-
1
-
-
84962531279
-
-
Published October 28, 2015. Accessed September 20
-
World Health Organization. Global tuberculosis report 2015. http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059-eng.pdf. Published October 28, 2015. Accessed September 20, 2016.
-
(2016)
Global Tuberculosis Report 2015
-
-
-
3
-
-
84938386901
-
Chest tuberculosis: Radiological review and imaging recommendations
-
Bhalla AS, Goyal A, Guleria R, Gupta AK. Chest tuberculosis: Radiological review and imaging recommendations. Indian J Radiol Imaging 2015;25(3):213-225.
-
(2015)
Indian J Radiol Imaging
, vol.25
, Issue.3
, pp. 213-225
-
-
Bhalla, A.S.1
Goyal, A.2
Guleria, R.3
Gupta, A.K.4
-
4
-
-
84964906479
-
An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information
-
Melendez J, Sánchez CI, Philipsen RH, et al. An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep 2016;6:25265.
-
(2016)
Sci Rep
, vol.6
, pp. 25265
-
-
Melendez, J.1
Sánchez, C.I.2
Philipsen, R.H.3
-
5
-
-
80053208907
-
High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey
-
Hoog AH, Meme HK, van Deutekom H, et al. High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey. Int J Tuberc Lung Dis 2011;15(10):1308-1314.
-
(2011)
Int J Tuberc Lung Dis
, vol.15
, Issue.10
, pp. 1308-1314
-
-
Hoog, A.H.1
Meme, H.K.2
Van Deutekom, H.3
-
7
-
-
84893757720
-
Automatic screening for tuberculosis in chest radiographs: A survey
-
Jaeger S, Karargyris A, Candemir S, et al. Automatic screening for tuberculosis in chest radiographs: A survey. Quant Imaging Med Surg 2013;3(2):89-99.
-
(2013)
Quant Imaging Med Surg
, vol.3
, Issue.2
, pp. 89-99
-
-
Jaeger, S.1
Karargyris, A.2
Candemir, S.3
-
8
-
-
84982179506
-
Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: A systematic review
-
Pande T, Cohen C, Pai M, Ahmad Khan F. Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: A systematic review. Int J Tuberc Lung Dis 2016;20(9):1226-1230.
-
(2016)
Int J Tuberc Lung Dis
, vol.20
, Issue.9
, pp. 1226-1230
-
-
Pande, T.1
Cohen, C.2
Pai, M.3
Ahmad Khan, F.4
-
9
-
-
84888115833
-
Detection of tuberculosis using digital chest radiography: Automated reading vs. Interpretation by clinical officers
-
Maduskar P, Muyoyeta M, Ayles H, Hogeweg L, Peters-Bax L, van Ginneken B. Detection of tuberculosis using digital chest radiography: automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis 2013;17(12):1613-1620.
-
(2013)
Int J Tuberc Lung Dis
, vol.17
, Issue.12
, pp. 1613-1620
-
-
Maduskar, P.1
Muyoyeta, M.2
Ayles, H.3
Hogeweg, L.4
Peters-Bax, L.5
Van Ginneken, B.6
-
10
-
-
84894065564
-
Automatic tuberculosis screening using chest radiographs
-
Jaeger S, Karargyris A, Candemir S, et al. Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 2014;33(2):233-245.
-
(2014)
IEEE Trans Med Imaging
, vol.33
, Issue.2
, pp. 233-245
-
-
Jaeger, S.1
Karargyris, A.2
Candemir, S.3
-
11
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis 2015;115(3):211-252.
-
(2015)
Int J Comput Vis
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
12
-
-
84978717864
-
-
arXiv preprint. Published December 10, 2015. Accessed September 20
-
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv preprint. https://arxiv.org/abs/1512.03385. Published December 10, 2015. Accessed September 20, 2016.
-
(2016)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278-2324.
-
(1998)
Proc IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
14
-
-
84943754825
-
Deep learning with non-medical training used for chest pathology identification
-
Hadjiiski LM, Tourassi GD, eds. Bellingham, Wash: International Society for Optics and Photonics
-
Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. In: Hadjiiski LM, Tourassi GD, eds. Proceedings of SPIE: medical imaging 2015-computer-aided diagnosis. Vol 9414. Bellingham, Wash: International Society for Optics and Photonics, 2015; 94140V.
-
(2015)
Proceedings of SPIE: Medical Imaging 2015-computer-aided Diagnosis
, vol.9414
, pp. 94140V
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
15
-
-
84969962996
-
Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
-
Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35(5):1285-1298.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.C.1
Roth, H.R.2
Gao, M.3
-
16
-
-
84939781083
-
Computer-aided classification of lung nodules on computed tomography images via deep learning technique
-
Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther 2015;8:2015-2022.
-
(2015)
Onco Targets Ther
, vol.8
, pp. 2015-2022
-
-
Hua, K.L.1
Hsu, C.H.2
Hidayati, S.C.3
Cheng, W.H.4
Chen, Y.J.5
-
17
-
-
84943426034
-
Deep convolutional networks for pancreas segmentation in CT imaging
-
Ourselin S, Styner MA, eds. Bellingham, Wash: International Society for Optics and Photonics
-
Roth HR, Farag A, Lu L, Turkbey EB, Summers RM. Deep convolutional networks for pancreas segmentation in CT imaging. In: Ourselin S, Styner MA, eds. Proceedings of SPIE: medical imaging 2015-image processing. Vol 9413. Bellingham, Wash: International Society for Optics and Photonics, 2015; 94131G.
-
(2015)
Proceedings of SPIE: Medical Imaging 2015-image Processing
, vol.9413
, pp. 94131G
-
-
Roth, H.R.1
Farag, A.2
Lu, L.3
Turkbey, E.B.4
Summers, R.M.5
-
18
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
Zhang W, Li R, Deng H, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015;108:214-224.
-
(2015)
Neuroimage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
-
19
-
-
84988799202
-
A novel approach for tuberculosis screening based on deep convolutional neural networks
-
Tourassi GD, Armato SG, eds. Bellingham, Wash: International Society for Optics and Photonics
-
Hwang S, Kim HE, Jeong J, Kim HJ. A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Tourassi GD, Armato SG, eds. Proceedings of SPIE: medical imaging 2016-title. Vol 9785. Bellingham, Wash: International Society for Optics and Photonics, 2016; 97852W.
-
(2016)
Proceedings of SPIE: Medical Imaging 2016-title
, vol.9785
, pp. 97852W
-
-
Hwang, S.1
Kim, H.E.2
Jeong, J.3
Kim, H.J.4
-
20
-
-
84944252278
-
Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
-
Jaeger S, Candemir S, Antani S, Wáng YX, Lu PX, Thoma G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 2014;4(6):475-477.
-
(2014)
Quant Imaging Med Surg
, vol.4
, Issue.6
, pp. 475-477
-
-
Jaeger, S.1
Candemir, S.2
Antani, S.3
Wáng, Y.X.4
Lu, P.X.5
Thoma, G.6
-
21
-
-
85025100431
-
-
Published September 1, 2011. Updated July 17, 2015. Accessed August 20
-
Belarus Tuberculosis Portal. Belarus Public Health Web site. http://obsolete.tuberculosis. by/. Published September 1, 2011. Updated July 17, 2015. Accessed August 20, 2016.
-
(2016)
Belarus Public Health Web Site
-
-
-
24
-
-
84937522268
-
Going deeper with convolutions
-
Piscataway, NJ: IEEE
-
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2015; 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
-
25
-
-
0037663875
-
-
U.S. National Institutes of Health, Bethesda, Maryland, USA
-
Rasband WS. Image J. U.S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/. 1997-2016.
-
(1997)
Image J.
-
-
Rasband, W.S.1
-
27
-
-
0141518516
-
Receiver operating characteristic curves and their use in radiology
-
Obuchowski NA. Receiver operating characteristic curves and their use in radiology. Radiology 2003;229(1):3-8.
-
(2003)
Radiology
, vol.229
, Issue.1
, pp. 3-8
-
-
Obuchowski, N.A.1
-
28
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988;44(3):837-845.
-
(1988)
Biometrics
, vol.44
, Issue.3
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
29
-
-
73849094087
-
Assessing the performance of prediction models: A framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010;21(1):128-138.
-
(2010)
Epidemiology
, vol.21
, Issue.1
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
-
30
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 1997;30 (7):1145-1159.
-
(1997)
Pattern Recognit
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
31
-
-
26944454497
-
ROC graphs: Notes and practical considerations for researchers
-
Fawcett T. ROC graphs: Notes and practical considerations for researchers. Mach Learn 2004;31(1):1-38.
-
(2004)
Mach Learn
, vol.31
, Issue.1
, pp. 1-38
-
-
Fawcett, T.1
-
32
-
-
0032377357
-
Approximate is better than "exact" for interval estimation of binomial proportions
-
Agresti A, Coull BA. Approximate is better than "exact" for interval estimation of binomial proportions. Am Stat 1998;52(2):119-126.
-
(1998)
Am Stat
, vol.52
, Issue.2
, pp. 119-126
-
-
Agresti, A.1
Coull, B.A.2
-
33
-
-
84861986826
-
Machine learning and radiology
-
Wang S, Summers RM. Machine learning and radiology. Med Image Anal 2012;16(5):933-951.
-
(2012)
Med Image Anal
, vol.16
, Issue.5
, pp. 933-951
-
-
Wang, S.1
Summers, R.M.2
-
35
-
-
84930572185
-
-
arXiv preprint. Published January 13, 2015. Updated July 6, 2015. Accessed September 21
-
Wu R, Yan S, Shan Y, Dang Q, Sun G. Deep image: Scaling up image recognition. arXiv preprint. https://arxiv.org/abs/1501.02876. Published January 13, 2015. Updated July 6, 2015. Accessed September 21, 2016.
-
(2016)
Deep Image: Scaling Up Image Recognition
-
-
Wu, R.1
Yan, S.2
Shan, Y.3
Dang, Q.4
Sun, G.5
-
36
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15(1):1929-1958.
-
(2014)
J Mach Learn Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
37
-
-
80053403826
-
Ensemble methods in machine learning
-
Dietterich TG. Ensemble methods in machine learning. Lect Notes Comput Sci 2000;1857:1-15.
-
(2000)
Lect Notes Comput Sci
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
38
-
-
84959091021
-
-
arXiv preprint. Published June 22, 2015. Accessed September 21
-
Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding neural networks through deep visualization. arXiv preprint. https://arxiv.org/abs/1506.06579. Published June 22, 2015. Accessed September 21, 2016.
-
(2016)
Understanding Neural Networks Through Deep Visualization
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
|