메뉴 건너뛰기




Volumn 286, Issue 3, 2018, Pages 887-896

Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; COMPUTER ASSISTED TOMOGRAPHY; CONTRAST ENHANCEMENT; CONTROLLED STUDY; DIAGNOSTIC VALUE; DIFFERENTIAL DIAGNOSIS; FEMALE; HUMAN; IMAGE PROCESSING; LEARNING ALGORITHM; LIVER CELL CARCINOMA; LIVER CYST; LIVER HEMANGIOMA; LIVER NODULE; LIVER TUMOR; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; PRIORITY JOURNAL; RETROSPECTIVE STUDY; TUMOR CLASSIFICATION; AGED; ARTIFICIAL NEURAL NETWORK; BILE DUCT CARCINOMA; BILE DUCT TUMOR; DIAGNOSTIC IMAGING; MIDDLE AGED; PROCEDURES; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; VERY ELDERLY; X-RAY COMPUTED TOMOGRAPHY;

EID: 85042428409     PISSN: 00338419     EISSN: 15271315     Source Type: Journal    
DOI: 10.1148/radiol.2017170706     Document Type: Article
Times cited : (496)

References (25)
  • 1
    • 84918815964 scopus 로고    scopus 로고
    • Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012
    • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5): E359-E386.
    • (2015) Int J Cancer , vol.136 , Issue.5 , pp. E359-E386
    • Ferlay, J.1    Soerjomataram, I.2    Dikshit, R.3
  • 2
    • 0030893224 scopus 로고    scopus 로고
    • Dual-phase helical CT of the liver: Value of an early-phase acquisition in the differential diagnosis of noncystic focal lesions
    • Van Hoe L, Baert AL, Gryspeerdt S, et al. Dual-phase helical CT of the liver: value of an early-phase acquisition in the differential diagnosis of noncystic focal lesions. AJR Am J Roentgenol 1997;168(5):1185-1192.
    • (1997) AJR Am J Roentgenol , vol.168 , Issue.5 , pp. 1185-1192
    • Van Hoe, L.1    Baert, A.L.2    Gryspeerdt, S.3
  • 3
    • 0034120580 scopus 로고    scopus 로고
    • Focal liver lesions: Pattern-based classification scheme for enhancement at arterial phase CT
    • Nino-Murcia M, Olcott EW, Jeffrey RB Jr, Lamm RL, Beaulieu CF, Jain KA. Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology 2000;215(3):746-751.
    • (2000) Radiology , vol.215 , Issue.3 , pp. 746-751
    • Nino-Murcia, M.1    Olcott, E.W.2    Jr, J.R.B.3    Lamm, R.L.4    Beaulieu, C.F.5    Jain, K.A.6
  • 5
    • 0022649899 scopus 로고
    • CT of hepatic masses: Significance of prolonged and delayed enhancement
    • Itai Y, Ohtomo K, Kokubo T, et al. CT of hepatic masses: significance of prolonged and delayed enhancement. AJR Am J Roentgenol 1986;146(4):729-733.
    • (1986) AJR Am J Roentgenol , vol.146 , Issue.4 , pp. 729-733
    • Itai, Y.1    Ohtomo, K.2    Kokubo, T.3
  • 6
    • 0036237793 scopus 로고    scopus 로고
    • Radiologists’ performance in the diagnosis of liver tumors with central scars by using specific CT criteria
    • Blachar A, Federle MP, Ferris JV, et al. Radiologists’ performance in the diagnosis of liver tumors with central scars by using specific CT criteria. Radiology 2002;223(2):532-539.
    • (2002) Radiology , vol.223 , Issue.2 , pp. 532-539
    • Blachar, A.1    Federle, M.P.2    Ferris, J.V.3
  • 7
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 8
    • 84876231242 scopus 로고    scopus 로고
    • Ima-geNet classification with deep convolutional neural networks
    • Published Accessed January 31, 2017
    • Krizhevsky A, Sutskever I, Hinton G. Ima-geNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 (NIPS 2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks. Published 2012. Accessed January 31, 2017.
    • (2012) Advances in Neural Information Processing Systems 25 (NIPS 2012)
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 9
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Published Accessed January 31, 2017
    • Le QV, Ranzato M, Monga R, et al. Building high-level features using large scale unsupervised learning. International Conference on Machine Learning http://icml.cc/2012/papers. Published 2012. Accessed January 31, 2017.
    • (2012) International Conference on Machine Learning
    • Le, Q.V.1    Ranzato, M.2    Monga, R.3
  • 10
    • 0020331278 scopus 로고
    • Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
    • Fukushima K, Miyake S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognit 1982;15(6):455-469.
    • (1982) Pattern Recognit , vol.15 , Issue.6 , pp. 455-469
    • Fukushima, K.1    Miyake, S.2
  • 11
    • 0000359337 scopus 로고
    • Back-propagation applied to handwritten zip code recognition
    • LeCun Y, Boser B, Denker JS, et al. Back-propagation applied to handwritten zip code recognition. Neural Comput 1989;1(4):541-551.
    • (1989) Neural Comput , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1    Boser, B.2    Denker, J.S.3
  • 12
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278-2324.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • Published Accessed January 31, 2017
    • Tompson J, Jain A, LeCun Y, Bregler C. Joint training of a convolutional network and a graphical model for human pose estimation. Advances in Neural Information Processing Systems 27 (NIPS 2014). https://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014. Published 2014. Accessed January 31, 2017.
    • (2014) Advances in Neural Information Processing Systems 27 (NIPS 2014
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 15
    • 84964983441 scopus 로고    scopus 로고
    • Cornell University Library. Published Accessed January 31, 2017
    • Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Cornell University Library. http://arxiv.org/abs/1409.4842. Published 2014. Accessed January 31, 2017.
    • (2014) Going Deeper with Convolutions
    • Szegedy, C.1    Liu, W.2    Jia, Y.3
  • 16
    • 84875215709 scopus 로고    scopus 로고
    • Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics
    • Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 2013;48(3): 452-458.
    • (2013) Bone Marrow Transplant , vol.48 , Issue.3 , pp. 452-458
    • Kanda, Y.1
  • 17
    • 34548279417 scopus 로고    scopus 로고
    • Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers
    • Mougiakakou SG, Valavanis IK, Nikita A, Nikita KS. Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers. Artif Intell Med 2007;41(1):25-37.
    • (2007) Artif Intell Med , vol.41 , Issue.1 , pp. 25-37
    • Mougiakakou, S.G.1    Valavanis, I.K.2    Nikita, A.3    Nikita, K.S.4
  • 18
    • 33748065331 scopus 로고    scopus 로고
    • Diagnosis of hepatictumorswithtextureanalysisinnonen-hanced computed tomography images
    • Huang YL, Chen JH, Shen WC. Diagnosis of hepatictumorswithtextureanalysisinnonen-hanced computed tomography images. Acad Radiol 2006;13(6):713-720.
    • (2006) Acad Radiol , vol.13 , Issue.6 , pp. 713-720
    • Huang, Y.L.1    Chen, J.H.2    Shen, W.C.3
  • 19
    • 0142182181 scopus 로고    scopus 로고
    • A computer-aided diagnostic system to characterize CT focal liver lesions: Design and optimization of a neural network classifier
    • Gletsos M, Mougiakakou SG, Matsopoulos GK, Nikita KS, Nikita AS, Kelekis D. A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier. IEEE Trans Inf Technol Biomed 2003;7(3):153-162.
    • (2003) IEEE Trans Inf Technol Biomed , vol.7 , Issue.3 , pp. 153-162
    • Gletsos, M.1    Mougiakakou, S.G.2    Matsopoulos, G.K.3    Nikita, K.S.4    Nikita, A.S.5    Kelekis, D.6
  • 20
    • 74049163314 scopus 로고    scopus 로고
    • Multi-phase CT image based hepatic lesion diagnosis by SVM
    • 2009. Published Accessed January 31, 2017
    • Ye J, Sun Y, Wang S. Multi-phase CT image based hepatic lesion diagnosis by SVM. Biomedical Engineering and Informatics, 2009. http://ieeexplore.ieee.org/document/5304774. Published 2009. Accessed January 31, 2017.
    • (2009) Biomedical Engineering and Informatics
    • Ye, J.1    Sun, Y.2    Wang, S.3
  • 21
    • 0032907209 scopus 로고    scopus 로고
    • Dysplastic nodules of the liver: Imaging findings
    • Choi BI, Han JK, Hong SH, et al. Dysplastic nodules of the liver: imaging findings. Abdom Imaging 1999;24(3):250-257.
    • (1999) Abdom Imaging , vol.24 , Issue.3 , pp. 250-257
    • Choi, B.I.1    Han, J.K.2    Hong, S.H.3
  • 22
    • 81555212319 scopus 로고    scopus 로고
    • Imaging study of early hepatocellular carcinoma: Usefulness of gadoxetic acid-enhanced MR imaging
    • Sano K, Ichikawa T, Motosugi U, et al. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology 2011;261(3):834-844.
    • (2011) Radiology , vol.261 , Issue.3 , pp. 834-844
    • Sano, K.1    Ichikawa, T.2    Motosugi, U.3
  • 23
    • 0028930109 scopus 로고
    • CT diagnosis of early hepatocellular carcinoma: Sensitivity, findings, and CT-patho-logic correlation
    • Takayasu K, Furukawa H, Wakao F, et al. CT diagnosis of early hepatocellular carcinoma: sensitivity, findings, and CT-patho-logic correlation. AJR Am J Roentgenol 1995;164(4):885-890.
    • (1995) AJR Am J Roentgenol , vol.164 , Issue.4 , pp. 885-890
    • Takayasu, K.1    Furukawa, H.2    Wakao, F.3
  • 24
    • 84906085264 scopus 로고    scopus 로고
    • LI-RADS categorization of benign and likely benign findings in patients at risk of hepatocellular carcinoma: A pictorial atlas
    • Jha RC, Mitchell DG, Weinreb JC, et al. LI-RADS categorization of benign and likely benign findings in patients at risk of hepatocellular carcinoma: a pictorial atlas. AJR Am J Roentgenol 2014;203(1):W48-W69.
    • (2014) AJR Am J Roentgenol , vol.203 , Issue.1 , pp. W48-W69
    • Jha, R.C.1    Mitchell, D.G.2    Weinreb, J.C.3
  • 25
    • 85009921542 scopus 로고    scopus 로고
    • Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
    • Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev 2017;74(Pt A):58-75.
    • (2017) Neurosci Biobehav Rev , vol.74 , pp. 58-75
    • Vieira, S.1    Pinaya, W.H.2    Mechelli, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.