|
Volumn 284, Issue 2, 2018, Pages 189-192
|
Machine learning for tackling microbiota data and infection complications in immunocompromised patients with cancer
|
Author keywords
[No Author keywords available]
|
Indexed keywords
ANTIBIOTIC AGENT;
BIOLOGICAL MARKER;
RNA 16S;
ANTIMICROBIAL THERAPY;
ARTIFICIAL INTELLIGENCE;
BACTERIAL GENOME;
BLOODSTREAM INFECTION;
CANCER CHEMOTHERAPY;
CANCER PATIENT;
CANCER SURVIVAL;
CANDIDA ALBICANS;
CLINICAL OUTCOME;
EXTENDED SPECTRUM BETA LACTAMASE PRODUCING ESCHERICHIA COLI;
FEVER;
HEALTH CARE QUALITY;
HEMATOLOGIC MALIGNANCY;
HEMATOPOIETIC STEM CELL TRANSPLANTATION;
HUMAN;
IMMUNOCOMPROMISED PATIENT;
INFECTION COMPLICATION;
INFECTION RISK;
INTENSIVE CARE;
INTESTINE FLORA;
LENGTH OF STAY;
MACHINE LEARNING;
METABOLOMICS;
MICROBIAL COMMUNITY;
MORBIDITY;
MORTALITY;
NEUTROPENIA;
NOTE;
OVERALL SURVIVAL;
PEPTOCLOSTRIDIUM DIFFICILE;
PERITONITIS;
PRIORITY JOURNAL;
PSEUDOMONAS AERUGINOSA;
SEPSIS;
THORAX RADIOGRAPHY;
VANCOMYCIN RESISTANT ENTEROCOCCUS;
|
EID: 85044244357
PISSN: 09546820
EISSN: 13652796
Source Type: Journal
DOI: 10.1111/joim.12746 Document Type: Note |
Times cited : (18)
|
References (10)
|