-
1
-
-
84962439895
-
Sentinel lymph node in breast cancer: Review article from a pathologist’s point of view
-
Apple SK. Sentinel lymph node in breast cancer: review article from a pathologist’s point of view. J Pathol Transl Med. 2016;50(2):83–95.
-
(2016)
J Pathol Transl Med
, vol.50
, Issue.2
, pp. 83-95
-
-
Apple, S.K.1
-
2
-
-
85039173281
-
Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: A multicenter blinded randomized noninferiority study of 1992 cases (pivotal study)
-
Mukhopadhyay S, Feldman MD, Abels E, et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study). Am J Surg Pathol. 2018;42(1):39–52.
-
(2018)
Am J Surg Pathol
, vol.42
, Issue.1
, pp. 39-52
-
-
Mukhopadhyay, S.1
Feldman, M.D.2
Abels, E.3
-
5
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115(3):211–252.
-
(2015)
Int J Comput Vis
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
6
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–2410.
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
7
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
8
-
-
85038438910
-
Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
-
Ting DSW, Cheung CY-L, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22): 2211–2223.
-
(2017)
JAMA
, vol.318
, Issue.22
, pp. 2211-2223
-
-
Ting, D.S.W.1
Cheung, C.Y.-L.2
Lim, G.3
-
9
-
-
85009238256
-
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
-
Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform. 2016; 7(1):29.
-
(2016)
J Pathol Inform
, vol.7
, Issue.1
, pp. 29
-
-
Janowczyk, A.1
Madabhushi, A.2
-
11
-
-
84970028091
-
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
-
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016; 6:26286.
-
(2016)
Sci Rep
, vol.6
, pp. 26286
-
-
Litjens, G.1
Sánchez, C.I.2
Timofeeva, N.3
-
13
-
-
85014442834
-
-
arXiv q-bioQM. June Accessed March 11, 2018
-
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep learning for identifying metastatic breast cancer. arXiv [q-bioQM]. June 2016. http://arxiv.org/abs/1606.05718. Accessed March 11, 2018.
-
(2016)
Deep Learning for Identifying Metastatic Breast Cancer
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
-
14
-
-
85038431889
-
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
-
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–2210.
-
(2017)
JAMA
, vol.318
, Issue.22
, pp. 2199-2210
-
-
Ehteshami Bejnordi, B.1
Veta, M.2
Johannes van Diest, P.3
-
15
-
-
85038218695
-
Deep learning algorithms for detection of lymph node metastases from breast cancer: Helping artificial intelligence be seen
-
Golden JA. Deep learning algorithms for detection of lymph node metastases from breast cancer: helping artificial intelligence be seen. JAMA. 2017;318(22):2184–2186.
-
(2017)
JAMA
, vol.318
, Issue.22
, pp. 2184-2186
-
-
Golden, J.A.1
-
16
-
-
84990032289
-
-
arXiv csCV. December Accessed March 11, 2018
-
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. arXiv [csCV]. December 2015. http://arxiv.org/abs/1512.00567. Accessed March 11, 2018.
-
(2015)
Rethinking the Inception Architecture for Computer Vision
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
17
-
-
0034175567
-
Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy
-
van Der Laak JA, Pahlplatz MM, Hanselaar AG, de Wilde PC. Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy. Cytometry. 2000;39(4):275–284.
-
(2000)
Cytometry
, vol.39
, Issue.4
, pp. 275-284
-
-
Van Der Laak, J.A.1
Pahlplatz, M.M.2
Hanselaar, A.G.3
De Wilde, P.C.4
-
18
-
-
67449095077
-
The linear Monge-Kantorovitch linear colour mapping for example-based colour transfer
-
Paper: November London, United Kingdom
-
Pitie F, Kokaram A. The linear Monge-Kantorovitch linear colour mapping for example-based colour transfer. Paper presented at: 4th European Conference on Visual Media Production; November 2007; London, United Kingdom.
-
(2007)
4th European Conference on Visual Media Production
-
-
Pitie, F.1
Kokaram, A.2
-
19
-
-
84959363938
-
Stain specific standardization of whole-slide histopathological images
-
Bejnordi BE, Litjens G, Timofeeva N, et al. Stain specific standardization of whole-slide histopathological images. IEEE Trans Med Imaging. 2016;35(2):404–415.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.2
, pp. 404-415
-
-
Bejnordi, B.E.1
Litjens, G.2
Timofeeva, N.3
-
20
-
-
85048785004
-
-
arXiv csLG. June Accessed March 11, 2018
-
Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad: removing noise by adding noise. arXiv [csLG]. June 2017. http://arxiv.org/abs/1706.03825. Accessed March 11, 2018.
-
(2017)
SmoothGrad: Removing Noise by Adding Noise
-
-
Smilkov, D.1
Thorat, N.2
Kim, B.3
Viégas, F.4
Wattenberg, M.5
-
21
-
-
85009446471
-
The eighth edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more ‘‘personalized’’ approach to cancer staging
-
Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more ‘‘personalized’’ approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–99.
-
(2017)
CA Cancer J Clin
, vol.67
, Issue.2
, pp. 93-99
-
-
Amin, M.B.1
Greene, F.L.2
Edge, S.B.3
-
22
-
-
84994010400
-
Capsular nevus versus metastatic malignant melanoma: A diagnostic dilemma
-
Davis J, Patil J, Aydin N, Mishra A, Misra S. Capsular nevus versus metastatic malignant melanoma: a diagnostic dilemma. Int J Surg Case Rep. 2016;29:20–24.
-
(2016)
Int J Surg Case Rep
, vol.29
, pp. 20-24
-
-
Davis, J.1
Patil, J.2
Aydin, N.3
Mishra, A.4
Misra, S.5
-
23
-
-
0028071864
-
Benign melanocytic nevus cells in axillary lymph nodes: A prospective incidence and immunohistochemical study with literature review
-
Bautista NC, Cohen S, Anders KH. Benign melanocytic nevus cells in axillary lymph nodes: a prospective incidence and immunohistochemical study with literature review. Am J Clin Pathol. 1994;102(1):102–108.
-
(1994)
Am J Clin Pathol
, vol.102
, Issue.1
, pp. 102-108
-
-
Bautista, N.C.1
Cohen, S.2
Anders, K.H.3
-
24
-
-
85018311976
-
AlphaGo, deep learning, and the future of the human microscopist
-
Granter SR, Beck AH, Papke DJ Jr. AlphaGo, deep learning, and the future of the human microscopist. Arch Pathol Lab Med. 2017;141(5):619–621.
-
(2017)
Arch Pathol Lab Med
, vol.141
, Issue.5
, pp. 619-621
-
-
Granter, S.R.1
Beck, A.H.2
Papke, D.J.3
-
25
-
-
85018360232
-
Straw men, deep learning, and the future of the human microscopist: Response to ‘‘artificial intelligence and the pathologist: Future frenemies?
-
Granter SR, Beck AH, Papke DJ Jr. Straw men, deep learning, and the future of the human microscopist: response to ‘‘Artificial Intelligence and the Pathologist: Future Frenemies?’’ Arch Pathol Lab Med. 2017;141(5):624.
-
(2017)
Arch Pathol Lab Med
, vol.141
, Issue.5
, pp. 624
-
-
Granter, S.R.1
Beck, A.H.2
Papke, D.J.3
-
26
-
-
85018322117
-
Artificial intelligence and the pathologist: Future frenemies?
-
Sharma G, Carter A. Artificial intelligence and the pathologist: future frenemies? Arch Pathol Lab Med. 2017;141(5):622–623.
-
(2017)
Arch Pathol Lab Med
, vol.141
, Issue.5
, pp. 622-623
-
-
Sharma, G.1
Carter, A.2
-
27
-
-
0023243021
-
Comparison of keratin monoclonal antibodies MAK-6, AE1:AE3, and CAM-5.2
-
Listrom MB, Dalton LW. Comparison of keratin monoclonal antibodies MAK-6, AE1:AE3, and CAM-5.2. Am J Clin Pathol. 1987;88(3):297–301.
-
(1987)
Am J Clin Pathol
, vol.88
, Issue.3
, pp. 297-301
-
-
Listrom, M.B.1
Dalton, L.W.2
-
28
-
-
0024569330
-
Immunoperoxidase staining as a diagnostic aid for hepatocellular carcinoma
-
Christensen WN, Boitnott JK, Kuhajda FP. Immunoperoxidase staining as a diagnostic aid for hepatocellular carcinoma. Mod Pathol. 1989;2(1):8–12.
-
(1989)
Mod Pathol
, vol.2
, Issue.1
, pp. 8-12
-
-
Christensen, W.N.1
Boitnott, J.K.2
Kuhajda, F.P.3
-
29
-
-
85056358333
-
Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer
-
Steiner DF, MacDonald R, Liu Y, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Pathol. 2018;42(12):1636–1646.
-
(2018)
Am J Surg Pathol
, vol.42
, Issue.12
, pp. 1636-1646
-
-
Steiner, D.F.1
MacDonald, R.2
Liu, Y.3
|