-
1
-
-
84891858260
-
A genome-and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects
-
Shameer, K. et al. A genome-and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 133, 95-109, doi:10.1007/s00439-013-1355-7 (2014).
-
(2014)
Hum Genet
, vol.133
, pp. 95-109
-
-
Shameer, K.1
-
2
-
-
84971212642
-
An integrative pipeline for multi-modal discovery of disease relationships
-
Glicksberg, B. S. et al. An integrative pipeline for multi-modal discovery of disease relationships. Pac Symp Biocomput, 407-418 (2015).
-
(2015)
Pac Symp Biocomput
, pp. 407-418
-
-
Glicksberg, B.S.1
-
3
-
-
84962218879
-
EHDViz: Clinical dashboard development using open-source technologies
-
Badgeley, M. A. et al. EHDViz: clinical dashboard development using open-source technologies. BMJ Open 6, e010579, doi:10.1136/bmjopen-2015-010579 (2016).
-
(2016)
BMJ Open
, vol.6
-
-
Badgeley, M.A.1
-
4
-
-
85015886887
-
Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
-
Shameer, K. et al. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform, doi:10.1093/bib/bbv118 (2016).
-
(2016)
Brief Bioinform
-
-
Shameer, K.1
-
5
-
-
84929095380
-
Using "big data" to capture overall health status: Properties and predictive value of a claims-based health risk score
-
Hamad, R., Modrek, S., Kubo, J., Goldstein, B. A. & Cullen, M. R. Using "big data" to capture overall health status: properties and predictive value of a claims-based health risk score. PloS one 10, e0126054, doi:10.1371/journal.pone.0126054 (2015).
-
(2015)
Plos One
, vol.10
-
-
Hamad, R.1
Modrek, S.2
Kubo, J.3
Goldstein, B.A.4
Cullen, M.R.5
-
6
-
-
84905981088
-
Creating value in health care through big data: Opportunities and policy implications
-
Roski, J., Bo-Linn, G. W. & Andrews, T. A. Creating value in health care through big data: opportunities and policy implications. Health affairs 33, 1115-1122, doi:10.1377/hlthaff.2014.0147 (2014).
-
(2014)
Health Affairs
, vol.33
, pp. 1115-1122
-
-
Roski, J.1
Bo-Linn, G.W.2
Andrews, T.A.3
-
7
-
-
78549246207
-
Phenomics: The next challenge
-
Houle, D., Govindaraju, D. R. & Omholt, S. Phenomics: the next challenge. Nat Rev Genet 11, 855-866, doi:10.1038/nrg2897 (2010).
-
(2010)
Nat Rev Genet
, vol.11
, pp. 855-866
-
-
Houle, D.1
Govindaraju, D.R.2
Omholt, S.3
-
8
-
-
79952534013
-
How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging
-
Karasik, D. How pleiotropic genetics of the musculoskeletal system can inform genomics and phenomics of aging. Age (Dordr) 33, 49-62, doi:10.1007/s11357-010-9159-3 (2011).
-
(2011)
Age (Dordr)
, vol.33
, pp. 49-62
-
-
Karasik, D.1
-
9
-
-
84891624900
-
Prediction of 30-day heart failure-specific readmission risk by echocardiographic parameters
-
Thavendiranathan, P. et al. Prediction of 30-day heart failure-specific readmission risk by echocardiographic parameters. Am J Cardiol 113, 335-341, doi:10.1016/j.amjcard.2013.09.025 (2014).
-
(2014)
Am J Cardiol
, vol.113
, pp. 335-341
-
-
Thavendiranathan, P.1
-
10
-
-
84934948746
-
Joint impact of clinical and behavioral variables on the risk of unplanned readmission and death after a heart failure hospitalization
-
Padhukasahasram, B., Reddy, C. K., Li, Y. & Lanfear, D. E. Joint impact of clinical and behavioral variables on the risk of unplanned readmission and death after a heart failure hospitalization. PloS one 10, e0129553, doi:10.1371/journal.pone.0129553 (2015).
-
(2015)
Plos One
, vol.10
-
-
Padhukasahasram, B.1
Reddy, C.K.2
Li, Y.3
Lanfear, D.E.4
-
11
-
-
80054764509
-
Risk prediction models for hospital readmission: A systematic review
-
Kansagara, D. et al. Risk prediction models for hospital readmission: a systematic review. JAMA: the journal of the American Medical Association 306, 1688-1698, doi:10.1001/jama.2011.1515 (2011).
-
(2011)
JAMA: The Journal of The American Medical Association
, vol.306
, pp. 1688-1698
-
-
Kansagara, D.1
-
12
-
-
84927754322
-
Predicting readmission of heart failure patients using automated follow-up calls
-
Inouye, S. et al. Predicting readmission of heart failure patients using automated follow-up calls. BMC medical informatics and decision making 15, 22, doi:10.1186/s12911-015-0144-8 (2015).
-
(2015)
BMC Medical Informatics and Decision Making
, vol.15
, pp. 22
-
-
Inouye, S.1
-
13
-
-
84907186698
-
The role of continuous care in reducing readmission for patients with heart failure
-
Adib-Hajbaghery, M., Maghaminejad, F. & Abbasi, A. The role of continuous care in reducing readmission for patients with heart failure. J Caring Sci 2, 255-267, doi:10.5681/jcs.2013.031 (2013).
-
(2013)
J Caring Sci
, vol.2
, pp. 255-267
-
-
Adib-Hajbaghery, M.1
Maghaminejad, F.2
Abbasi, A.3
-
14
-
-
40649118759
-
Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: The COMPASS-HF study
-
Bourge, R. C. et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol 51, 1073-1079, doi:10.1016/j.jacc.2007.10.061 (2008).
-
(2008)
J am Coll Cardiol
, vol.51
, pp. 1073-1079
-
-
Bourge, R.C.1
-
15
-
-
84871019444
-
Development of a method to risk stratify patients with heart failure for 30-day readmission using implantable device diagnostics
-
Whellan, D. J. et al. Development of a method to risk stratify patients with heart failure for 30-day readmission using implantable device diagnostics. Am J Cardiol 111, 79-84, doi:10.1016/j.amjcard.2012.08.050 (2013).
-
(2013)
Am J Cardiol
, vol.111
, pp. 79-84
-
-
Whellan, D.J.1
-
16
-
-
85048425089
-
-
AAAI Press, Bellevue, Washington
-
Hosseinzadeh, A., Izadi, M., Verma, A., Precup, D. & Buckeridge, D. in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence 1532-1538 (AAAI Press, Bellevue, Washington, 2013).
-
(2013)
In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence 1532-1538
-
-
Hosseinzadeh, A.1
Izadi, M.2
Verma, A.3
Precup, D.4
Buckeridge, D.5
-
17
-
-
85007518124
-
Predictive risk modelling for early hospital readmission of patients with diabetes in India
-
Duggal, R., Shukla, S., Chandra, S., Shukla, B. & Khatri, S. K. Predictive risk modelling for early hospital readmission of patients with diabetes in India. International Journal of Diabetes in Developing Countries, 1-10, doi:10.1007/s13410-016-0511-8 (2016).
-
(2016)
International Journal of Diabetes in Developing Countries
, pp. 1-10
-
-
Duggal, R.1
Shukla, S.2
Chandra, S.3
Shukla, B.4
Khatri, S.K.5
-
18
-
-
34047158822
-
BioWeka--extending the Weka framework for bioinformatics
-
Gewehr, J. E., Szugat, M. & Zimmer, R. BioWeka--extending the Weka framework for bioinformatics. Bioinformatics 23, 651-653, doi:10.1093/bioinformatics/btl671 (2007).
-
(2007)
Bioinformatics
, vol.23
, pp. 651-653
-
-
Gewehr, J.E.1
Szugat, M.2
Zimmer, R.3
-
19
-
-
76749092270
-
The WEKA Data Mining Software: An Update
-
Hall, M. et al. The WEKA Data Mining Software: An Update. SIGKDD Explor Newsl 11, 10-18 (2009).
-
(2009)
SIGKDD Explor Newsl
, vol.11
, pp. 10-18
-
-
Hall, M.1
-
20
-
-
84875072637
-
A WEKA interface for fMRI data
-
Pyka, M., Balz, A., Jansen, A., Krug, A. & Hullermeier, E. A WEKA interface for fMRI data. Neuroinformatics 10, 409-413, doi:10.1007/s12021-012-9144-3 (2012).
-
(2012)
Neuroinformatics
, vol.10
, pp. 409-413
-
-
Pyka, M.1
Balz, A.2
Jansen, A.3
Krug, A.4
Hullermeier, E.5
-
21
-
-
84961671416
-
Introducing Machine Learning Concepts with WEKA
-
Smith, T. C. & Frank, E. Introducing Machine Learning Concepts with WEKA. Methods Mol Biol 1418, 353-378, doi:10.1007/978-1-4939-3578-9_17 (2016).
-
(2016)
Methods Mol Biol
, vol.1418
, pp. 353-378
-
-
Smith, T.C.1
Frank, E.2
-
22
-
-
33745561205
-
Andr, #233 & Elisseeff. An introduction to variable and feature selection
-
Guyon, I., Andr, #233 & Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182 (2003).
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
-
24
-
-
33846502069
-
Carvedilol: Use in chronic heart failure
-
Doughty, R. N. & White, H. D. Carvedilol: use in chronic heart failure. Expert Rev Cardiovasc Ther 5, 21-31, doi:10.1586/14779072.5.1.21 (2007).
-
(2007)
Expert Rev Cardiovasc Ther
, vol.5
, pp. 21-31
-
-
Doughty, R.N.1
White, H.D.2
-
25
-
-
0038320821
-
Psychosocial issues in patients with congestive heart failure
-
Richardson, L. G. Psychosocial issues in patients with congestive heart failure. Prog Cardiovasc Nurs 18, 19-27 (2003).
-
(2003)
Prog Cardiovasc Nurs
, vol.18
, pp. 19-27
-
-
Richardson, L.G.1
-
26
-
-
0036187398
-
Psychological factors in heart failure: A review of the literature
-
MacMahon, K. M. & Lip, G. Y. Psychological factors in heart failure: a review of the literature. Arch Intern Med 162, 509-516 (2002).
-
(2002)
Arch Intern Med
, vol.162
, pp. 509-516
-
-
Macmahon, K.M.1
Lip, G.Y.2
-
27
-
-
33846283839
-
Psychological factors and treatment adherence behavior in patients with chronic heart failure
-
Schweitzer, R. D., Head, K. & Dwyer, J. W. Psychological factors and treatment adherence behavior in patients with chronic heart failure. J Cardiovasc Nurs 22, 76-83 (2007).
-
(2007)
J Cardiovasc Nurs
, vol.22
, pp. 76-83
-
-
Schweitzer, R.D.1
Head, K.2
Dwyer, J.W.3
-
28
-
-
33749245283
-
Psychological and social factors that correlate with dyspnea in heart failure
-
Ramasamy, R. et al. Psychological and social factors that correlate with dyspnea in heart failure. Psychosomatics 47, 430-434, doi:10.1176/appi.psy.47.5.430 (2006).
-
(2006)
Psychosomatics
, vol.47
, pp. 430-434
-
-
Ramasamy, R.1
-
29
-
-
0035810983
-
Glycemic control and heart failure among adult patients with diabetes
-
Iribarren, C. et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 103, 2668-2673 (2001).
-
(2001)
Circulation
, vol.103
, pp. 2668-2673
-
-
Iribarren, C.1
-
30
-
-
84938596257
-
A comparison of models for predicting early hospital readmissions
-
Futoma, J., Morris, J. & Lucas, J. A comparison of models for predicting early hospital readmissions. J Biomed Inform 56, 229-238, doi:10.1016/j.jbi.2015.05.016 (2015).
-
(2015)
J Biomed Inform
, vol.56
, pp. 229-238
-
-
Futoma, J.1
Morris, J.2
Lucas, J.3
-
31
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444, doi:10.1038/nature14539 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
32
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw 61, 85-117, doi:10.1016/j.neunet.2014.09.003 (2015).
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
33
-
-
84968813824
-
Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
-
Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep 6, 26094, doi:10.1038/srep26094 (2016).
-
(2016)
Sci Rep
, vol.6
, pp. 26094
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
-
34
-
-
84976480079
-
Comparative Analyses of Population-scale Phenomic Data in Electronic Medical Records Reveal Race-specific Disease Networks
-
Benjamin S. Glicksberg, Marcus A. Badgeley, Khader Shameer, Roman Kosoy, Noam D. Beckmann, Nam Pho, Jörg Hakenberg, Meng Ma, Kristin L. Ayers, Gabriel E. Hoffman, Shuyu Dan Li, Eric E. Schadt, Chirag J. Patel, Rong Chen, and Joel T. Dudley. Comparative Analyses of Population-scale Phenomic Data in Electronic Medical Records Reveal Race-specific Disease Networks. Bioinformatics ISCB Special Issue, doi:10.1093/bioinformatics/btw282 (2016).
-
(2016)
Bioinformatics ISCB Special Issue
-
-
Glicksberg, B.S.1
Badgeley, M.A.2
Shameer, K.3
Kosoy, R.4
Beckmann, N.D.5
Pho, N.6
Hakenberg, J.7
Ma, M.8
Ayers, K.L.9
Hoffman, G.E.10
Li, S.D.11
Schadt, E.E.12
Patel, C.J.13
Chen, R.14
Dudley, J.T.15
-
35
-
-
84975795358
-
Cognitive Machine Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy
-
Sengupta, P. P. et al. Cognitive Machine Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circ Cardiovasc Imaging 9, doi:10.1161/CIRCIMAGING.115.004330 (2016).
-
(2016)
Circ Cardiovasc Imaging
, vol.9
-
-
Sengupta, P.P.1
-
36
-
-
84973352430
-
Data-Driven Identification of Risk Factors of Patient Satisfaction at a Large Urban Academic Medical Center
-
Li, L., Lee, N. J., Glicksberg, B. S., Radbill, B. D. & Dudley, J. T. Data-Driven Identification of Risk Factors of Patient Satisfaction at a Large Urban Academic Medical Center. PLoS One 11, e0156076, doi:10.1371/journal.pone.0156076 (2016).
-
(2016)
Plos One
, vol.11
-
-
Li, L.1
Lee, N.J.2
Glicksberg, B.S.3
Radbill, B.D.4
Dudley, J.T.5
|