메뉴 건너뛰기




Volumn 138, Issue 7, 2018, Pages 1529-1538

Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ACTINIC KERATOSIS; ADULT; AREA UNDER THE CURVE; ARTICLE; BASAL CELL CARCINOMA; CANCER CLASSIFICATION; CANCER DIAGNOSIS; CONTROLLED STUDY; DERMATOFIBROMA; DIAGNOSTIC TEST ACCURACY STUDY; FEMALE; HEMANGIOMA; HUMAN; LEARNING ALGORITHM; LENTIGO; MAJOR CLINICAL STUDY; MALE; MELANOMA; MIDDLE AGED; PIGMENTED NEVUS; PRIORITY JOURNAL; PYOGENIC GRANULOMA; RETROSPECTIVE STUDY; SEBORRHEIC KERATOSIS; SENSITIVITY AND SPECIFICITY; SKIN CARCINOMA; SKIN TUMOR; SQUAMOUS CELL SKIN CARCINOMA; VERRUCA VULGARIS; AGED; BIOPSY; DIAGNOSTIC IMAGING; DIFFERENTIAL DIAGNOSIS; FALSE POSITIVE RESULT; IMAGE PROCESSING; INFORMATION PROCESSING; PATHOLOGY; PHOTOGRAPHY; PREDICTIVE VALUE; PROCEDURES; RECEIVER OPERATING CHARACTERISTIC; SKIN; SOFTWARE; VALIDATION STUDY; VERY ELDERLY; YOUNG ADULT;

EID: 85044366134     PISSN: 0022202X     EISSN: 15231747     Source Type: Journal    
DOI: 10.1016/j.jid.2018.01.028     Document Type: Article
Times cited : (512)

References (27)
  • 1
    • 84930576933 scopus 로고    scopus 로고
    • An unsupervised feature learning framework for basal cell carcinoma image analysis
    • Arevalo, J., Cruz-Roa, A., Arias, V., Romero, E., Gonzalez, F.A., An unsupervised feature learning framework for basal cell carcinoma image analysis. Artif Intell Med 64 (2015), 131–145.
    • (2015) Artif Intell Med , vol.64 , pp. 131-145
    • Arevalo, J.1    Cruz-Roa, A.2    Arias, V.3    Romero, E.4    Gonzalez, F.A.5
  • 2
    • 85038431889 scopus 로고    scopus 로고
    • Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
    • Bejnordi, B.E., Veta, M., van Diest, P.J., van Ginneken, B., Karssemeijer, N., Litjens, G., et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318 (2017), 2199–2210.
    • (2017) JAMA , vol.318 , pp. 2199-2210
    • Bejnordi, B.E.1    Veta, M.2    van Diest, P.J.3    van Ginneken, B.4    Karssemeijer, N.5    Litjens, G.6
  • 3
    • 0028282629 scopus 로고
    • Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study
    • Binder, M., Steiner, A., Schwarz, M., Knollmayer, S., Wolff, K., Pehamberger, H., Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study. Br J Dermatol 13 (1994), 460–465.
    • (1994) Br J Dermatol , vol.13 , pp. 460-465
    • Binder, M.1    Steiner, A.2    Schwarz, M.3    Knollmayer, S.4    Wolff, K.5    Pehamberger, H.6
  • 4
    • 85048385180 scopus 로고    scopus 로고
    • An analysis of deep neural network models for practical applications,; 2016 (accessed 14 April 2017).
    • Canziani A, Paszke A, Culurciello E. An analysis of deep neural network models for practical applications, https://arxiv.org/abs/1605.07678; 2016 (accessed 14 April 2017).
    • Canziani, A.1    Paszke, A.2    Culurciello, E.3
  • 6
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:7639 (2017), 115–118.
    • (2017) Nature , vol.542 , Issue.7639 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6
  • 7
    • 84930181190 scopus 로고    scopus 로고
    • MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images
    • Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N., MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst Appl 42 (2015), 6578–6585.
    • (2015) Expert Syst Appl , vol.42 , pp. 6578-6585
    • Giotis, I.1    Molders, N.2    Land, S.3    Biehl, M.4    Jonkman, M.F.5    Petkov, N.6
  • 8
    • 84862294866 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks
    • Glorot, X., Bordes, A., Bengio, Y., Deep sparse rectifier neural networks. J Machine Learn Res 15 (2011), 315–323.
    • (2011) J Machine Learn Res , vol.15 , pp. 315-323
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 9
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3    Stumpe, M.C.4    Wu, D.5    Narayanaswamy, A.6
  • 10
    • 85040794196 scopus 로고    scopus 로고
    • Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network
    • Han, S.S., Park, G.H., Lim, W., Kim, M.S., Na, J.I., Park, I., et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS One, 13(1), 2018, e0191493.
    • (2018) PLoS One , vol.13 , Issue.1 , pp. e0191493
    • Han, S.S.1    Park, G.H.2    Lim, W.3    Kim, M.S.4    Na, J.I.5    Park, I.6
  • 11
    • 85048395226 scopus 로고    scopus 로고
    • Delving deep into rectifiers: surpassing human-level performance on ImageNet classification,; 2015 (accessed 6 February 2015).
    • He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, https://arxiv.org/abs/1502.01852; 2015 (accessed 6 February 2015).
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 12
    • 85048450829 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift,; 2015 (accessed 6 February 2015).
    • Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift, https://arxiv.org/pdf/1502.03167v3.pdf; 2015 (accessed 6 February 2015).
    • Ioffe, S.1    Szegedy, C.2
  • 13
    • 0029988115 scopus 로고    scopus 로고
    • Epidemiology and prognosis of subungual melanoma in 34 Japanese patients
    • Kato, T., Suetake, T., Sugiyama, Y., Tabata, N., Tagami, H., Epidemiology and prognosis of subungual melanoma in 34 Japanese patients. Br J Dermatol 134 (1996), 383–387.
    • (1996) Br J Dermatol , vol.134 , pp. 383-387
    • Kato, T.1    Suetake, T.2    Sugiyama, Y.3    Tabata, N.4    Tagami, H.5
  • 14
    • 77954265971 scopus 로고    scopus 로고
    • Skin cancer in asians: part 1: nonmelanoma skin cancer
    • Kim, G.K., Del Rosso, J.Q., Bellew, S., Skin cancer in asians: part 1: nonmelanoma skin cancer. J Clin Aesthet Dermatol 2:8 (2009), 39–42.
    • (2009) J Clin Aesthet Dermatol , vol.2 , Issue.8 , pp. 39-42
    • Kim, G.K.1    Del Rosso, J.Q.2    Bellew, S.3
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25 (2012), 1097–1105.
    • (2012) Adv Neural Inf Process Syst , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc IEEE 86 (1998), 2278–2324.
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 17
    • 85048413882 scopus 로고    scopus 로고
    • A deep learning approach to universal skin disease classification. University of Rochester Department of Computer Science, CSC 400 graduate problem seminar, project report.; 2015 (accessed 18 February 2018).
    • Liao H. A deep learning approach to universal skin disease classification. University of Rochester Department of Computer Science, CSC 400 graduate problem seminar, project report. https://www.semanticscholar.org/paper/A-Deep-Learning-Approach-to-Universal-Skin-Disease-Liao/af34fc0aebff011b56ede8f46ca0787cfb1324ac; 2015 (accessed 18 February 2018).
    • Liao, H.1
  • 18
    • 85019114938 scopus 로고    scopus 로고
    • Skin disease classification versus skin lesion characterization: achieving robust diagnosis using multi-label deep neural networks. In: Pattern Recognition (ICPR) 23rd International Conference on IEEE;2
    • Liao H, Li Y, Luo J. Skin disease classification versus skin lesion characterization: achieving robust diagnosis using multi-label deep neural networks. In: Pattern Recognition (ICPR), 2016 23rd International Conference on IEEE;2016:355-360.
    • (2016) , vol.16 , pp. 355-360
    • Liao, H.1    Li, Y.2    Luo, J.3
  • 19
    • 85046086095 scopus 로고    scopus 로고
    • A deep multitask learning approach to skin lesion classification. Presented at: AAAI 2017 Joint Workshop on Health Intelligence. 4–5 February 2017; San Francisco, CA.
    • Liao H, Li J. A deep multitask learning approach to skin lesion classification. Presented at: AAAI 2017 Joint Workshop on Health Intelligence. 4–5 February 2017; San Francisco, CA.
    • Liao, H.1    Li, J.2
  • 20
    • 84860322847 scopus 로고    scopus 로고
    • A systematic review of worldwide incidence of nonmelanoma skin cancer
    • Lomas, A., Leonardi-Bee, J., Bath-Hextall, F., A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166 (2012), 1069–1080.
    • (2012) Br J Dermatol , vol.166 , pp. 1069-1080
    • Lomas, A.1    Leonardi-Bee, J.2    Bath-Hextall, F.3
  • 21
    • 85048410242 scopus 로고    scopus 로고
    • CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning,; 2017 (accessed 25 December 2017).
    • Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning, https://arxiv.org/abs/1711.05225; 2017 (accessed 25 December 2017).
    • Rajpurkar, P.1    Irvin, J.2    Zhu, K.3    Yang, B.4    Mehta, H.5    Duan, T.6
  • 23
    • 85048434551 scopus 로고    scopus 로고
    • Grad-cam: why did you say that? visual explanations from deep networks via gradient-based localization,; 2016 (accessed 21 March 2017).
    • Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: why did you say that? visual explanations from deep networks via gradient-based localization, https://arxiv.org/abs/1610.02391; 2016 (accessed 21 March 2017).
    • Selvaraju, R.R.1    Cogswell, M.2    Das, A.3    Vedantam, R.4    Parikh, D.5    Batra, D.6
  • 25
    • 85048428419 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition,; 2014 (accessed 23 December 2014).
    • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition, https://arxiv.org/abs/1409.1556; 2014 (accessed 23 December 2014).
    • Simonyan, K.1    Zisserman, A.2
  • 27
    • 85048403805 scopus 로고    scopus 로고
    • Going deeper with convolutions,; 2015 (accessed 17 September 2014).
    • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions, https://arxiv.org/abs/1409.4842; 2015 (accessed 17 September 2014).
    • Szegedy, C.1    Liu, W.2    Jia, Y.3    Sermanet, P.4    Reed, S.5    Anguelov, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.