메뉴 건너뛰기




Volumn 284, Issue 2, 2018, Pages 189-192

Machine learning for tackling microbiota data and infection complications in immunocompromised patients with cancer

Author keywords

[No Author keywords available]

Indexed keywords

ANTIBIOTIC AGENT; BIOLOGICAL MARKER; RNA 16S;

EID: 85044244357     PISSN: 09546820     EISSN: 13652796     Source Type: Journal    
DOI: 10.1111/joim.12746     Document Type: Note
Times cited : (18)

References (10)
  • 3
    • 85014413818 scopus 로고    scopus 로고
    • Microbe-induced inflammatory signals triggering acquired bone marrow failure syndromes
    • Espinoza JL, Kotecha R, Nakao S. Microbe-induced inflammatory signals triggering acquired bone marrow failure syndromes. Front Immunol 2017; 8: 186.
    • (2017) Front Immunol , vol.8 , pp. 186
    • Espinoza, J.L.1    Kotecha, R.2    Nakao, S.3
  • 4
    • 85037739894 scopus 로고    scopus 로고
    • Artificial intelligence in medical practice: the question to the answer?
    • Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer? Am J Med 2018; 131: 129–33.
    • (2018) Am J Med , vol.131 , pp. 129-133
    • Miller, D.D.1    Brown, E.W.2
  • 5
    • 85025112337 scopus 로고    scopus 로고
    • Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
    • Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017; 284: 574–82.
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2
  • 6
    • 84929462450 scopus 로고    scopus 로고
    • Using metabolomic and transportomic modeling and machine learning to identify putative novel therapeutic targets for antibiotic resistant Pseudomonad infections
    • Larsen PE, Collart FR, Dai Y. Using metabolomic and transportomic modeling and machine learning to identify putative novel therapeutic targets for antibiotic resistant Pseudomonad infections. Conf Proc IEEE Eng Med Biol Soc 2014; 2014: 314–7.
    • (2014) Conf Proc IEEE Eng Med Biol Soc , vol.2014 , pp. 314-317
    • Larsen, P.E.1    Collart, F.R.2    Dai, Y.3
  • 8
    • 85019213779 scopus 로고    scopus 로고
    • Modeling new immunoregulatory therapeutics as antimicrobial alternatives for treating Clostridium difficile infection
    • Leber A, Hontecillas R, Abedi V, Tubau-Juni N, Zoccoli-Rodriguez V, Stewart C, et al. Modeling new immunoregulatory therapeutics as antimicrobial alternatives for treating Clostridium difficile infection. Artif Intell Med 2017; 78: 1–13.
    • (2017) Artif Intell Med , vol.78 , pp. 1-13
    • Leber, A.1    Hontecillas, R.2    Abedi, V.3    Tubau-Juni, N.4    Zoccoli-Rodriguez, V.5    Stewart, C.6
  • 9
    • 85015297808 scopus 로고    scopus 로고
    • Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
    • Zhang J, Friberg IM, Kift-Morgan A, Parekh G, Morgan MP, Liuzzi AR, et al. Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections. Kidney Int 2017; 92: 179–91.
    • (2017) Kidney Int , vol.92 , pp. 179-191
    • Zhang, J.1    Friberg, I.M.2    Kift-Morgan, A.3    Parekh, G.4    Morgan, M.P.5    Liuzzi, A.R.6
  • 10
    • 84990876526 scopus 로고    scopus 로고
    • Ethical issues in microbiome research and medicine
    • Rhodes R. Ethical issues in microbiome research and medicine. BMC Med 2016; 14: 156.
    • (2016) BMC Med , vol.14 , pp. 156
    • Rhodes, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.