메뉴 건너뛰기




Volumn 0, Issue 212679, 2017, Pages 276-287

Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CARDIOLOGY; E-LEARNING; FACSIMILE; FEATURE EXTRACTION; HEALTH CARE; HEART; HOSPITALS; LEARNING SYSTEMS; MEDICAL COMPUTING; TELEMEDICINE;

EID: 85018435860     PISSN: 23356928     EISSN: 23356936     Source Type: Journal    
DOI: 10.1142/9789813207813_0027     Document Type: Conference Paper
Times cited : (131)

References (36)
  • 1
    • 84891858260 scopus 로고    scopus 로고
    • A genome-and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects
    • Shameer, K. et al. A genome-and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 133, 95-109, doi:10.1007/s00439-013-1355-7 (2014).
    • (2014) Hum Genet , vol.133 , pp. 95-109
    • Shameer, K.1
  • 2
    • 84971212642 scopus 로고    scopus 로고
    • An integrative pipeline for multi-modal discovery of disease relationships
    • Glicksberg, B. S. et al. An integrative pipeline for multi-modal discovery of disease relationships. Pac Symp Biocomput, 407-418 (2015).
    • (2015) Pac Symp Biocomput , pp. 407-418
    • Glicksberg, B.S.1
  • 3
    • 84962218879 scopus 로고    scopus 로고
    • EHDViz: Clinical dashboard development using open-source technologies
    • Badgeley, M. A. et al. EHDViz: clinical dashboard development using open-source technologies. BMJ Open 6, e010579, doi:10.1136/bmjopen-2015-010579 (2016).
    • (2016) BMJ Open , vol.6
    • Badgeley, M.A.1
  • 4
    • 85015886887 scopus 로고    scopus 로고
    • Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
    • Shameer, K. et al. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform, doi:10.1093/bib/bbv118 (2016).
    • (2016) Brief Bioinform
    • Shameer, K.1
  • 5
    • 84929095380 scopus 로고    scopus 로고
    • Using "big data" to capture overall health status: Properties and predictive value of a claims-based health risk score
    • Hamad, R., Modrek, S., Kubo, J., Goldstein, B. A. & Cullen, M. R. Using "big data" to capture overall health status: properties and predictive value of a claims-based health risk score. PloS one 10, e0126054, doi:10.1371/journal.pone.0126054 (2015).
    • (2015) Plos One , vol.10
    • Hamad, R.1    Modrek, S.2    Kubo, J.3    Goldstein, B.A.4    Cullen, M.R.5
  • 6
    • 84905981088 scopus 로고    scopus 로고
    • Creating value in health care through big data: Opportunities and policy implications
    • Roski, J., Bo-Linn, G. W. & Andrews, T. A. Creating value in health care through big data: opportunities and policy implications. Health affairs 33, 1115-1122, doi:10.1377/hlthaff.2014.0147 (2014).
    • (2014) Health Affairs , vol.33 , pp. 1115-1122
    • Roski, J.1    Bo-Linn, G.W.2    Andrews, T.A.3
  • 7
    • 78549246207 scopus 로고    scopus 로고
    • Phenomics: The next challenge
    • Houle, D., Govindaraju, D. R. & Omholt, S. Phenomics: the next challenge. Nat Rev Genet 11, 855-866, doi:10.1038/nrg2897 (2010).
    • (2010) Nat Rev Genet , vol.11 , pp. 855-866
    • Houle, D.1    Govindaraju, D.R.2    Omholt, S.3
  • 8
    • 79952534013 scopus 로고    scopus 로고
    • How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging
    • Karasik, D. How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging. Age (Dordr) 33, 49-62, doi:10.1007/s11357-010-9159-3 (2011).
    • (2011) Age (Dordr) , vol.33 , pp. 49-62
    • Karasik, D.1
  • 9
    • 84891624900 scopus 로고    scopus 로고
    • Prediction of 30-day heart failure-specific readmission risk by echocardiographic parameters
    • Thavendiranathan, P. et al. Prediction of 30-day heart failure-specific readmission risk by echocardiographic parameters. Am J Cardiol 113, 335-341, doi:10.1016/j.amjcard.2013.09.025 (2014).
    • (2014) Am J Cardiol , vol.113 , pp. 335-341
    • Thavendiranathan, P.1
  • 10
    • 84934948746 scopus 로고    scopus 로고
    • Joint impact of clinical and behavioral variables on the risk of unplanned readmission and death after a heart failure hospitalization
    • Padhukasahasram, B., Reddy, C. K., Li, Y. & Lanfear, D. E. Joint impact of clinical and behavioral variables on the risk of unplanned readmission and death after a heart failure hospitalization. PloS one 10, e0129553, doi:10.1371/journal.pone.0129553 (2015).
    • (2015) Plos One , vol.10
    • Padhukasahasram, B.1    Reddy, C.K.2    Li, Y.3    Lanfear, D.E.4
  • 11
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: A systematic review
    • Kansagara, D. et al. Risk prediction models for hospital readmission: a systematic review. JAMA: the journal of the American Medical Association 306, 1688-1698, doi:10.1001/jama.2011.1515 (2011).
    • (2011) JAMA: The Journal of The American Medical Association , vol.306 , pp. 1688-1698
    • Kansagara, D.1
  • 12
    • 84927754322 scopus 로고    scopus 로고
    • Predicting readmission of heart failure patients using automated follow-up calls
    • Inouye, S. et al. Predicting readmission of heart failure patients using automated follow-up calls. BMC medical informatics and decision making 15, 22, doi:10.1186/s12911-015-0144-8 (2015).
    • (2015) BMC Medical Informatics and Decision Making , vol.15 , pp. 22
    • Inouye, S.1
  • 13
    • 84907186698 scopus 로고    scopus 로고
    • The role of continuous care in reducing readmission for patients with heart failure
    • Adib-Hajbaghery, M., Maghaminejad, F. & Abbasi, A. The role of continuous care in reducing readmission for patients with heart failure. J Caring Sci 2, 255-267, doi:10.5681/jcs.2013.031 (2013).
    • (2013) J Caring Sci , vol.2 , pp. 255-267
    • Adib-Hajbaghery, M.1    Maghaminejad, F.2    Abbasi, A.3
  • 14
    • 40649118759 scopus 로고    scopus 로고
    • Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: The COMPASS-HF study
    • Bourge, R. C. et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol 51, 1073-1079, doi:10.1016/j.jacc.2007.10.061 (2008).
    • (2008) J am Coll Cardiol , vol.51 , pp. 1073-1079
    • Bourge, R.C.1
  • 15
    • 84871019444 scopus 로고    scopus 로고
    • Development of a method to risk stratify patients with heart failure for 30-day readmission using implantable device diagnostics
    • Whellan, D. J. et al. Development of a method to risk stratify patients with heart failure for 30-day readmission using implantable device diagnostics. Am J Cardiol 111, 79-84, doi:10.1016/j.amjcard.2012.08.050 (2013).
    • (2013) Am J Cardiol , vol.111 , pp. 79-84
    • Whellan, D.J.1
  • 18
    • 34047158822 scopus 로고    scopus 로고
    • BioWeka--extending the Weka framework for bioinformatics
    • Gewehr, J. E., Szugat, M. & Zimmer, R. BioWeka--extending the Weka framework for bioinformatics. Bioinformatics 23, 651-653, doi:10.1093/bioinformatics/btl671 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 651-653
    • Gewehr, J.E.1    Szugat, M.2    Zimmer, R.3
  • 19
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA Data Mining Software: An Update
    • Hall, M. et al. The WEKA Data Mining Software: An Update. SIGKDD Explor Newsl 11, 10-18 (2009).
    • (2009) SIGKDD Explor Newsl , vol.11 , pp. 10-18
    • Hall, M.1
  • 21
    • 84961671416 scopus 로고    scopus 로고
    • Introducing Machine Learning Concepts with WEKA
    • Smith, T. C. & Frank, E. Introducing Machine Learning Concepts with WEKA. Methods Mol Biol 1418, 353-378, doi:10.1007/978-1-4939-3578-9_17 (2016).
    • (2016) Methods Mol Biol , vol.1418 , pp. 353-378
    • Smith, T.C.1    Frank, E.2
  • 22
    • 33745561205 scopus 로고    scopus 로고
    • Andr, #233 & Elisseeff. An introduction to variable and feature selection
    • Guyon, I., Andr, #233 & Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182 (2003).
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1
  • 24
    • 33846502069 scopus 로고    scopus 로고
    • Carvedilol: Use in chronic heart failure
    • Doughty, R. N. & White, H. D. Carvedilol: use in chronic heart failure. Expert Rev Cardiovasc Ther 5, 21-31, doi:10.1586/14779072.5.1.21 (2007).
    • (2007) Expert Rev Cardiovasc Ther , vol.5 , pp. 21-31
    • Doughty, R.N.1    White, H.D.2
  • 25
    • 0038320821 scopus 로고    scopus 로고
    • Psychosocial issues in patients with congestive heart failure
    • Richardson, L. G. Psychosocial issues in patients with congestive heart failure. Prog Cardiovasc Nurs 18, 19-27 (2003).
    • (2003) Prog Cardiovasc Nurs , vol.18 , pp. 19-27
    • Richardson, L.G.1
  • 26
    • 0036187398 scopus 로고    scopus 로고
    • Psychological factors in heart failure: A review of the literature
    • MacMahon, K. M. & Lip, G. Y. Psychological factors in heart failure: a review of the literature. Arch Intern Med 162, 509-516 (2002).
    • (2002) Arch Intern Med , vol.162 , pp. 509-516
    • Macmahon, K.M.1    Lip, G.Y.2
  • 27
    • 33846283839 scopus 로고    scopus 로고
    • Psychological factors and treatment adherence behavior in patients with chronic heart failure
    • Schweitzer, R. D., Head, K. & Dwyer, J. W. Psychological factors and treatment adherence behavior in patients with chronic heart failure. J Cardiovasc Nurs 22, 76-83 (2007).
    • (2007) J Cardiovasc Nurs , vol.22 , pp. 76-83
    • Schweitzer, R.D.1    Head, K.2    Dwyer, J.W.3
  • 28
    • 33749245283 scopus 로고    scopus 로고
    • Psychological and social factors that correlate with dyspnea in heart failure
    • Ramasamy, R. et al. Psychological and social factors that correlate with dyspnea in heart failure. Psychosomatics 47, 430-434, doi:10.1176/appi.psy.47.5.430 (2006).
    • (2006) Psychosomatics , vol.47 , pp. 430-434
    • Ramasamy, R.1
  • 29
    • 0035810983 scopus 로고    scopus 로고
    • Glycemic control and heart failure among adult patients with diabetes
    • Iribarren, C. et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 103, 2668-2673 (2001).
    • (2001) Circulation , vol.103 , pp. 2668-2673
    • Iribarren, C.1
  • 30
    • 84938596257 scopus 로고    scopus 로고
    • A comparison of models for predicting early hospital readmissions
    • Futoma, J., Morris, J. & Lucas, J. A comparison of models for predicting early hospital readmissions. J Biomed Inform 56, 229-238, doi:10.1016/j.jbi.2015.05.016 (2015).
    • (2015) J Biomed Inform , vol.56 , pp. 229-238
    • Futoma, J.1    Morris, J.2    Lucas, J.3
  • 31
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444, doi:10.1038/nature14539 (2015).
    • (2015) Nature , vol.521 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 32
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw 61, 85-117, doi:10.1016/j.neunet.2014.09.003 (2015).
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 33
    • 84968813824 scopus 로고    scopus 로고
    • Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
    • Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep 6, 26094, doi:10.1038/srep26094 (2016).
    • (2016) Sci Rep , vol.6 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 35
    • 84975795358 scopus 로고    scopus 로고
    • Cognitive Machine Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy
    • Sengupta, P. P. et al. Cognitive Machine Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circ Cardiovasc Imaging 9, doi:10.1161/CIRCIMAGING.115.004330 (2016).
    • (2016) Circ Cardiovasc Imaging , vol.9
    • Sengupta, P.P.1
  • 36
    • 84973352430 scopus 로고    scopus 로고
    • Data-Driven Identification of Risk Factors of Patient Satisfaction at a Large Urban Academic Medical Center
    • Li, L., Lee, N. J., Glicksberg, B. S., Radbill, B. D. & Dudley, J. T. Data-Driven Identification of Risk Factors of Patient Satisfaction at a Large Urban Academic Medical Center. PLoS One 11, e0156076, doi:10.1371/journal.pone.0156076 (2016).
    • (2016) Plos One , vol.11
    • Li, L.1    Lee, N.J.2    Glicksberg, B.S.3    Radbill, B.D.4    Dudley, J.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.