-
1
-
-
0031948563
-
Comparison of the prognostic value of Scarff-Bloom-Richardson and nottingham histological grades in a series of825 cases of breast cancer: Major importance of the mitotic count as a component of both grading systems
-
Genestie, C., et al. Comparison of the prognostic value of Scarff-Bloom-Richardson and nottingham histological grades in a series of825 cases of breast cancer: Major importance of the mitotic count as a component of both grading systems. Anticancer Research 18, 571-576 (1998).
-
(1998)
Anticancer Research
, vol.18
, pp. 571-576
-
-
Genestie, C.1
-
2
-
-
0026072872
-
Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer:experience from a large study with long-term follow-up
-
Elston, C. W., Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer:experience from a large study with long-term follow-up. Histopathology 19, 403-410 (1991).
-
(1991)
Histopathology
, vol.19
, pp. 403-410
-
-
Elston, C.W.1
Ellis, I.O.2
-
3
-
-
0028890628
-
Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic gradingscheme for infiltrating ductal carcinoma
-
Frierson, H. F., et al. Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic gradingscheme for infiltrating ductal carcinoma. American journal of clinical pathology 103, 195-8 (1995).
-
(1995)
American Journal of Clinical Pathology
, vol.103
, pp. 195-198
-
-
Frierson, H.F.1
-
4
-
-
84902753747
-
Inter-observer variability between general pathologists and a specialist in breastpathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of thebreast
-
Gomes, D. S., Porto, S. S., Balabram, D., Gobbi, H. Inter-observer variability between general pathologists and a specialist in breastpathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of thebreast. Diagnostic pathology 9, 121 (2014).
-
(2014)
Diagnostic Pathology
, vol.9
, pp. 121
-
-
Gomes, D.S.1
Porto, S.S.2
Balabram, D.3
Gobbi, H.4
-
5
-
-
30944431728
-
Interobserver agreement and reproducibility in classification of invasive breast carcinoma: An NCI breastcancer family registry study
-
Inc
-
Longacre, T. A., et al. Interobserver agreement and reproducibility in classification of invasive breast carcinoma: An NCI breastcancer family registry study. Modern pathology: An official journal of the United States and Canadian Academy of Pathology, Inc 19, 195-207 (2006).
-
(2006)
Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology
, vol.19
, pp. 195-207
-
-
Longacre, T.A.1
-
6
-
-
84879032619
-
Consultation in breast surgical pathology: Interobserver diagnostic variabilityof atypical intraductal proliferative lesions
-
Perez, A. A., Balabram, D., Salles, M. d. A., Gobbi, H. Consultation in breast surgical pathology: Interobserver diagnostic variabilityof atypical intraductal proliferative lesions. Revista brasileira de ginecologia e obstetrícia: Revista da Federacąõ Brasileira dasSociedades de Ginecologia e Obstetrícia 35, 164-70 (2013).
-
(2013)
Revista Brasileira de Ginecologia e Obstetrícia: Revista da Federacąõ Brasileira DasSociedades de Ginecologia e Obstetrícia
, vol.35
, pp. 164-170
-
-
Perez, A.A.1
Balabram, D.2
Salles, M.D.A.3
Gobbi, H.4
-
7
-
-
82255174684
-
Pathology of invasive breast cancer
-
Harris, J. R., Lippman M. E., Morrow, M., Osborne, C. K. (eds Chapter 28 4th edition edn (Lippincott Williams & Wilkins
-
Dillon, D. A., Guidi, A. J., Schnitt, S. J. Pathology of invasive breast cancer. In Harris, J. R., Lippman, M. E., Morrow, M., Osborne, C. K. (eds) Diseases of the Breast chap. Chapter 28, 374-407 4th edition edn (Lippincott Williams & Wilkins, 2010).
-
(2010)
Diseases of the Breast Chap
, pp. 374-407
-
-
Dillon, D.A.1
Guidi, A.J.2
Schnitt, S.J.3
-
8
-
-
81355164576
-
Breast cancer statistics, 2011
-
DeSantis, C., Siegel, R., Bandi, P., Jemal, A. Breast cancer statistics, 2011. CA: A Cancer Journal for Clinicians 61, 408-418 (2011).
-
(2011)
CA: A Cancer Journal for Clinicians
, vol.61
, pp. 408-418
-
-
DeSantis, C.1
Siegel, R.2
Bandi, P.3
Jemal, A.4
-
9
-
-
34249275726
-
PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reducesinterobserver variability in the delineation of the primary tumor and involved nodal volumes
-
van Baardwijk, A., et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reducesinterobserver variability in the delineation of the primary tumor and involved nodal volumes. International Journal of RadiationOncology Biology Physics 68, 771-778 (2007).
-
(2007)
International Journal of RadiationOncology Biology Physics
, vol.68
, pp. 771-778
-
-
Van Baardwijk, A.1
-
10
-
-
0242691639
-
Comparison of pathologist-detected and automated computer-assisted image analysis detected sentinel lymphnode micrometastases in breast cancer
-
Inc
-
Weaver, D. L., et al. Comparison of pathologist-detected and automated computer-assisted image analysis detected sentinel lymphnode micrometastases in breast cancer. Modern pathology: An official journal of the United States and Canadian Academy ofPathology, Inc 16, 1159-63 (2003).
-
(2003)
Modern Pathology: An Official Journal of the United States and Canadian Academy OfPathology
, vol.16
, pp. 1159-1163
-
-
Weaver, D.L.1
-
11
-
-
77954650208
-
Digital pathology image analysis: Opportunities and challenges
-
Madabhushi, A. Digital pathology image analysis: Opportunities and challenges. Imaging In Medicine 1, 7-10 (2009).
-
(2009)
Imaging in Medicine
, vol.1
, pp. 7-10
-
-
Madabhushi, A.1
-
12
-
-
84891634649
-
Quantitative histomorphometric classifier (QuHbIC)Oropharyngeal squamous cell carcinoma
-
Lewis, J. S., Ali, S., Luo, J., Thorstad, W. L., Madabhushi, A. A Quantitative Histomorphometric Classifier (QuHbIC)Oropharyngeal Squamous Cell Carcinoma. American Journal of Surgical Pathology 38, 128-137 (2014).
-
(2014)
American Journal of Surgical Pathology
, vol.38
, pp. 128-137
-
-
Lewis, J.S.1
Ali, S.2
Luo, J.3
Thorstad, W.L.4
Madabhushi, A.A.5
-
13
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neuralnetworks
-
Springer Berlin Heidelberg
-
Ciresan, D., Giusti, A., Gambardella, L., Schmidhuber, J. Mitosis Detection in Breast Cancer Histology Images with Deep NeuralNetworks. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013, vol. 8150 of Lecture Notes in ComputerScience 411-418 (Springer Berlin Heidelberg, 2013).
-
(2013)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013 of Lecture Notes in Computer Science
, vol.8150
, pp. 411-418
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.3
Schmidhuber, J.4
-
14
-
-
84885944291
-
Automated mitosis detection in histopathology using morphological and multi-channel statistics features
-
Irshad, H. Automated mitosis detection in histopathology using morphological and multi-channel statistics features. Journal ofPathology Informatics 4, 10 (2013).
-
(2013)
Journal of Pathology Informatics
, vol.4
, pp. 10
-
-
Irshad, H.1
-
15
-
-
84885922439
-
Mitosis detection in breast cancer histological images An ICPR 2012 contest
-
Ludovic, R., et al. Mitosis detection in breast cancer histological images An ICPR 2012 contest. Journal of Pathology Informatics 4, 8 (2013).
-
(2013)
Journal of Pathology Informatics
, vol.4
, pp. 8
-
-
Ludovic, R.1
-
16
-
-
84920921065
-
Assessment of algorithms for mitosis detection in breast cancer histopathology images
-
Veta, M., et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Medical Image Analysis 20, 237-248 (2015).
-
(2015)
Medical Image Analysis
, vol.20
, pp. 237-248
-
-
Veta, M.1
-
17
-
-
84923019397
-
Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural networkfeatures
-
Wang, H., et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural networkfeatures. Journal of Medical Imaging 1, 34003 (2014).
-
(2014)
Journal of Medical Imaging
, vol.1
, pp. 34003
-
-
Wang, H.1
-
18
-
-
79955752231
-
Incorporating domain knowledge for tubule detection in breast histopathology using O'Callaghanneighbor hoods
-
SPIE (SPIE
-
Basavanhally, A., et al. Incorporating domain knowledge for tubule detection in breast histopathology using O'Callaghanneighborhoods. In SPIE Medical Imaging, vol. 7963 of Computer-Aided Diagnosis 796310. SPIE (SPIE, 2011).
-
(2011)
SPIE Medical Imaging of Computer-Aided Diagnosis
, vol.7963
, pp. 796310
-
-
Basavanhally, A.1
-
19
-
-
61849134532
-
Automatic breast cancer grading of histopathological images
-
Dalle, J. R., Leow, W. K., Racoceanu, D., Tutac, A. E., Putti, T. C. Automatic breast cancer grading of histopathological images. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3052-5 (2008).
-
(2008)
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, pp. 3052-3055
-
-
Dalle, J.R.1
Leow, W.K.2
Racoceanu, D.3
Tutac, A.E.4
Putti, T.C.5
-
20
-
-
84872580794
-
Image segmentation with implicit color standardization using spatially constrained expectation maximization:detection of nuclei
-
Monaco, J. P., et al. Image segmentation with implicit color standardization using spatially constrained expectation maximization:detection of nuclei. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 15, 365-372 (2012).
-
(2012)
International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, vol.15
, pp. 365-372
-
-
Monaco, J.P.1
-
21
-
-
77649084558
-
Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancerhistopathology
-
Basavanhally, A., et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancerhistopathology. IEEE transactions on bio-medical engineering 57, 642-653 (2010).
-
(2010)
IEEE Transactions On Bio-medical Engineering
, vol.57
, pp. 642-653
-
-
Basavanhally, A.1
-
22
-
-
84880902295
-
Multi-field-of-view framework for distinguishing tumor grade in ER+ Breast cancer from entirehistopathology slides
-
Basavanhally, A., et al. Multi-Field-of-View Framework for Distinguishing Tumor Grade in ER+ Breast Cancer From EntireHistopathology Slides. IEEE transactions on biomedical engineering 60, 2089-2099 (2013).
-
(2013)
IEEE Transactions On Biomedical Engineering
, vol.60
, pp. 2089-2099
-
-
Basavanhally, A.1
-
23
-
-
84878560048
-
Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptorpositivebreast cancer histopathology: Comparison to Oncotype DX
-
Basavanhally, A., et al. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptorpositivebreast cancer histopathology: Comparison to Oncotype DX. Journal of pathology informatics 2, S1 (2011).
-
(2011)
Journal of Pathology Informatics
, vol.2
, pp. S1
-
-
Basavanhally, A.1
-
24
-
-
81055146760
-
Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
-
Beck, A. H., et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sciencetranslational medicine 3, 108-113 (2011).
-
(2011)
Sciencetranslational Medicine
, vol.3
, pp. 108-113
-
-
Beck, A.H.1
-
25
-
-
79959565637
-
Computerized classification of intraductal breast lesions using histopathological images
-
Dundar, M. M., et al. Computerized classification of intraductal breast lesions using histopathological images. IEEE Transactions onBiomedical Engineering 58, 1977-1984 (2011).
-
(2011)
IEEE Transactions OnBiomedical Engineering
, vol.58
, pp. 1977-1984
-
-
Dundar, M.M.1
-
26
-
-
51049110072
-
Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology
-
IEEE
-
Naik, S., et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In 2008 5th IEEEInternational Symposium on Biomedical Imaging: From Nano to Macro 284-287 (IEEE, 2008).
-
(2008)
2008 5th IEEEInternational Symposium On Biomedical Imaging: From Nano to Macro
, pp. 284-287
-
-
Naik, S.1
-
27
-
-
84930576933
-
An unsupervised feature learning framework for basal cellcarcinomaimage analysis
-
Arevalo, J., Cruz-Roa, A., Arias, V., Romero, E., Gonzalez, F. A. An unsupervised feature learning framework for basal cellcarcinomaimage analysis. Artificial Intelligence in Medicine 64, 131-145 (2015).
-
(2015)
Artificial Intelligence in Medicine
, vol.64
, pp. 131-145
-
-
Arevalo, J.1
Cruz-Roa, A.2
Arias, V.3
Romero, E.4
Gonzalez, F.A.5
-
28
-
-
85017578308
-
A comparative evaluation of supervised and unsupervisedrepresentation learning approaches for anaplastic medulloblastoma differentiation
-
Cruz-Roa, A., Arévalo, J., Basavanhally, A., Madabhushi, A., Gonzalez, F. A comparative evaluation of supervised and unsupervisedrepresentation learning approaches for anaplastic medulloblastoma differentiation. In Tenth International Symposium on MedicalInformation Processing and Analysis (SIPAIM 2014) (2014).
-
(2014)
Tenth International Symposium On MedicalInformation Processing and Analysis (SIPAIM 2014)
-
-
Cruz-Roa, A.1
Arévalo, J.2
Basavanhally, A.3
Madabhushi, A.4
Gonzalez, F.5
-
29
-
-
84885929616
-
A deep learning architecture for image representation, visualinterpretability and automated basal-cell carcinoma cancer detection
-
Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds Springer Berlin Heidelberg
-
Cruz-Roa, A., Arevalo, J., Madabhushi, A., González, F. A Deep Learning Architecture for Image Representation, VisualInterpretability and Automated Basal-Cell Carcinoma Cancer Detection. In Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013, vol. 8150 of Lecture Notes in Computer Science403-410 (Springer Berlin Heidelberg, 2013).
-
(2013)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013 of Lecture Notes in Computer Science
, vol.8150
, pp. 403-410
-
-
Cruz-Roa, A.1
Arevalo, J.2
Madabhushi, A.3
González, F.4
-
30
-
-
84901774997
-
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks
-
Cruz-Roa, A., et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. InProc. SPIE 9041, 904103-904115 (2014).
-
(2014)
Proc. SPIE
, vol.9041
, pp. 904103-904115
-
-
Cruz-Roa, A.1
-
32
-
-
84885927068
-
Classification of mitotic figures with convolutional neural networks and seeded blob features
-
Malon, C., Cosatto, E. Classification of mitotic figures with convolutional neural networks and seeded blob features. Journal ofPathology Informatics 4, 9 (2013).
-
(2013)
Journal OfPathology Informatics
, vol.4
, pp. 9
-
-
Malon, C.1
Cosatto, E.2
-
34
-
-
84919881041
-
DeCAF: A Deep Convolutional Activation Feature for generic visual recognition
-
Donahue, J., et al. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In International Conference inMachine Learning (ICML) (2014).
-
(2014)
International Conference InMachine Learning (ICML)
-
-
Donahue, J.1
-
36
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances inNeural Information Processing Systems 25, 1106-1114 (2012).
-
(2012)
Advances InNeural Information Processing Systems
, vol.25
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
37
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Le, Q., et al. Building high-level features using large scale unsupervised learning. In International Conference in Machine Learning (2012).
-
(2012)
International Conference in Machine Learning
-
-
Le, Q.1
-
38
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A., Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Transactions on PatternAnalysis and Machine Intelligence 35, 1798-1828 (2013).
-
(2013)
IEEE Transactions On PatternAnalysis and Machine Intelligence
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
41
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278-2324 (1998).
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
43
-
-
77958022477
-
Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type
-
Lacroix-Triki, M., et al. Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type. The Journal of Pathology 222, 282-298 (2010).
-
(2010)
The Journal of Pathology
, vol.222
, pp. 282-298
-
-
Lacroix-Triki, M.1
-
44
-
-
84900851031
-
Removing batch effects from histopathological images for enhanced cancer diagnosis
-
Kothari, S., et al. Removing Batch Effects From Histopathological Images for Enhanced Cancer Diagnosis. Biomedical and HealthInformatics, IEEE Journal of 18, 765-772 (2014).
-
(2014)
Biomedical and Health Informatics, IEEE Journal
, vol.18
, pp. 765-772
-
-
Kothari, S.1
-
46
-
-
77956941136
-
Histopathological image analysis: A review
-
Gurcan, M. N., et al. Histopathological Image Analysis: A Review. IEEE reviews in biomedical engineering 2, 147-171 (2009).
-
(2009)
IEEE Reviews in Biomedical Engineering
, vol.2
, pp. 147-171
-
-
Gurcan, M.N.1
-
47
-
-
84863869228
-
Histology image analysis for carcinoma detection and grading
-
He, L., Long, R., Antani, S., Thoma, G. Histology image analysis for carcinoma detection and grading. Computer Methods andPrograms in Biomedicine 107, 538-556 (2012).
-
(2012)
Computer Methods AndPrograms in Biomedicine
, vol.107
, pp. 538-556
-
-
He, L.1
Long, R.2
Antani, S.3
Thoma, G.4
-
48
-
-
84899672105
-
Breast cancer histopathology image analysis: A review
-
Veta, M., Pluim, J. P. W., van Diest, P. J., Viergever, M. A. Breast Cancer Histopathology Image Analysis: A Review. BiomedicalEngineering, IEEE Transactions on 61, 1400-1411 (2014).
-
(2014)
Biomedical Engineering, IEEE Transactions On
, vol.61
, pp. 1400-1411
-
-
Veta, M.1
Pluim, J.P.W.2
Van Diest, P.J.3
Viergever, M.A.4
-
49
-
-
54549108740
-
Comprehensive genomic characterization defines human glioblastoma genes and core pathways
-
McLendon, R., et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068 (2008).
-
(2008)
Nature
, vol.455
, pp. 1061-1068
-
-
McLendon, R.1
-
50
-
-
84884994218
-
The cancer genome atlas pan-cancer analysis project
-
Weinstein, J. N., et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 45, 1113-1120 (2013).
-
(2013)
Nature Genetics
, vol.45
, pp. 1113-1120
-
-
Weinstein, J.N.1
-
51
-
-
84973587732
-
A coefficient of agreement for nominal scales
-
Cohen, J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20, 37-46 (1960).
-
(1960)
Educational and Psychological Measurement
, vol.20
, pp. 37-46
-
-
Cohen, J.1
-
52
-
-
18544372466
-
Understanding interobserver agreement: The kappa statistic
-
Viera, A., Garrett, J. Understanding interobserver agreement: The kappa statistic. Family Medicine 37, 360-363 (2005).
-
(2005)
Family Medicine
, vol.37
, pp. 360-363
-
-
Viera, A.1
Garrett, J.2
-
53
-
-
0000250265
-
Measures of the amount of ecologic association between species
-
Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297-302 (1945).
-
(1945)
Ecology
, vol.26
, pp. 297-302
-
-
Dice, L.R.1
-
54
-
-
84888340666
-
Torch7: A matlab-like environment for machine learning
-
Collobert, R., Kavukcuoglu, K., Farabet, C. Torch7: A matlab-like environment for machine learning. In BigLearn, NIPS Workshop (2011).
-
(2011)
Big Learn, NIPS Workshop
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
55
-
-
51049109414
-
Automated grading of breast cancer histopathology usingspectral clusteringwith textural and architectural image features
-
IEEE
-
Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J. Automated grading of breast cancer histopathology usingspectral clusteringwith textural and architectural image features. In 5th IEEE ISBI: From Nano to Macro 496-499 (IEEE, 2008).
-
(2008)
5th IEEE ISBI: From Nano to Macro
, pp. 496-499
-
-
Doyle, S.1
Agner, S.2
Madabhushi, A.3
Feldman, M.4
Tomaszewski, J.5
-
56
-
-
85017640213
-
Histopathology image representation for automatic analysis: A state-of-The-art review
-
Arévalo, J., Cruz-Roa, A., González, F. A. Histopathology image representation for automatic analysis: A state-of-the-art review. Revista Med 22, 79-91 (2014).
-
(2014)
Revista Med
, vol.22
, pp. 79-91
-
-
Arévalo, J.1
Cruz-Roa, A.2
González, F.A.3
-
58
-
-
71749111270
-
A boosting cascade for automated detection of prostate cancer fromdigitized histology
-
Larsen, R., Nielsen M., Sporring, J. (eds Springer, Berlin, Heidelberg
-
Doyle, S., Madabhushi, A., Feldman, M., Tomaszeweski, J. A Boosting Cascade for Automated Detection of Prostate Cancer fromDigitized Histology. In Larsen, R., Nielsen, M., Sporring, J. (eds) International Conference on Medical Image Computing andComputer-Assisted Intervention LNCS, 504-511 (Springer, Berlin, Heidelberg, 2006).
-
(2006)
International Conference On Medical Image Computing AndComputer-Assisted Intervention LNCS
, pp. 504-511
-
-
Doyle, S.1
Madabhushi, A.2
Feldman, M.3
Tomaszeweski, J.4
|