-
1
-
-
84930576933
-
An unsupervised feature learning framework for basal cell carcinoma image analysis
-
Arevalo, J., Cruz-Roa, A., Arias, V., Romero, E., Gonzalez, F.A., An unsupervised feature learning framework for basal cell carcinoma image analysis. Artif Intell Med 64 (2015), 131–145.
-
(2015)
Artif Intell Med
, vol.64
, pp. 131-145
-
-
Arevalo, J.1
Cruz-Roa, A.2
Arias, V.3
Romero, E.4
Gonzalez, F.A.5
-
2
-
-
85038431889
-
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
-
Bejnordi, B.E., Veta, M., van Diest, P.J., van Ginneken, B., Karssemeijer, N., Litjens, G., et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318 (2017), 2199–2210.
-
(2017)
JAMA
, vol.318
, pp. 2199-2210
-
-
Bejnordi, B.E.1
Veta, M.2
van Diest, P.J.3
van Ginneken, B.4
Karssemeijer, N.5
Litjens, G.6
-
3
-
-
0028282629
-
Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study
-
Binder, M., Steiner, A., Schwarz, M., Knollmayer, S., Wolff, K., Pehamberger, H., Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study. Br J Dermatol 13 (1994), 460–465.
-
(1994)
Br J Dermatol
, vol.13
, pp. 460-465
-
-
Binder, M.1
Steiner, A.2
Schwarz, M.3
Knollmayer, S.4
Wolff, K.5
Pehamberger, H.6
-
4
-
-
85048385180
-
-
An analysis of deep neural network models for practical applications,; 2016 (accessed 14 April 2017).
-
Canziani A, Paszke A, Culurciello E. An analysis of deep neural network models for practical applications, https://arxiv.org/abs/1605.07678; 2016 (accessed 14 April 2017).
-
-
-
Canziani, A.1
Paszke, A.2
Culurciello, E.3
-
5
-
-
85023165265
-
Deep learning ensembles for melanoma recognition in dermoscopy images
-
Codella, N., Nguyen, Q.-B., Pankanti, S., Gutman, D., Helba, B., Halpern, A., et al. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev, 61(4), 2017.
-
(2017)
IBM J Res Dev
, vol.61
, Issue.4
-
-
Codella, N.1
Nguyen, Q.-B.2
Pankanti, S.3
Gutman, D.4
Helba, B.5
Halpern, A.6
-
6
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:7639 (2017), 115–118.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
Ko, J.4
Swetter, S.M.5
Blau, H.M.6
-
7
-
-
84930181190
-
MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images
-
Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N., MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst Appl 42 (2015), 6578–6585.
-
(2015)
Expert Syst Appl
, vol.42
, pp. 6578-6585
-
-
Giotis, I.1
Molders, N.2
Land, S.3
Biehl, M.4
Jonkman, M.F.5
Petkov, N.6
-
8
-
-
84862294866
-
Deep sparse rectifier neural networks
-
Glorot, X., Bordes, A., Bengio, Y., Deep sparse rectifier neural networks. J Machine Learn Res 15 (2011), 315–323.
-
(2011)
J Machine Learn Res
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
9
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
-
10
-
-
85040794196
-
Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network
-
Han, S.S., Park, G.H., Lim, W., Kim, M.S., Na, J.I., Park, I., et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS One, 13(1), 2018, e0191493.
-
(2018)
PLoS One
, vol.13
, Issue.1
, pp. e0191493
-
-
Han, S.S.1
Park, G.H.2
Lim, W.3
Kim, M.S.4
Na, J.I.5
Park, I.6
-
11
-
-
85048395226
-
-
Delving deep into rectifiers: surpassing human-level performance on ImageNet classification,; 2015 (accessed 6 February 2015).
-
He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, https://arxiv.org/abs/1502.01852; 2015 (accessed 6 February 2015).
-
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
85048450829
-
-
Batch normalization: accelerating deep network training by reducing internal covariate shift,; 2015 (accessed 6 February 2015).
-
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift, https://arxiv.org/pdf/1502.03167v3.pdf; 2015 (accessed 6 February 2015).
-
-
-
Ioffe, S.1
Szegedy, C.2
-
13
-
-
0029988115
-
Epidemiology and prognosis of subungual melanoma in 34 Japanese patients
-
Kato, T., Suetake, T., Sugiyama, Y., Tabata, N., Tagami, H., Epidemiology and prognosis of subungual melanoma in 34 Japanese patients. Br J Dermatol 134 (1996), 383–387.
-
(1996)
Br J Dermatol
, vol.134
, pp. 383-387
-
-
Kato, T.1
Suetake, T.2
Sugiyama, Y.3
Tabata, N.4
Tagami, H.5
-
14
-
-
77954265971
-
Skin cancer in asians: part 1: nonmelanoma skin cancer
-
Kim, G.K., Del Rosso, J.Q., Bellew, S., Skin cancer in asians: part 1: nonmelanoma skin cancer. J Clin Aesthet Dermatol 2:8 (2009), 39–42.
-
(2009)
J Clin Aesthet Dermatol
, vol.2
, Issue.8
, pp. 39-42
-
-
Kim, G.K.1
Del Rosso, J.Q.2
Bellew, S.3
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25 (2012), 1097–1105.
-
(2012)
Adv Neural Inf Process Syst
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc IEEE 86 (1998), 2278–2324.
-
(1998)
Proc IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
17
-
-
85048413882
-
-
A deep learning approach to universal skin disease classification. University of Rochester Department of Computer Science, CSC 400 graduate problem seminar, project report.; 2015 (accessed 18 February 2018).
-
Liao H. A deep learning approach to universal skin disease classification. University of Rochester Department of Computer Science, CSC 400 graduate problem seminar, project report. https://www.semanticscholar.org/paper/A-Deep-Learning-Approach-to-Universal-Skin-Disease-Liao/af34fc0aebff011b56ede8f46ca0787cfb1324ac; 2015 (accessed 18 February 2018).
-
-
-
Liao, H.1
-
18
-
-
85019114938
-
-
Skin disease classification versus skin lesion characterization: achieving robust diagnosis using multi-label deep neural networks. In: Pattern Recognition (ICPR) 23rd International Conference on IEEE;2
-
Liao H, Li Y, Luo J. Skin disease classification versus skin lesion characterization: achieving robust diagnosis using multi-label deep neural networks. In: Pattern Recognition (ICPR), 2016 23rd International Conference on IEEE;2016:355-360.
-
(2016)
, vol.16
, pp. 355-360
-
-
Liao, H.1
Li, Y.2
Luo, J.3
-
19
-
-
85046086095
-
-
A deep multitask learning approach to skin lesion classification. Presented at: AAAI 2017 Joint Workshop on Health Intelligence. 4–5 February 2017; San Francisco, CA.
-
Liao H, Li J. A deep multitask learning approach to skin lesion classification. Presented at: AAAI 2017 Joint Workshop on Health Intelligence. 4–5 February 2017; San Francisco, CA.
-
-
-
Liao, H.1
Li, J.2
-
20
-
-
84860322847
-
A systematic review of worldwide incidence of nonmelanoma skin cancer
-
Lomas, A., Leonardi-Bee, J., Bath-Hextall, F., A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166 (2012), 1069–1080.
-
(2012)
Br J Dermatol
, vol.166
, pp. 1069-1080
-
-
Lomas, A.1
Leonardi-Bee, J.2
Bath-Hextall, F.3
-
21
-
-
85048410242
-
-
CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning,; 2017 (accessed 25 December 2017).
-
Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning, https://arxiv.org/abs/1711.05225; 2017 (accessed 25 December 2017).
-
-
-
Rajpurkar, P.1
Irvin, J.2
Zhu, K.3
Yang, B.4
Mehta, H.5
Duan, T.6
-
22
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsk, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. ImageNet large scale visual recognition challenge. Int J Comput Vis 115 (2015), 211–252.
-
(2015)
Int J Comput Vis
, vol.115
, pp. 211-252
-
-
Russakovsk, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
-
23
-
-
85048434551
-
-
Grad-cam: why did you say that? visual explanations from deep networks via gradient-based localization,; 2016 (accessed 21 March 2017).
-
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: why did you say that? visual explanations from deep networks via gradient-based localization, https://arxiv.org/abs/1610.02391; 2016 (accessed 21 March 2017).
-
-
-
Selvaraju, R.R.1
Cogswell, M.2
Das, A.3
Vedantam, R.4
Parikh, D.5
Batra, D.6
-
24
-
-
85014032221
-
Colorectal cancer statistics, 2017
-
Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G., Barzi, A., et al. Colorectal cancer statistics, 2017. CA Cancer J Clin 67 (2017), 177–193.
-
(2017)
CA Cancer J Clin
, vol.67
, pp. 177-193
-
-
Siegel, R.L.1
Miller, K.D.2
Fedewa, S.A.3
Ahnen, D.J.4
Meester, R.G.5
Barzi, A.6
-
25
-
-
85048428419
-
-
Very deep convolutional networks for large-scale image recognition,; 2014 (accessed 23 December 2014).
-
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition, https://arxiv.org/abs/1409.1556; 2014 (accessed 23 December 2014).
-
-
-
Simonyan, K.1
Zisserman, A.2
-
26
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1 (2014), 1929–1958.
-
(2014)
J Mach Learn Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
27
-
-
85048403805
-
-
Going deeper with convolutions,; 2015 (accessed 17 September 2014).
-
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions, https://arxiv.org/abs/1409.4842; 2015 (accessed 17 September 2014).
-
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
|