메뉴 건너뛰기




Volumn 24, Issue 9, 2018, Pages 1342-1350

Clinically applicable deep learning for diagnosis and referral in retinal disease

(34)  De Fauw, Jeffrey a   Ledsam, Joseph R a   Romera Paredes, Bernardino a   Nikolov, Stanislav a   Tomasev, Nenad a   Blackwell, Sam a   Askham, Harry a   Glorot, Xavier a   O’Donoghue, Brendan a   Visentin, Daniel a   van den Driessche, George a   Lakshminarayanan, Balaji a   Meyer, Clemens a   Mackinder, Faith a   Bouton, Simon a   Ayoub, Kareem a   Chopra, Reena b   King, Dominic a   Karthikesalingam, Alan a   Hughes, Cían O a,c   more..


Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; DEEP LEARNING; DIAGNOSTIC IMAGING; HUMAN; OPTICAL COHERENCE TOMOGRAPHY; PATIENT REFERRAL; PRIORITY JOURNAL; RETINA DISEASE; THREE DIMENSIONAL IMAGING; AGED; CLINICAL DECISION MAKING; FEMALE; MALE; MIDDLE AGED; PATHOLOGY; RETINA;

EID: 85052522615     PISSN: 10788956     EISSN: 1546170X     Source Type: Journal    
DOI: 10.1038/s41591-018-0107-6     Document Type: Article
Times cited : (1968)

References (43)
  • 3
    • 85044554179 scopus 로고    scopus 로고
    • Surveillance of sight loss due to delay in ophthalmic treatment or review: frequency, cause and outcome
    • PID: 28128796
    • Foot, B. & MacEwen, C. Surveillance of sight loss due to delay in ophthalmic treatment or review: frequency, cause and outcome. Eye 31, 771–775 (2017)
    • (2017) Eye , vol.31 , pp. 771-775
    • Foot, B.1    MacEwen, C.2
  • 4
    • 84860218671 scopus 로고    scopus 로고
    • The estimated prevalence and incidence of late stage age related macular degeneration in the UK
    • PID: 22329913
    • Owen, C. G. et al. The estimated prevalence and incidence of late stage age related macular degeneration in the UK. Br. J. Ophthalmol. 96, 752–756 (2012)
    • (2012) Br. J. Ophthalmol. , vol.96 , pp. 752-756
    • Owen, C.G.1
  • 5
    • 84930753511 scopus 로고    scopus 로고
    • Incidence of late-stage age-related macular degeneration in American whites: systematic review and meta-analysis
    • PID: 25857680
    • Rudnicka, A. R. et al. Incidence of late-stage age-related macular degeneration in American whites: systematic review and meta-analysis. Am. J. Ophthalmol. 160, 85–93 (2015)
    • (2015) Am. J. Ophthalmol. , vol.160 , pp. 85-93
    • Rudnicka, A.R.1
  • 6
    • 85026628989 scopus 로고    scopus 로고
    • Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis
    • PID: 28779882
    • Bourne, R. R. A. et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health 5, e888–e897 (2017)
    • (2017) Lancet Glob. Health , vol.5 , pp. e888-e897
    • Bourne, R.R.A.1
  • 7
    • 85044561343 scopus 로고    scopus 로고
    • A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration
    • PID: 27886184
    • Schmidt-Erfurth, U., Klimscha, S., Waldstein, S. M. & Bogunović, H. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye 31, 26–44 (2017)
    • (2017) Eye , vol.31 , pp. 26-44
    • Schmidt-Erfurth, U.1    Klimscha, S.2    Waldstein, S.M.3    Bogunović, H.4
  • 8
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J. Am. Med. Assoc. 316, 2402–2410 (2016)
    • (2016) J. Am. Med. Assoc. , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 9
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • PID: 28117445
    • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115––118 (2017)
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 10
    • 0026254046 scopus 로고
    • Optical coherence tomography
    • PID: 1957169
    • Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991)
    • (1991) Science , vol.254 , pp. 1178-1181
    • Huang, D.1
  • 11
    • 85033476665 scopus 로고    scopus 로고
    • How to defuse a demographic time bomb: the way forward?
    • PID: 28622310
    • Buchan, J. C. et al. How to defuse a demographic time bomb: the way forward? Eye 31, 1519–1522 (2017)
    • (2017) Eye , vol.31 , pp. 1519-1522
    • Buchan, J.C.1
  • 12
    • 32444440211 scopus 로고    scopus 로고
    • A modeled economic analysis of a digital teleophthalmology system as used by three federal healthcare agencies for detecting proliferative diabetic retinopathy
    • PID: 16430383
    • Whited, J. D. et al. A modeled economic analysis of a digital teleophthalmology system as used by three federal healthcare agencies for detecting proliferative diabetic retinopathy. Telemed. J. E Health 11, 641–651 (2005)
    • (2005) Telemed. J. E Health , vol.11 , pp. 641-651
    • Whited, J.D.1
  • 15
    • 79955590384 scopus 로고    scopus 로고
    • Delay between medical indication to anti-VEGF treatment in age-related macular degeneration can result in a loss of visual acuity
    • PID: 20865421
    • Muether, P. S., Hermann, M. M., Koch, K. & Fauser, S. Delay between medical indication to anti-VEGF treatment in age-related macular degeneration can result in a loss of visual acuity. Graefes Arch. Clin. Exp. Ophthalmol. 249, 633–637 (2011)
    • (2011) Graefes Arch. Clin. Exp. Ophthalmol. , vol.249 , pp. 633-637
    • Muether, P.S.1    Hermann, M.M.2    Koch, K.3    Fauser, S.4
  • 16
    • 60149107965 scopus 로고    scopus 로고
    • Delay in treating age-related macular degeneration in Spain is associated with progressive vision loss
    • PID: 18202712
    • Arias, L. et al. Delay in treating age-related macular degeneration in Spain is associated with progressive vision loss. Eye 23, 326–333 (2009)
    • (2009) Eye , vol.23 , pp. 326-333
    • Arias, L.1
  • 17
    • 85011554665 scopus 로고    scopus 로고
    • Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration
    • PID: 28270969
    • Karri, S. P. K., Chakraborty, D. & Chatterjee, J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed. Opt. Express 8, 579–592 (2017)
    • (2017) Biomed. Opt. Express , vol.8 , pp. 579-592
    • Karri, S.P.K.1    Chakraborty, D.2    Chatterjee, J.3
  • 19
    • 84891629452 scopus 로고    scopus 로고
    • Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography
    • PID: 23993787
    • Farsiu, S. et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology 121, 162–172 (2014)
    • (2014) Ophthalmology , vol.121 , pp. 162-172
    • Farsiu, S.1
  • 20
    • 84942367248 scopus 로고    scopus 로고
    • Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images
    • PID: 25360373
    • Srinivasan, P. P. et al. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed. Opt. Express 5, 3568–3577 (2014)
    • (2014) Biomed. Opt. Express , vol.5 , pp. 3568-3577
    • Srinivasan, P.P.1
  • 21
    • 85027881492 scopus 로고    scopus 로고
    • Deep learning is effective for classifying normal versus age-related macular degeneration OCT images
    • Lee, C. S., Baughman, D. M. & Lee, A. Y. Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retin. 1, 322–327 (2017)
    • (2017) Ophthalmol. Retin. , vol.1 , pp. 322-327
    • Lee, C.S.1    Baughman, D.M.2    Lee, A.Y.3
  • 22
    • 85019034945 scopus 로고    scopus 로고
    • Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
    • PID: 28663902
    • Fang, L. et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8, 2732–2744 (2017)
    • (2017) Biomed. Opt. Express , vol.8 , pp. 2732-2744
    • Fang, L.1
  • 23
    • 85023600747 scopus 로고    scopus 로고
    • Deep-learning based, automated segmentation of macular edema in optical coherence tomography
    • PID: 28717579
    • Lee, C. S. et al. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed. Opt. Express 8, 3440–3448 (2017)
    • (2017) Biomed. Opt. Express , vol.8 , pp. 3440-3448
    • Lee, C.S.1
  • 25
    • 85026815234 scopus 로고    scopus 로고
    • ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional network
    • PID: 28856040
    • Roy, A. G. et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional network. Biomed. Opt. Express 8, 3627–3642 (2017)
    • (2017) Biomed. Opt. Express , vol.8 , pp. 3627-3642
    • Roy, A.G.1
  • 26
    • 84990235978 scopus 로고    scopus 로고
    • Can we open the black box of AI?
    • PID: 27708329
    • Castelvecchi, D. Can we open the black box of AI? Nature 538, 20–23 (2016)
    • (2016) Nature , vol.538 , pp. 20-23
    • Castelvecchi, D.1
  • 27
    • 85070485567 scopus 로고    scopus 로고
    • Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration
    • Schmidt-Erfurth, U. et al. Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmol. Retin. 2, 24–30 (2018)
    • (2018) Ophthalmol. Retin. , vol.2 , pp. 24-30
    • Schmidt-Erfurth, U.1
  • 28
    • 85044656432 scopus 로고    scopus 로고
    • Fully automated detection and quantification of macular fluid in OCT using deep learning
    • PID: 29224926
    • Schlegl, T. et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125, 549–558 (2018)
    • (2018) Ophthalmology , vol.125 , pp. 549-558
    • Schlegl, T.1
  • 29
    • 79955035675 scopus 로고    scopus 로고
    • Predicting visual outcomes for macular disease using optical coherence tomography
    • PID: 23960916
    • Keane, P. A. & Sadda, S. R. Predicting visual outcomes for macular disease using optical coherence tomography. Saudi J. Ophthalmol. 25, 145–158 (2011)
    • (2011) Saudi J. Ophthalmol. , vol.25 , pp. 145-158
    • Keane, P.A.1    Sadda, S.R.2
  • 30
    • 84959483860 scopus 로고    scopus 로고
    • Anatomic clinical trial endpoints for nonexudative age-related macular degeneration
    • PID: 26952592
    • Schaal, K. B., Rosenfeld, P. J., Gregori, G., Yehoshua, Z. & Feuer, W. J. Anatomic clinical trial endpoints for nonexudative age-related macular degeneration. Ophthalmology 123, 1060–1079 (2016)
    • (2016) Ophthalmology , vol.123 , pp. 1060-1079
    • Schaal, K.B.1    Rosenfeld, P.J.2    Gregori, G.3    Yehoshua, Z.4    Feuer, W.J.5
  • 31
    • 84955388945 scopus 로고    scopus 로고
    • A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration
    • PID: 26307399
    • Schmidt-Erfurth, U. & Waldstein, S. M. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog. Retin. Eye Res. 50, 1–24 (2016)
    • (2016) Prog. Retin. Eye Res. , vol.50 , pp. 1-24
    • Schmidt-Erfurth, U.1    Waldstein, S.M.2
  • 32
    • 85019864691 scopus 로고    scopus 로고
    • Decade-long profile of imaging biomarker use in ophthalmic clinical trials
    • PID: 28525561
    • Villani, E. et al. Decade-long profile of imaging biomarker use in ophthalmic clinical trials. Invest. Ophthalmol. Vis. Sci. 58, BIO76–BIO81 (2017)
    • (2017) Invest. Ophthalmol. Vis. Sci. , vol.58 , pp. BIO76-BIO81
    • Villani, E.1
  • 34
    • 84862520770 scopus 로고    scopus 로고
    • Fiji: an open-source platform for biological-image analysis
    • PID: 22743772
    • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012)
    • (2012) Nat. Methods , vol.9 , pp. 676-682
    • Schindelin, J.1
  • 35
    • 84865157285 scopus 로고    scopus 로고
    • Evaluation of age-related macular degeneration with optical coherence tomography
    • PID: 22898648
    • Keane, P. A. et al. Evaluation of age-related macular degeneration with optical coherence tomography. Surv. Ophthalmol. 57, 389–414 (2012)
    • (2012) Surv. Ophthalmol. , vol.57 , pp. 389-414
    • Keane, P.A.1
  • 36
    • 84908120309 scopus 로고    scopus 로고
    • Comparison of optical coherence tomography assessments in the comparison of age-related macular degeneration treatments trials
    • PID: 24835760
    • Folgar, F. A. et al. Comparison of optical coherence tomography assessments in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121, 1956–1965 (2014)
    • (2014) Ophthalmology , vol.121 , pp. 1956-1965
    • Folgar, F.A.1
  • 43
    • 85010976166 scopus 로고    scopus 로고
    • Automated analysis of retinal imaging using machine learning techniques for computer vision
    • PID: 27830057
    • De Fauw, J. et al. Automated analysis of retinal imaging using machine learning techniques for computer vision. F1000Res 5, 1573 (2016)
    • (2016) F1000Res , vol.5 , pp. 1573
    • De Fauw, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.