메뉴 건너뛰기




Volumn 5, Issue 3, 2017, Pages 457-469

Predicting Risk of Suicide Attempts Over Time Through Machine Learning

Author keywords

classification; prediction; prevention; suicide prevention

Indexed keywords


EID: 85019953955     PISSN: 21677026     EISSN: 21677034     Source Type: Journal    
DOI: 10.1177/2167702617691560     Document Type: Article
Times cited : (417)

References (43)
  • 2
    • 84865535937 scopus 로고    scopus 로고
    • Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?
    • Austin P. C., Lee D. S., Steyerberg E. W., Tu J. V., (2012). Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods? Biometrical Journal, 54, 657–673. http://doi.org/10.1002/bimj.201100251
    • (2012) Biometrical Journal , vol.54 , pp. 657-673
    • Austin, P.C.1    Lee, D.S.2    Steyerberg, E.W.3    Tu, J.V.4
  • 3
    • 84949604317 scopus 로고    scopus 로고
    • Anxiety and its disorders as risk factors for suicidal thoughts and behaviors: A meta-analytic review
    • Bentley K. H., Franklin J. C., Ribeiro J. D., Kleiman E. M., Fox K. R., Nock M. K., (2016). Anxiety and its disorders as risk factors for suicidal thoughts and behaviors: A meta-analytic review. Clinical Psychology Review, 43, 30–46. http://doi.org/10.1016/j.cpr.2015.11.008
    • (2016) Clinical Psychology Review , vol.43 , pp. 30-46
    • Bentley, K.H.1    Franklin, J.C.2    Ribeiro, J.D.3    Kleiman, E.M.4    Fox, K.R.5    Nock, M.K.6
  • 5
    • 77955652337 scopus 로고    scopus 로고
    • Attentional bias toward suicide-related stimuli predicts suicidal behavior
    • Cha C. B., Najmi S., Park J. M., Finn C. T., Nock M. K., (2010). Attentional bias toward suicide-related stimuli predicts suicidal behavior. Journal of Abnormal Psychology, 119, 616–622. http://doi.org/10.1037/a0019710
    • (2010) Journal of Abnormal Psychology , vol.119 , pp. 616-622
    • Cha, C.B.1    Najmi, S.2    Park, J.M.3    Finn, C.T.4    Nock, M.K.5
  • 7
    • 84890783342 scopus 로고    scopus 로고
    • Analysing data and undertaking meta-analyses
    • March, 2011,. In, (Version 5.1.0, updated). Retrieved from
    • Deeks J. J., (2011). Analysing data and undertaking meta-analyses. In Cochrane handbook for systematic reviews of interventions (Version 5.1.0, updated March 2011). Retrieved from http://handbook.cochrane.org/chapter_9/9_analysing_data_and_undertaking_meta_analyses.htm
    • (2011) Cochrane handbook for systematic reviews of interventions
    • Deeks, J.J.1
  • 11
    • 84938596257 scopus 로고    scopus 로고
    • A comparison of models for predicting early hospital readmissions
    • Futoma J., Morris J., Lucas J., (2015). A comparison of models for predicting early hospital readmissions. Journal of Biomedical Informatics, 56, 229–238. http://doi.org/10.1016/j.jbi.2015.05.016
    • (2015) Journal of Biomedical Informatics , vol.56 , pp. 229-238
    • Futoma, J.1    Morris, J.2    Lucas, J.3
  • 15
    • 84978634556 scopus 로고    scopus 로고
    • Predicting suicides after outpatient mental health visits in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS)
    • Advance online publication
    • Kessler R. C., Stein M. B., Petukhova M. V., Bliese P., Bossarte R. M., Bromet E. J.,.. Keilp J., (2016). Predicting suicides after outpatient mental health visits in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). Molecular Psychiatry. Advance online publication. http://doi.org/10.1038/mp.2016.110
    • (2016) Molecular Psychiatry
    • Kessler, R.C.1    Stein, M.B.2    Petukhova, M.V.3    Bliese, P.4    Bossarte, R.M.5    Bromet, E.J.6    Keilp, J.7
  • 16
    • 85032070787 scopus 로고    scopus 로고
    • Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
    • Advance online publication
    • Kessler R. C., van Loo H. M., Wardenaar K. J., Bossarte R. M., Brenner L. A., Cai T.,.. Zaslavsky A. M., (2016). Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Molecular Psychiatry. Advance online publication. http://doi.org/10.1038/mp.2015.198
    • (2016) Molecular Psychiatry
    • Kessler, R.C.1    van Loo, H.M.2    Wardenaar, K.J.3    Bossarte, R.M.4    Brenner, L.A.5    Cai, T.6    Zaslavsky, A.M.7
  • 17
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Kotsiantis S. B., (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.B.1
  • 19
    • 39549113455 scopus 로고    scopus 로고
    • Classification trees distinguish suicide attempters in major psychiatric disorders: A model of clinical decision making
    • Mann J., Ellis S., Waternaux C., Liu X., (2008). Classification trees distinguish suicide attempters in major psychiatric disorders: A model of clinical decision making. Journal of Clinical Psychiatry, 69, 23–31.
    • (2008) Journal of Clinical Psychiatry , vol.69 , pp. 23-31
    • Mann, J.1    Ellis, S.2    Waternaux, C.3    Liu, X.4
  • 21
    • 0035102023 scopus 로고    scopus 로고
    • A continuum of premature death. Meta-analysis of competing mortality in the psychosocially vulnerable
    • Neeleman J., (2001). A continuum of premature death. Meta-analysis of competing mortality in the psychosocially vulnerable. International Journal of Epidemiology, 30, 154–162. http://doi.org/10.1093/ije/30.1.154
    • (2001) International Journal of Epidemiology , vol.30 , pp. 154-162
    • Neeleman, J.1
  • 22
    • 84886232022 scopus 로고    scopus 로고
    • Towards an integrated motivational–volitional model of suicidal behaviour
    • O’Connor, Platt, Gordon, (eds), New York, NY, Wiley,. In, (Eds.)
    • O’Connor R. C., (2011). Towards an integrated motivational–volitional model of suicidal behaviour. In O’Connor R. C., Platt S., Gordon J., (Eds.), International handbook of suicide prevention: Research, policy and practice (pp. 181–198). New York, NY: Wiley.
    • (2011) International handbook of suicide prevention: Research, policy and practice , pp. 181-198
    • O’Connor, R.C.1
  • 24
    • 34247481878 scopus 로고    scopus 로고
    • IPython: A system for interactive scientific computing
    • Perez F., Granger B. E., (2007). IPython: A system for interactive scientific computing. Computing in Science and Engineering, 9(3), 21–29. http://doi.org/10.1109/MCSE.2007.53
    • (2007) Computing in Science and Engineering , vol.9 , Issue.3 , pp. 21-29
    • Perez, F.1    Granger, B.E.2
  • 26
    • 84863304598 scopus 로고    scopus 로고
    • Vienna, Austria, R Foundation for Statistical Computing
    • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
    • (2012) R: A language and environment for statistical computing
  • 27
    • 84941702699 scopus 로고    scopus 로고
    • Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: A meta-analysis of longitudinal studies
    • Ribeiro J. D., Franklin J. C., Fox K. R., Bentley K. H., Kleiman E. M., Chang B. P., Nock M. K., (2016a). Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: A meta-analysis of longitudinal studies. Psychological Medicine, 46, 225–236. http://doi.org/10.1017/S0033291715001804
    • (2016) Psychological Medicine , vol.46 , pp. 225-236
    • Ribeiro, J.D.1    Franklin, J.C.2    Fox, K.R.3    Bentley, K.H.4    Kleiman, E.M.5    Chang, B.P.6    Nock, M.K.7
  • 28
    • 84964335362 scopus 로고    scopus 로고
    • Suicide as a complex classification problem: Machine learning and related techniques can advance suicide prediction
    • Ribeiro J. D., Franklin J. C., Fox K. R., Bentley K. H., Kleiman E. M., Chang B. P., Nock M. K., (2016b). Suicide as a complex classification problem: Machine learning and related techniques can advance suicide prediction. Psychological Medicine, 46, 2009–2010.
    • (2016) Psychological Medicine , vol.46 , pp. 2009-2010
    • Ribeiro, J.D.1    Franklin, J.C.2    Fox, K.R.3    Bentley, K.H.4    Kleiman, E.M.5    Chang, B.P.6    Nock, M.K.7
  • 29
    • 84857371683 scopus 로고    scopus 로고
    • Sleep problems outperform depression and hopelessness as cross-sectional and longitudinal predictors of suicidal ideation and behavior in young adults in the military
    • Ribeiro J. D., Pease J. L., Gutierrez P. M., Silva C., Bernert R. A., Rudd M. D., Joiner T. E., (2012). Sleep problems outperform depression and hopelessness as cross-sectional and longitudinal predictors of suicidal ideation and behavior in young adults in the military. Journal of Affective Disorders, 136, 743–750. http://doi.org/10.1016/j.jad.2011.09.049
    • (2012) Journal of Affective Disorders , vol.136 , pp. 743-750
    • Ribeiro, J.D.1    Pease, J.L.2    Gutierrez, P.M.3    Silva, C.4    Bernert, R.A.5    Rudd, M.D.6    Joiner, T.E.7
  • 30
    • 8844253324 scopus 로고    scopus 로고
    • Understanding inverse document frequency: On theoretical arguments for IDF
    • Robertson S., (2004). Understanding inverse document frequency: On theoretical arguments for IDF. Journal of Documentation, 60, 503–520. http://doi.org/10.1108/00220410410560582
    • (2004) Journal of Documentation , vol.60 , pp. 503-520
    • Robertson, S.1
  • 34
    • 77954485448 scopus 로고    scopus 로고
    • On safari to random Jungle: A fast implementation of random forests for high-dimensional data
    • Schwarz D. F., König I. R., Ziegler A., (2010). On safari to random Jungle: A fast implementation of random forests for high-dimensional data. Bioinformatics, 26, 1752–1758. http://doi.org/10.1093/bioinformatics/btq257
    • (2010) Bioinformatics , vol.26 , pp. 1752-1758
    • Schwarz, D.F.1    König, I.R.2    Ziegler, A.3
  • 36
    • 0042744751 scopus 로고    scopus 로고
    • Area deprivation and widening inequalities in US mortality, 1969–1998
    • Singh G. K., (2003). Area deprivation and widening inequalities in US mortality, 1969–1998. American Journal of Public Health, 93, 1137–1143.
    • (2003) American Journal of Public Health , vol.93 , pp. 1137-1143
    • Singh, G.K.1
  • 38
    • 84877075645 scopus 로고    scopus 로고
    • Evaluation of markers and risk prediction models: Overview of relationships between NRI and decision-analytic measures
    • Van Calster B., Vickers A., Pencina M., Baker S. G., Timmerman D., Steyerberg E., (2013). Evaluation of markers and risk prediction models: Overview of relationships between NRI and decision-analytic measures. Medical Decision Making, 33, 490–501. http://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted
    • (2013) Medical Decision Making , vol.33 , pp. 490-501
    • Van Calster, B.1    Vickers, A.2    Pencina, M.3    Baker, S.G.4    Timmerman, D.5    Steyerberg, E.6
  • 39
    • 79952595565 scopus 로고    scopus 로고
    • The NumPy array: A structure for efficient numerical computation
    • van der Walt S., Colbert S. C., Varoquaux G., (2011). The NumPy array: A structure for efficient numerical computation. Computing in Science and Engineering, 13(2), 22–30. http://doi.org/10.1109/MCSE.2011.37
    • (2011) Computing in Science and Engineering , vol.13 , Issue.2 , pp. 22-30
    • van der Walt, S.1    Colbert, S.C.2    Varoquaux, G.3
  • 40
    • 50849108164 scopus 로고    scopus 로고
    • A cognitive model of suicidal behavior: Theory and treatment
    • Wenzel A., Beck A. T., (2008). A cognitive model of suicidal behavior: Theory and treatment. Applied and Preventive Psychology, 12, 189–201. http://doi.org/10.1016/j.appsy.2008.05.001
    • (2008) Applied and Preventive Psychology , vol.12 , pp. 189-201
    • Wenzel, A.1    Beck, A.T.2
  • 41
    • 84992151199 scopus 로고    scopus 로고
    • Geneva, Switzerland, Author
    • World Health Organization. (2016). Suicide data. Geneva, Switzerland: Author.
    • (2016) Suicide data


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.