAMA Ophthalmol.
, vol.136
, pp. 803-810
-
-
Brown, J.M.1
-
61
-
-
0026410610
-
The diagnostic performance of computer programs for the interpretation of electrocardiograms
-
COI: 1:STN:280:DyaK38%2FkvFKgtQ%3D%3D, PID: 1834940
-
Willems, J. et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N. Engl. J. Med. 325, 1767–1773 (1991).
-
(1991)
N. Engl. J. Med.
, vol.325
, pp. 1767-1773
-
-
Willems, J.1
-
64
-
-
85053552809
-
Making colonoscopy smarter with standardized computer-aided diagnosis
-
Holme, Ø. & Aabakken, L. Making colonoscopy smarter with standardized computer-aided diagnosis Ann. Intern. Med. 169, 409–410 (2018).
-
(2018)
Ann. Intern. Med
, vol.169
, pp. 409-410
-
-
Holme, Ø.1
Aabakken, L.2
-
67
-
-
85054648327
-
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
-
Lundberg, S. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).
-
(2018)
Nat. Biomed. Eng.
, vol.2
, pp. 749-760
-
-
Lundberg, S.1
-
69
-
-
85042131845
-
Enhancing next-generation sequencing-guided cancer care through cognitive computing
-
PID: 29158372
-
Patel, N. M. et al. Enhancing next-generation sequencing-guided cancer care through cognitive computing. Oncologist 23, 179–185 (2018).
-
(2018)
Oncologist
, vol.23
, pp. 179-185
-
-
Patel, N.M.1
-
72
-
-
85042418889
-
High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision
-
PID: 29039725
-
Bahl, M. et al. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology 286, 810–818 (2018).
-
(2018)
Radiology
, vol.286
, pp. 810-818
-
-
Bahl, M.1
-
73
-
-
85135600385
-
-
Coiera, E. et al. The digital scribe. NPJ Digit1, 58 (2018)
-
Coiera, E. et al. The digital scribe. NPJ Digit. Med. 1, 58 (2018).
-
Med
-
-
-
76
-
-
85041683479
-
A solution-focused research approach to achieve an implementable revolution in digital mental health
-
PID: 29238805
-
Mohr, D. C. et al. A solution-focused research approach to achieve an implementable revolution in digital mental health. JAMA Psychiatry 75, 113–114 (2018).
-
(2018)
JAMA Psychiatry
, vol.75
, pp. 113-114
-
-
Mohr, D.C.1
-
78
-
-
85018874319
-
Digitising the mind
-
PID: 28513442
-
Barrett, P. M. et al. Digitising the mind. Lancet 389, 1877 (2017).
-
(2017)
Lancet
, vol.389
, pp. 1877
-
-
Barrett, P.M.1
-
80
-
-
85088143488
-
Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial
-
PID: 28588005
-
Fitzpatrick, K. K. et al. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment. Health 4, e19 (2017).
-
(2017)
JMIR Ment. Health
, vol.4
-
-
Fitzpatrick, K.K.1
-
81
-
-
85055651042
-
-
Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl. AcadUSA 115, 11203–11208 (2018)
-
Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl. Acad. Sci. USA 115, 11203–11208 (2018).
-
Sci
-
-
-
82
-
-
84959571586
-
Cross-trial prediction of treatment outcome in depression: a machine learning approach
-
PID: 26803397
-
Chekroud, A. M. et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3, 243–250 (2016).
-
(2016)
Lancet Psychiatry
, vol.3
, pp. 243-250
-
-
Chekroud, A.M.1
-
83
-
-
85016980085
-
Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder
-
Schnyer, D. M. et al. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res. 264, 1–9 (2017).
-
(2017)
Psychiatry Res.
, vol.264
, pp. 1-9
-
-
Schnyer, D.M.1
-
85
-
-
85015307298
-
Imaging biomarkers and biotypes for depression
-
COI: 1:CAS:528:DC%2BC2sXltVeqsg%3D%3D, PID: 28060802
-
Wager, T. D. & Woo, C. W. Imaging biomarkers and biotypes for depression. Nat. Med. 23, 16–17 (2017).
-
(2017)
Nat. Med.
, vol.23
, pp. 16-17
-
-
Wager, T.D.1
Woo, C.W.2
-
86
-
-
85019953955
-
-
Walsh, C. G. et al. Predicting risk of suicide attempts over time through machine learning. Clin. Psychol5, 457–469 (2017)
-
Walsh, C. G. et al. Predicting risk of suicide attempts over time through machine learning. Clin. Psychol. Sci. 5, 457–469 (2017).
-
Sci
-
-
-
87
-
-
84995495684
-
Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research
-
PID: 27841450
-
Franklin, J. C. et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol. Bull. 143, 187–232 (2017).
-
(2017)
Psychol. Bull.
, vol.143
, pp. 187-232
-
-
Franklin, J.C.1
-
88
-
-
85042741879
-
Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth
-
PID: 29367952
-
Just, M. A. et al. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth. Nat. Hum. Behav. 1, 911–919 (2017).
-
(2017)
Nat. Hum. Behav.
, vol.1
, pp. 911-919
-
-
Just, M.A.1
-
90
-
-
85045901059
-
Clinical assistant diagnosis for electronic medical record based on convolutional neural network
-
PID: 29679019
-
Yang, Z. et al. Clinical assistant diagnosis for electronic medical record based on convolutional neural network. Sci. Rep. 8, 6329 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Yang, Z.1
-
92
-
-
85052021167
-
Unsupervised machine learning to identify high likelihood of dementia in population-based surveys: development and validation study
-
PID: 29986849
-
Cleret de Langavant, L. et al. Unsupervised machine learning to identify high likelihood of dementia in population-based surveys: development and validation study. J. Med. Internet. Res. 20, e10493 (2018).
-
(2018)
J. Med. Internet. Res.
, vol.20
-
-
Cleret de Langavant, L.1
-
93
-
-
85044594960
-
A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers
-
PID: 29576042
-
Oh, J. et al. A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Infect. Control. Hosp. Epidemiol. 39, 425–433 (2018).
-
(2018)
Infect. Control. Hosp. Epidemiol.
, vol.39
, pp. 425-433
-
-
Oh, J.1
-
95
-
-
85065321567
-
-
Elfiky, A. et al. Development and application of a machine learning approach to assess short-term mortality risk among patients with cancer starting chemotherapyOpen 1, e180926 (2018)
-
Elfiky, A. et al. Development and application of a machine learning approach to assess short-term mortality risk among patients with cancer starting chemotherapy. JAMA Netw. Open 1, e180926 (2018).
-
JAMA Netw
-
-
-
96
-
-
85059801371
-
-
Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit1, 18 (2018)
-
Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1, 18 (2018).
-
Med
-
-
-
97
-
-
84968813824
-
Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
-
COI: 1:CAS:528:DC%2BC28Xot1Gnu7s%3D, PID: 27185194
-
Miotto, R. et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Miotto, R.1
-
98
-
-
85026316928
-
Identifying incipient dementia individuals using machine learning and amyloid imaging
-
PID: 28756942
-
Mathotaarachchi, S. et al. Identifying incipient dementia individuals using machine learning and amyloid imaging. Neurobiol. Aging. 59, 80–90 (2017).
-
(2017)
Neurobiol. Aging.
, vol.59
, pp. 80-90
-
-
Mathotaarachchi, S.1
-
99
-
-
85044763258
-
Personalized survival predictions via Trees of Predictors: an application to cardiac transplantation
-
PID: 29590219
-
Yoon, J. et al. Personalized survival predictions via Trees of Predictors: an application to cardiac transplantation. PLoS ONE 13, e0194985 (2018).
-
(2018)
PLoS ONE
, vol.13
-
-
Yoon, J.1
-
100
-
-
85056656223
-
-
Wong, A. et al. Development and validation of an electronic health record–based machine learning model to estimate delirium risk in newly hospitalized patients without known cognitive impairmentOpen 1, e181018 (2018)
-
Wong, A. et al. Development and validation of an electronic health record–based machine learning model to estimate delirium risk in newly hospitalized patients without known cognitive impairment. JAMA Netw. Open 1, e181018 (2018).
-
JAMA Netw
-
-
-
101
-
-
85050676780
-
Prognostication and risk factors for cystic fibrosis via automated machine learning
-
PID: 30050169
-
Alaa, A. M. & van der Schaar, M. Prognostication and risk factors for cystic fibrosis via automated machine learning. Sci. Rep. 8, 11242 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Alaa, A.M.1
van der Schaar, M.2
-
102
-
-
85017113914
-
Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
-
PID: 28384212
-
Horng, S. et al. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS ONE 12, e0174708 (2017).
-
(2017)
PLoS ONE
, vol.12
-
-
Horng, S.1
-
103
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
PID: 26246167
-
Henry, K. E. et al. A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med. 7, 299ra122 (2015).
-
(2015)
Sci. Transl. Med.
, vol.7
, pp. 299ra122
-
-
Henry, K.E.1
-
105
-
-
85029127032
-
Multi-task prediction of disease onsets from longitudinal lab tests
-
Razavian, N. et al. Multi-task prediction of disease onsets from longitudinal lab tests. PMLR 56, 73–100 (2016).
-
(2016)
PMLR
, vol.56
, pp. 73-100
-
-
Razavian, N.1
-
106
-
-
85018435860
-
Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai Heart Failure Cohort
-
PID: 27896982
-
Shameer, K. et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using Mount Sinai Heart Failure Cohort. Pac. Symp. Biocomput. 22, 276–287 (2017).
-
(2017)
Pac. Symp. Biocomput.
, vol.22
, pp. 276-287
-
-
Shameer, K.1
-
107
-
-
85054563739
-
Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data
-
PID: 30216352
-
Bhagwat, N. et al. Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput. Biol. 14, e1006376 (2018).
-
(2018)
PLoS Comput. Biol.
, vol.14
-
-
Bhagwat, N.1
-
108
-
-
85055475795
-
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care
-
Komorowski, M. et al. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 (2018).
-
(2018)
Nat. Med
, vol.24
, pp. 1716-1720
-
-
Komorowski, M.1
-
110
-
-
84976407069
-
Deep biomarkers of human aging: application of deep neural networks to biomarker development
-
COI: 1:CAS:528:DC%2BC1cXmsVylt74%3D, PID: 27191382
-
Putin, E. et al. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging 8, 1021–1033 (2016).
-
(2016)
Aging
, vol.8
, pp. 1021-1033
-
-
Putin, E.1
-
111
-
-
85033378916
-
Predicting age by mining electronic medical records with deep learning characterizes differences between chronological and physiological age
-
PID: 29113935
-
Wang, Z. et al. Predicting age by mining electronic medical records with deep learning characterizes differences between chronological and physiological age. J. Biomed. Inform. 76, 59–68 (2017).
-
(2017)
J. Biomed. Inform.
, vol.76
, pp. 59-68
-
-
Wang, Z.1
-
112
-
-
85045201945
-
DNA methylation–based biomarkers and the epigenetic clock theory of ageing
-
COI: 1:CAS:528:DC%2BC1cXosVCgt7o%3D, PID: 29643443
-
Horvath, S. & Raj, K. DNA methylation–based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
-
(2018)
Nat. Rev. Genet.
, vol.19
, pp. 371-384
-
-
Horvath, S.1
Raj, K.2
-
113
-
-
85069087726
-
-
Rose, S. Machine Learning for Prediction in Electronic Health DataOpen 1, e181404(2018)
-
Rose, S. Machine Learning for Prediction in Electronic Health Data. JAMA Netw. Open 1, e181404(2018).
-
JAMA Netw
-
-
-
114
-
-
85059819759
-
-
Haque, A. et al. Towards vision-based smart hospitalsPreprint at (2017).
-
Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. Preprint at https://arxiv.org/abs/1708.00163 (2017).
-
a system for tracking and monitoring hand hygiene compliance
-
-
-
116
-
-
84909641818
-
Human fall detection on embedded platform using depth maps and wireless accelerometer
-
PID: 25308505
-
Kwolek, B. & Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117, 489–501 (2014).
-
(2014)
Comput. Methods Programs Biomed.
, vol.117
, pp. 489-501
-
-
Kwolek, B.1
Kepski, M.2
-
118
-
-
85044550699
-
Surgical data science for next-generation interventions
-
Maier-Hein, L. et al. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1, 691–696 (2017).
-
(2017)
Nat. Biomed. Eng.
, vol.1
, pp. 691-696
-
-
Maier-Hein, L.1
-
119
-
-
85051579314
-
Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery
-
Hung, A. J. et al. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. 153, 770–771 (2018).
-
(2018)
JAMA Surg
, vol.153
, pp. 770-771
-
-
Hung, A.J.1
-
120
-
-
85065309179
-
-
Gehlbach, P. L. Robotic surgery for the eye. Nat. Biomed2, 627–628 (2018)
-
Gehlbach, P. L. Robotic surgery for the eye. Nat. Biomed. Eng. 2, 627–628 (2018).
-
Eng
-
-
-
122
-
-
85044273620
-
Image reconstruction by domain-transform manifold learning
-
COI: 1:CAS:528:DC%2BC1cXlt1Oqs7g%3D, PID: 29565357
-
Zhu, B. et al. Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018).
-
(2018)
Nature
, vol.555
, pp. 487-492
-
-
Zhu, B.1
-
123
-
-
85059810231
-
-
Can AI enable a 10 minute MRI? In Towards Data Science (2018)
-
Harvey, H. Can AI enable a 10 minute MRI? In Towards Data Science https://towardsdatascience.com/can-ai-enable-a-10-minute-mri-77218f0121fe (2018).
-
Harvey, H
-
-
-
125
-
-
85007559018
-
Translating artificial intelligence into clinical care
-
PID: 27898974
-
Beam, A. L. & Kohane, I. S. Translating artificial intelligence into clinical care. JAMA 316, 2368–2369 (2016).
-
(2016)
JAMA
, vol.316
, pp. 2368-2369
-
-
Beam, A.L.1
Kohane, I.S.2
-
126
-
-
84855216556
-
-
Tuegel, E. J. et al. Reengineering aircraft structural life prediction using a digital twin. Int. J2011, 154798 (2011)
-
Tuegel, E. J. et al. Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. 2011, 154798 (2011).
-
Aerosp
-
-
-
129
-
-
85059820920
-
-
What did journalists overlook about the Apple Watch ‘heart monitor’ feature? In HealthNewsReview (2018)
-
Victory, J. What did journalists overlook about the Apple Watch ‘heart monitor’ feature? In HealthNewsReview https://www.healthnewsreview.org/2018/09/what-did-journalists-overlook-about-the-apple-watch-heart-monitor-feature/ (2018).
-
Victory, J
-
-
-
134
-
-
84959523025
-
Taking it personally: personalized utilization of the human microbiome in health and disease
-
COI: 1:CAS:528:DC%2BC28XhvFCltA%3D%3D, PID: 26764593
-
Zmora, N. et al. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell. Host. Microbe. 19, 12–20 (2016).
-
(2016)
Cell. Host. Microbe.
, vol.19
, pp. 12-20
-
-
Zmora, N.1
-
135
-
-
85020283977
-
Bread affects clinical parameters and induces gut microbiome–associated personal glycemic responses
-
COI: 1:CAS:528:DC%2BC2sXpslWgsbw%3D, PID: 28591632
-
Korem, T. et al. Bread affects clinical parameters and induces gut microbiome–associated personal glycemic responses. Cell. Metab. 25, 1243–1253 e1245 (2017).
-
(2017)
Cell. Metab.
, vol.25
, pp. 1243-1253 e1245
-
-
Korem, T.1
-
136
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
COI: 1:CAS:528:DC%2BC2MXhvVyqtbvM, PID: 26590418
-
Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
-
137
-
-
85051292787
-
Glucotypes reveal new patterns of glucose dysregulation
-
PID: 30040822
-
Hall, H. et al. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol. 16, e2005143 (2018).
-
(2018)
PLoS Biol.
, vol.16
-
-
Hall, H.1
-
138
-
-
85018307645
-
Personalized glucose forecasting for type 2 diabetes using data assimilation
-
PID: 28448498
-
Albers, D. J. et al. Personalized glucose forecasting for type 2 diabetes using data assimilation. PLoS. Comput. Biol. 13, e1005232 (2017).
-
(2017)
PLoS. Comput. Biol.
, vol.13
-
-
Albers, D.J.1
-
139
-
-
85030692166
-
Glucose patterns during an oral glucose tolerance test and associations with future diabetes, cardiovascular disease and all-cause mortality rate
-
COI: 1:CAS:528:DC%2BC2sXhsl2jtrrI, PID: 28983719
-
Hulman, A. et al. Glucose patterns during an oral glucose tolerance test and associations with future diabetes, cardiovascular disease and all-cause mortality rate. Diabetologia 61, 101–107 (2018).
-
(2018)
Diabetologia
, vol.61
, pp. 101-107
-
-
Hulman, A.1
-
140
-
-
85043240875
-
Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection
-
COI: 1:CAS:528:DC%2BC1cXltFehtbw%3D, PID: 29519916
-
Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).
-
(2018)
Science
, vol.359
, pp. 1376-1383
-
-
Thaiss, C.A.1
-
141
-
-
85050664500
-
Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer
-
COI: 1:CAS:528:DC%2BC1cXhtlClsLjE, PID: 30022161
-
Wu, D. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).
-
(2018)
Nature
, vol.559
, pp. 637-641
-
-
Wu, D.1
-
142
-
-
85051415796
-
Closed-loop insulin delivery for glycemic control in noncritical care
-
COI: 1:CAS:528:DC%2BC1cXhsFKnsrrK, PID: 29940126
-
Bally, L. et al. Closed-loop insulin delivery for glycemic control in noncritical care. N. Engl. J. Med. 379, 547–556 (2018).
-
(2018)
N. Engl. J. Med.
, vol.379
, pp. 547-556
-
-
Bally, L.1
-
144
-
-
85045300908
-
Seeing more: a future of augmented microscopy
-
COI: 1:CAS:528:DC%2BC1cXotFeht70%3D, PID: 29677507
-
Sullivan, D. P. & Lundberg, E. Seeing more: a future of augmented microscopy. Cell 173, 546–548 (2018).
-
(2018)
Cell
, vol.173
, pp. 546-548
-
-
Sullivan, D.P.1
Lundberg, E.2
-
145
-
-
85053710764
-
-
Ounkomol, C. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopyMethods 15, 917–920 (2018)
-
Ounkomol, C. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15, 917–920 (2018).
-
Nat
-
-
-
146
-
-
85053299658
-
Ghost cytometry
-
COI: 1:CAS:528:DC%2BC1cXhtFWltr3E, PID: 29903975
-
Ota, S. et al. Ghost cytometry. Science 360, 1246–1251 (2018).
-
(2018)
Science
, vol.360
, pp. 1246-1251
-
-
Ota, S.1
-
147
-
-
85054484004
-
Intelligent image-activated cell sorting
-
COI: 1:CAS:528:DC%2BC1cXhsF2ltr3I, PID: 30166209
-
Nitta, N. et al. Intelligent image-activated cell sorting. Cell 175, 266–276 e213 (2018).
-
(2018)
Cell
, vol.175
, pp. 266-276 e213
-
-
Nitta, N.1
-
148
-
-
85047829330
-
-
Weigert, M. et al. Content-aware image restorationPreprint at (2017).
-
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Preprint at https://doi.org/10.1101/236463 (2017).
-
pushing the limits of fluorescence microscopy
-
-
-
150
-
-
85053076602
-
Deep learning is combined with massive-scale citizen science to improve large-scale image classification
-
COI: 1:CAS:528:DC%2BC1cXhsFChurbE, PID: 30125267
-
Sullivan, D. P. et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 36, 820–828 (2018).
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 820-828
-
-
Sullivan, D.P.1
-
152
-
-
85050539279
-
Predicting the clinical impact of human mutation with deep neural networks
-
COI: 1:CAS:528:DC%2BC1cXhtlOis7zE, PID: 30038395
-
Sundaram, L. et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 50, 1161–1170 (2018).
-
(2018)
Nat. Genet.
, vol.50
, pp. 1161-1170
-
-
Sundaram, L.1
-
153
-
-
85049967126
-
Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
-
COI: 1:CAS:528:DC%2BC1cXhtlCmt7zO, PID: 30013180
-
Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).
-
(2018)
Nat. Genet.
, vol.50
, pp. 1171-1179
-
-
Zhou, J.1
-
154
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
COI: 1:CAS:528:DC%2BC2MXhtlynsL%2FL, PID: 26301843
-
Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
156
-
-
84949818508
-
-
Leung, M. et al. Machine learning in genomic medicine: a review of computational problems and data sets104, 176–197 (IEEE, 2016)
-
Leung, M. et al. Machine learning in genomic medicine: a review of computational problems and data sets. In Proceedings of the IEEE Vol. 104, 176–197 (IEEE, 2016).
-
In Proceedings of the IEEE Vol
-
-
-
157
-
-
85054719134
-
A universal SNP and small-indel variant caller using deep neural networks
-
Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).
-
(2018)
Nat. Biotechnol
, vol.36
, pp. 983-987
-
-
Poplin, R.1
-
158
-
-
85053833913
-
-
Riesselman, A. et al. Deep generative models of genetic variation capture the effects of mutationsMethods 15, 816–822 (2018)
-
Riesselman, A. et al. Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15, 816–822 (2018).
-
Nat
-
-
-
159
-
-
85052784859
-
-
Wood, D. E. et al. A machine learning approach for somatic mutation discovery. Sci. Transl10, eaar7939 (2018)
-
Wood, D. E. et al. A machine learning approach for somatic mutation discovery. Sci. Transl. Med. 10, eaar7939 (2018).
-
Med
-
-
-
160
-
-
85052827942
-
Machine learning identifies interacting genetic variants contributing to breast cancer risk: a case study in Finnish cases and controls
-
PID: 30177847
-
Behravan, H. et al. Machine learning identifies interacting genetic variants contributing to breast cancer risk: a case study in Finnish cases and controls. Sci. Rep. 8, 13149 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Behravan, H.1
-
161
-
-
85031687901
-
Using neural networks for reducing the dimensions of single-cell RNA-seq data
-
PID: 28973464
-
Lin, C. et al. Using neural networks for reducing the dimensions of single-cell RNA-seq data. Nucleic Acids Res. 45, e156 (2017).
-
(2017)
Nucleic Acids Res.
, vol.45
-
-
Lin, C.1
-
162
-
-
85018466550
-
DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
-
PID: 28395661
-
Angermueller, C. et al. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome. Biol. 18, 67 (2017).
-
(2017)
Genome. Biol.
, vol.18
-
-
Angermueller, C.1
-
165
-
-
85048881841
-
Recovering gene interactions from single-cell data using data diffusion
-
PID: 29961576
-
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e727 (2018).
-
(2018)
Cell
, vol.174
, pp. 716-729.e727
-
-
van Dijk, D.1
-
166
-
-
85059811025
-
-
Zitnik, M. et al. Machine learning for integrating data in biology and medicinePreprint at (2018).
-
Zitnik, M. et al. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Preprint at https://doi.org/10.1111/joim.12746 (2018).
-
principles, practice, and opportunities
-
-
-
167
-
-
85047752833
-
Next-generation machine learning for biological networks
-
COI: 1:CAS:528:DC%2BC1cXhtV2ltrrI, PID: 29887378
-
Camacho, D. M. et al. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018).
-
(2018)
Cell
, vol.173
, pp. 1581-1592
-
-
Camacho, D.M.1
-
168
-
-
85042934649
-
Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity
-
COI: 1:CAS:528:DC%2BC1cXhvVequrw%3D, PID: 29431740
-
Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 239-241
-
-
Kim, H.K.1
-
169
-
-
85040314117
-
Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs
-
PID: 29998038
-
Listgarten, J. et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2, 38–47 (2018).
-
(2018)
Nat. Biomed. Eng.
, vol.2
, pp. 38-47
-
-
Listgarten, J.1
-
170
-
-
85052685030
-
Detecting repeated cancer evolution from multi-region tumor sequencing data
-
COI: 1:CAS:528:DC%2BC1cXhs1Cgt7rP, PID: 30171232
-
Caravagna, G. et al. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods 15, 707–714 (2018).
-
(2018)
Nat. Methods
, vol.15
, pp. 707-714
-
-
Caravagna, G.1
-
171
-
-
85053806353
-
-
Manak, M. et al. Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning. Nature Biomed2, 761–772 (2018)
-
Manak, M. et al. Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning. Nature Biomed. Eng. 2, 761–772 (2018).
-
Eng
-
-
-
172
-
-
85029563607
-
Neuroscience-inspired artificial intelligence
-
COI: 1:CAS:528:DC%2BC2sXht1Smtb%2FE, PID: 28728020
-
Hassabis, D. et al. Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017).
-
(2017)
Neuron
, vol.95
, pp. 245-258
-
-
Hassabis, D.1
-
173
-
-
85023610188
-
Mapping the neural substrates of behavior
-
COI: 1:CAS:528:DC%2BC2sXhtFygtbzM, PID: 28709004
-
Robie, A. A. et al. Mapping the neural substrates of behavior. Cell 170, 393–406 e328 (2017).
-
(2017)
Cell
, vol.170
, pp. 393-406 e328
-
-
Robie, A.A.1
-
174
-
-
85033481480
-
A neural algorithm for a fundamental computing problem
-
COI: 1:CAS:528:DC%2BC2sXhslOnsL%2FN, PID: 29123069
-
Dasgupta, S. et al. A neural algorithm for a fundamental computing problem. Science 358, 793–796 (2017).
-
(2017)
Science
, vol.358
, pp. 793-796
-
-
Dasgupta, S.1
-
175
-
-
85049970432
-
High-precision automated reconstruction of neurons with flood-filling networks
-
COI: 1:CAS:528:DC%2BC1cXhtlCmt7%2FL, PID: 30013046
-
Januszewski, M. et al. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605–610 (2018).
-
(2018)
Nat. Methods
, vol.15
, pp. 605-610
-
-
Januszewski, M.1
-
176
-
-
85046894118
-
AI mimics brain codes for navigation
-
COI: 1:CAS:528:DC%2BC1cXpsVCrsbc%3D, PID: 29752452
-
Savelli, F. & Knierim, J. J. AI mimics brain codes for navigation. Nature 557, 313–314 (2018).
-
(2018)
Nature
, vol.557
, pp. 313-314
-
-
Savelli, F.1
Knierim, J.J.2
-
177
-
-
85046892207
-
Vector-based navigation using grid-like representations in artificial agents
-
COI: 1:CAS:528:DC%2BC1cXptlarsrY%3D, PID: 29743670
-
Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018).
-
(2018)
Nature
, vol.557
, pp. 429-433
-
-
Banino, A.1
-
178
-
-
85048213150
-
Two artificial synapses are better than one
-
COI: 1:CAS:528:DC%2BC1cXhtV2lsr3I, PID: 29872204
-
Adam, G. C. Two artificial synapses are better than one. Nature 558, 39–40 (2018).
-
(2018)
Nature
, vol.558
, pp. 39-40
-
-
Adam, G.C.1
-
179
-
-
84968546836
-
Phase-change devices: crystal-clear neuronal computing
-
COI: 1:CAS:528:DC%2BC28XotV2nt78%3D, PID: 27183058
-
Wright, C. D. Phase-change devices: crystal-clear neuronal computing. Nat. Nanotechnol. 11, 655–656 (2016).
-
(2016)
Nat. Nanotechnol.
, vol.11
, pp. 655-656
-
-
Wright, C.D.1
-
180
-
-
85052583792
-
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
-
COI: 1:CAS:528:DC%2BC1cXhsFGjtLnF, PID: 30127430
-
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
-
(2018)
Nat. Neurosci.
, vol.21
, pp. 1281-1289
-
-
Mathis, A.1
-
181
-
-
85048341741
-
AI-powered drug discovery captures pharma interest
-
COI: 1:CAS:528:DC%2BC2sXhtFOjsbjK, PID: 28700560
-
Smalley, E. AI-powered drug discovery captures pharma interest. Nat. Biotechnol. 35, 604–605 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 604-605
-
-
Smalley, E.1
-
182
-
-
85041303900
-
Automating drug discovery
-
COI: 1:CAS:528:DC%2BC2sXhvFOntbbK, PID: 29242609
-
Schneider, G. Automating drug discovery. Nat. Rev. Drug. Discov. 17, 97–113 (2018).
-
(2018)
Nat. Rev. Drug. Discov.
, vol.17
, pp. 97-113
-
-
Schneider, G.1
-
183
-
-
85033237619
-
Predictable response: finding optimal drugs and doses using artificial intelligence
-
COI: 1:CAS:528:DC%2BC2sXhslOntrnN, PID: 29117178
-
Chakradhar, S. Predictable response: finding optimal drugs and doses using artificial intelligence. Nat. Med. 23, 1244–1247 (2017).
-
(2017)
Nat. Med.
, vol.23
, pp. 1244-1247
-
-
Chakradhar, S.1
-
184
-
-
85044636413
-
AI designs organic syntheses
-
COI: 1:CAS:528:DC%2BC1cXmsVGqt7g%3D, PID: 29595793
-
Lowe, D. AI designs organic syntheses. Nature 555, 592–593 (2018).
-
(2018)
Nature
, vol.555
, pp. 592-593
-
-
Lowe, D.1
-
185
-
-
85054881735
-
Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility
-
Luechtefeld, T. et al. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol. Sci. 165, 198–212 (2018).
-
(2018)
Toxicol. Sci
, vol.165
, pp. 198-212
-
-
Luechtefeld, T.1
-
186
-
-
85055080393
-
Realizing private and practical pharmacological collaboration
-
COI: 1:CAS:528:DC%2BC1cXhvFWksbjJ, PID: 30337410
-
Hie, B. et al. Realizing private and practical pharmacological collaboration. Science 362, 347–350 (2018).
-
(2018)
Science
, vol.362
, pp. 347-350
-
-
Hie, B.1
-
187
-
-
85040953233
-
Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan
-
PID: 29348637
-
Bilsland, E. et al. Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Sci. Rep. 8, 1038 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Bilsland, E.1
-
191
-
-
84990235978
-
Can we open the black box of AI?
-
COI: 1:CAS:528:DC%2BC28Xhs1ehsr7F, PID: 27708329
-
Castelvecchi, D. Can we open the black box of AI? Nature 538, 20–23 (2016).
-
(2016)
Nature
, vol.538
, pp. 20-23
-
-
Castelvecchi, D.1
-
192
-
-
85022332137
-
-
In MIT Technology Review (2017)
-
Knight, W. The dark secret at the heart of AI. In MIT Technology Review https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ (2017).
-
Knight, W. The dark secret at the heart of AI
-
-
-
194
-
-
85059818403
-
-
be taught to explain itself? In The New York Times (2017)
-
Kuang, C. Can A.I. be taught to explain itself? In The New York Times https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html (2017).
-
Kuang, C. Can A.I
-
-
-
195
-
-
85011085747
-
Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women
-
PID: 28159391
-
Stringhini, S. et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. Lancet 389, 1229–1237 (2017).
-
(2017)
Lancet
, vol.389
, pp. 1229-1237
-
-
Stringhini, S.1
-
198
-
-
85059811911
-
-
Brundage, M. et al. The malicious use of artificial intelligencePreprint at (2018).
-
Brundage, M. et al. The malicious use of artificial intelligence: forecasting, prevention, and mitigation. Preprint at https://arxiv.org/ftp/arxiv/papers/1802/1802.07228.pdf (2018).
-
forecasting, prevention, and mitigation
-
-
-
200
-
-
85059799334
-
-
In The New York Times (2017)
-
Haun, K. & Topol, E. The health data conundrum. In The New York Times https://www.nytimes.com/2017/01/02/opinion/the-health-data-conundrum.html (2017).
-
Haun, K. & Topol, E. The health data conundrum
-
-
-
201
-
-
84941121243
-
Unpatients-why patients should own their medical data
-
COI: 1:CAS:528:DC%2BC2MXhsVymt7%2FP, PID: 26348958
-
Kish, L. J. & Topol, E. J. Unpatients-why patients should own their medical data. Nat. Biotechnol. 33, 921–924 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 921-924
-
-
Kish, L.J.1
Topol, E.J.2
-
202
-
-
85059799813
-
-
In The New Yorker (2017)
-
Heller, N. Estonia, the digital republic. In The New Yorker https://www.newyorker.com/magazine/2017/12/18/estonia-the-digital-republic (2017).
-
Heller, N. Estonia, the digital republic
-
-
-
203
-
-
84969921774
-
-
Shladover, SIn Scientific American 314, 53–57 (2016)
-
Shladover, S. The truth about “self-driving” cars. In Scientific American 314, 53–57 (2016).
-
The truth about “self-driving” cars
-
-
-
204
-
-
84960561455
-
-
Turing, A. M. On computable numbers with an application to the Entscheidungsproblem. P. Lond. Matchs2-42, 230–265 (1936)
-
Turing, A. M. On computable numbers with an application to the Entscheidungsproblem. P. Lond. Match. Soc. s2-42, 230–265 (1936).
-
Soc
-
-
-
206
-
-
51249194645
-
-
McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math5, 115–133 (1943)
-
McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).
-
Biophys
-
-
-
207
-
-
84876231242
-
-
Krizhevsky, A. et alIn NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems 1097–1105 (NIPS, 2012)
-
Krizhevsky, A. et al. ImageNet classification with deep convolutional neural networks. In NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems 1097–1105 (NIPS, 2012).
-
ImageNet classification with deep convolutional neural networks
-
-
-
210
-
-
85050102094
-
Deep Learning (MIT Press, Cambridge, MA
-
Goodfellow, I et al. Deep Learning (MIT Press, Cambridge, MA, USA, 2016).
-
(2016)
USA
-
-
Goodfellow, I.1
-
211
-
-
85054494974
-
Artificial intelligence in healthcare
-
Yu, K.-H. et al. Artificial intelligence in healthcare. Nature Biomed. Eng. 2, 719–731 (2018).
-
(2018)
Nature Biomed. Eng.
, vol.2
, pp. 719-731
-
-
Yu, K.H.1
-
216
-
-
85059821356
-
-
Madani, A. et al. Deep echocardiography: data-efficient supervised and semisupervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit1, 59 (2018)
-
Madani, A. et al. Deep echocardiography: data-efficient supervised and semisupervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit. Med. 1, 59 (2018).
-
Med
-
-
|