-
1
-
-
33845459094
-
Time is brain
-
PID: 17130460
-
Furlan, A. J. Time is brain. Stroke 37, 2863–2864 (2006)
-
(2006)
Stroke
, vol.37
, pp. 2863-2864
-
-
Furlan, A.J.1
-
2
-
-
68749100878
-
& American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association
-
PID: 19478221
-
Del Zoppo, G. J., Saver, J. L., Jauch, E. C., Adams, H. P. Jr & American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 40, 2945–2948 (2009)
-
(2009)
Stroke
, vol.40
, pp. 2945-2948
-
-
Del Zoppo, G.J.1
Saver, J.L.2
Jauch, E.C.3
Adams, H.P.4
-
3
-
-
84929454086
-
Thrombectomy within 8h after symptom onset in ischemic stroke
-
PID: 25882510
-
Jovin, T. G. et al. Thrombectomy within 8h after symptom onset in ischemic stroke. N. Engl. J. Med. 372, 2296–2306 (2015)
-
(2015)
N. Engl. J. Med.
, vol.372
, pp. 2296-2306
-
-
Jovin, T.G.1
-
4
-
-
33644874026
-
Time is brain: quantified
-
PID: 16339467
-
Saver, J. L. Time is brain: quantified. Stroke 37, 263–266 (2006)
-
(2006)
Stroke
, vol.37
, pp. 263-266
-
-
Saver, J.L.1
-
5
-
-
0019480307
-
Traumatic acute subdural hematoma: major mortality reduction in comatose patients treated within four hours
-
PID: 7231489
-
Seelig, J. M. et al. Traumatic acute subdural hematoma: major mortality reduction in comatose patients treated within four hours. N. Engl. J. Med. 304, 1511–1518 (1981)
-
(1981)
N. Engl. J. Med.
, vol.304
, pp. 1511-1518
-
-
Seelig, J.M.1
-
7
-
-
0032892360
-
Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association
-
Broderick, J. P. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 30, 905–915 (1999)
-
(1999)
Stroke
, vol.30
, pp. 905-915
-
-
Broderick, J.P.1
-
8
-
-
0031781856
-
Diagnosis of stroke by the nonneurologist: a validation study
-
PID: 9626279
-
Ferro, J. M. et al. Diagnosis of stroke by the nonneurologist: a validation study. Stroke 29, 1106–1109 (1998)
-
(1998)
Stroke
, vol.29
, pp. 1106-1109
-
-
Ferro, J.M.1
-
9
-
-
0036315280
-
CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department
-
PID: 12147827
-
Mullins, M. E. et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 224, 353–360 (2002)
-
(2002)
Radiology
, vol.224
, pp. 353-360
-
-
Mullins, M.E.1
-
10
-
-
84992801855
-
The use of neuroimaging studies and neurological consultation to evaluate dizzy patients in the emergency department
-
PID: 23983882
-
Navi, B. B. et al. The use of neuroimaging studies and neurological consultation to evaluate dizzy patients in the emergency department. Neurohospitalist 3, 7–14 (2013)
-
(2013)
Neurohospitalist
, vol.3
, pp. 7-14
-
-
Navi, B.B.1
-
12
-
-
84958159870
-
VoxNet: A 3D convolutional neural network for real-time object recognition
-
IEEE, Piscataway, NJ, USA
-
Maturana, D. & Scherer, S. VoxNet: a 3D convolutional neural network for real-time object recognition. in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 922–928 (IEEE, Piscataway, NJ, USA, 2015)
-
(2015)
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 922-928
-
-
Maturana, D.1
Scherer, S.2
-
14
-
-
84990030036
-
Deep learning 3D shape surfaces using geometry images
-
&, (, Springer, Cham, Switzerland
-
Sinha, A., Bai, J. & Ramani, K. Deep learning 3D shape surfaces using geometry images. in Computer Vision – ECCV 2016 223–240 (Springer, Cham, Switzerland, 2016)
-
(2016)
Computer Vision – ECCV 2016
, pp. 223-240
-
-
Sinha, A.1
Bai, J.2
Ramani, K.3
-
15
-
-
85027969684
-
-
Preprint at
-
Brock, A., Lim, T., Ritchie, J. M. & Weston, N. Generative and discriminative voxel modeling with convolutional neural networks. Preprint at https://arxiv.org/abs/1608.04236/ (2016)
-
Generative and discriminative voxel modeling with convolutional neural networks
-
-
Brock, A.1
Lim, T.2
Ritchie, J.M.3
Weston, N.4
-
16
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
PID: 26886976
-
Shin, H.-C. et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016)
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1285-1298
-
-
Shin, H.C.1
-
17
-
-
85198028989
-
ImageNet: a large-scale hierarchical image database
-
IEEE, Piscataway, NJ, USA
-
Deng, J. et al. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, Piscataway, NJ, USA, 2009)
-
(2009)
2009 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
-
18
-
-
84958589374
-
-
Preprint at
-
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Preprint at https://arxiv.org/abs/1512.03385/ (2015)
-
(2015)
Deep residual learning for image recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
19
-
-
85044546504
-
Wildcat: weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation. in
-
IEEE, Piscataway, NJ, USA
-
Durand, T., Mordan, T., Thome, N. & Cord, M. Wildcat: weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). (IEEE, Piscataway, NJ, USA, 2017)
-
(2017)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017)
-
-
Durand, T.1
Mordan, T.2
Thome, N.3
Cord, M.4
-
20
-
-
84976320738
-
Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice
-
97890C, International Society for Optics and Photonics, Bellingham, WA, USA
-
Chen, P.-H., Botzolakis, E., Mohan, S., Nick Bryan, R. & Cook, T. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice. in Medical Imaging2016: PACS and Imaging Informatics: Next Generation and Innovations Vol. 9789, 97890C (International Society for Optics and Photonics, Bellingham, WA, USA, 2016)
-
(2016)
Medical Imaging2016: PACS and Imaging Informatics: Next Generation and Innovations
, vol.9789
-
-
Chen, P.-H.1
Botzolakis, E.2
Mohan, S.3
Nick Bryan, R.4
Cook, T.5
-
21
-
-
34247171748
-
Computer-aided diagnosis in medical imaging: historical review, current status and future potential
-
PID: 17349778
-
Doi, K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31, 198–211 (2007)
-
(2007)
Comput. Med. Imaging Graph.
, vol.31
, pp. 198-211
-
-
Doi, K.1
-
22
-
-
84946119874
-
Diagnostic accuracy of digital screening mammography with and without computer-aided detection
-
PID: 26414882
-
Lehman, C. D. et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern. Med. 175, 1828–1837 (2015)
-
(2015)
JAMA Intern. Med.
, vol.175
, pp. 1828-1837
-
-
Lehman, C.D.1
-
23
-
-
85031015406
-
-
Preprint at
-
Wen, W., Wu, C., Wang, Y., Chen, Y. & Li, H. Learning structured sparsity in deep neural networks. Preprint at http://arxiv.org/abs/1608.03665/ (2016)
-
(2016)
Learning Structured Sparsity in Deep Neural Networks
-
-
Wen, W.1
Wu, C.2
Wang, Y.3
Chen, Y.4
Li, H.5
-
24
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
PID: 28117445
-
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
-
25
-
-
85025112337
-
Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
-
PID: 28436741
-
Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017)
-
(2017)
Radiology
, vol.284
, pp. 574-582
-
-
Lakhani, P.1
Sundaram, B.2
-
26
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J. Am. Med. Assoc. 316, 2402–2410 (2016)
-
(2016)
J. Am. Med. Assoc.
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
-
28
-
-
85030790219
-
Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation
-
PID: 28961105
-
Oktay, O. et al. Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37, 384–395 (2017)
-
(2017)
IEEE Trans. Med. Imaging
, vol.37
, pp. 384-395
-
-
Oktay, O.1
-
30
-
-
84991632720
-
-
Preprint at
-
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Preprint at https://arxiv.org/abs/1606.06650/ (2016)
-
(2016)
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
-
-
Çiçek, Ö.1
Abdulkadir, A.2
Lienkamp, S.S.3
Brox, T.4
Ronneberger, O.5
-
31
-
-
84968586012
-
Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
-
PID: 26886978
-
Brosch, T. et al. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35, 1229–1239 (2016)
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1229-1239
-
-
Brosch, T.1
-
32
-
-
84995784237
-
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
-
PID: 27865153
-
Kamnitsas, K. et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
-
(2017)
Med. Image Anal.
, vol.36
, pp. 61-78
-
-
Kamnitsas, K.1
-
33
-
-
84994689614
-
Learning statistical models of phenotypes using noisy labeled training data
-
PID: 27174893
-
Agarwal, V. et al. Learning statistical models of phenotypes using noisy labeled training data. J. Am. Med. Inform. Assoc. 23, 1166–1173 (2016)
-
(2016)
J. Am. Med. Inform. Assoc.
, vol.23
, pp. 1166-1173
-
-
Agarwal, V.1
-
34
-
-
84964314838
-
Using anchors to estimate clinical state without labeled data
-
Halpern, Y., Choi, Y., Horng, S. & Sontag, D. Using anchors to estimate clinical state without labeled data. AMIA Annu. Symp. Proc. 2014, 606–615 (2014)
-
(2014)
AMIA Annu. Symp. Proc
, vol.2014
, pp. 606-615
-
-
Halpern, Y.1
Choi, Y.2
Horng, S.3
Sontag, D.4
-
36
-
-
77955175457
-
Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions
-
PID: 20595670
-
Riedel, C. H. et al. Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions. Stroke 41, 1659–1664 (2010)
-
(2010)
Stroke
, vol.41
, pp. 1659-1664
-
-
Riedel, C.H.1
-
37
-
-
33644673206
-
Detection of thrombus in acute ischemic stroke: value of thin-section noncontrast-computed tomography
-
PID: 16269650
-
Kim, E. Y. et al. Detection of thrombus in acute ischemic stroke: value of thin-section noncontrast-computed tomography. Stroke 36, 2745–2747 (2005)
-
(2005)
Stroke
, vol.36
, pp. 2745-2747
-
-
Kim, E.Y.1
-
38
-
-
0030062134
-
Computed tomographic scans of minimally displaced type II odontoid fractures
-
PID: 8637067
-
Rubinstein, D., Escott, E. J. & Mestek, M. F. Computed tomographic scans of minimally displaced type II odontoid fractures. J. Trauma 40, 204–210 (1996)
-
(1996)
J. Trauma
, vol.40
, pp. 204-210
-
-
Rubinstein, D.1
Escott, E.J.2
Mestek, M.F.3
-
39
-
-
84975249584
-
Nasofrontal outflow tract visibility in computed tomography imaging of frontal sinus fractures
-
PID: 24436767
-
Bush, K., Huikeshoven, M. & Wong, N. Nasofrontal outflow tract visibility in computed tomography imaging of frontal sinus fractures. Craniomaxillofac. Trauma Reconstr. 6, 237–240 (2013)
-
(2013)
Craniomaxillofac. Trauma Reconstr.
, vol.6
, pp. 237-240
-
-
Bush, K.1
Huikeshoven, M.2
Wong, N.3
-
40
-
-
85046006819
-
Natural language-based machine learning models for the annotation of clinical radiology reports
-
PID: 29381109
-
Zech, J. et al. Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology 287, 570–580 (2018)
-
(2018)
Radiology
, vol.287
, pp. 570-580
-
-
Zech, J.1
-
41
-
-
84879301343
-
Reporting of critical findings in neuroradiology
-
PID: 23617500
-
Viertel, V. G. et al. Reporting of critical findings in neuroradiology. AJR Am. J. Roentgenol. 200, 1132–1137 (2013)
-
(2013)
AJR Am. J. Roentgenol.
, vol.200
, pp. 1132-1137
-
-
Viertel, V.G.1
-
42
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
IEEE, Piscataway, NJ, USA
-
He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. in 2015 IEEE International Conference on Computer Vision (ICCV) (IEEE, Piscataway, NJ, USA, 2015)
-
(2015)
2015 IEEE International Conference on Computer Vision (ICCV)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
|