메뉴 건너뛰기




Volumn 284, Issue 2, 2017, Pages 574-582

Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; CONTROLLED STUDY; DEEP CONVOLUTIONAL NEURAL NETWORK; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST ACCURACY STUDY; DISEASE CLASSIFICATION; FEMALE; HUMAN; IMAGE PROCESSING; LUNG TUBERCULOSIS; MAJOR CLINICAL STUDY; MALE; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; THORAX RADIOGRAPHY; ALGORITHM; CLASSIFICATION; DIAGNOSTIC IMAGING; PROCEDURES; RETROSPECTIVE STUDY;

EID: 85025112337     PISSN: 00338419     EISSN: 15271315     Source Type: Journal    
DOI: 10.1148/radiol.2017162326     Document Type: Article
Times cited : (1381)

References (38)
  • 1
    • 84962531279 scopus 로고    scopus 로고
    • Published October 28, 2015. Accessed September 20
    • World Health Organization. Global tuberculosis report 2015. http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059-eng.pdf. Published October 28, 2015. Accessed September 20, 2016.
    • (2016) Global Tuberculosis Report 2015
  • 3
    • 84938386901 scopus 로고    scopus 로고
    • Chest tuberculosis: Radiological review and imaging recommendations
    • Bhalla AS, Goyal A, Guleria R, Gupta AK. Chest tuberculosis: Radiological review and imaging recommendations. Indian J Radiol Imaging 2015;25(3):213-225.
    • (2015) Indian J Radiol Imaging , vol.25 , Issue.3 , pp. 213-225
    • Bhalla, A.S.1    Goyal, A.2    Guleria, R.3    Gupta, A.K.4
  • 4
    • 84964906479 scopus 로고    scopus 로고
    • An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information
    • Melendez J, Sánchez CI, Philipsen RH, et al. An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep 2016;6:25265.
    • (2016) Sci Rep , vol.6 , pp. 25265
    • Melendez, J.1    Sánchez, C.I.2    Philipsen, R.H.3
  • 5
    • 80053208907 scopus 로고    scopus 로고
    • High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey
    • Hoog AH, Meme HK, van Deutekom H, et al. High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey. Int J Tuberc Lung Dis 2011;15(10):1308-1314.
    • (2011) Int J Tuberc Lung Dis , vol.15 , Issue.10 , pp. 1308-1314
    • Hoog, A.H.1    Meme, H.K.2    Van Deutekom, H.3
  • 7
    • 84893757720 scopus 로고    scopus 로고
    • Automatic screening for tuberculosis in chest radiographs: A survey
    • Jaeger S, Karargyris A, Candemir S, et al. Automatic screening for tuberculosis in chest radiographs: A survey. Quant Imaging Med Surg 2013;3(2):89-99.
    • (2013) Quant Imaging Med Surg , vol.3 , Issue.2 , pp. 89-99
    • Jaeger, S.1    Karargyris, A.2    Candemir, S.3
  • 8
    • 84982179506 scopus 로고    scopus 로고
    • Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: A systematic review
    • Pande T, Cohen C, Pai M, Ahmad Khan F. Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: A systematic review. Int J Tuberc Lung Dis 2016;20(9):1226-1230.
    • (2016) Int J Tuberc Lung Dis , vol.20 , Issue.9 , pp. 1226-1230
    • Pande, T.1    Cohen, C.2    Pai, M.3    Ahmad Khan, F.4
  • 9
    • 84888115833 scopus 로고    scopus 로고
    • Detection of tuberculosis using digital chest radiography: Automated reading vs. Interpretation by clinical officers
    • Maduskar P, Muyoyeta M, Ayles H, Hogeweg L, Peters-Bax L, van Ginneken B. Detection of tuberculosis using digital chest radiography: automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis 2013;17(12):1613-1620.
    • (2013) Int J Tuberc Lung Dis , vol.17 , Issue.12 , pp. 1613-1620
    • Maduskar, P.1    Muyoyeta, M.2    Ayles, H.3    Hogeweg, L.4    Peters-Bax, L.5    Van Ginneken, B.6
  • 10
    • 84894065564 scopus 로고    scopus 로고
    • Automatic tuberculosis screening using chest radiographs
    • Jaeger S, Karargyris A, Candemir S, et al. Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 2014;33(2):233-245.
    • (2014) IEEE Trans Med Imaging , vol.33 , Issue.2 , pp. 233-245
    • Jaeger, S.1    Karargyris, A.2    Candemir, S.3
  • 11
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis 2015;115(3):211-252.
    • (2015) Int J Comput Vis , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278-2324.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • Hadjiiski LM, Tourassi GD, eds. Bellingham, Wash: International Society for Optics and Photonics
    • Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. In: Hadjiiski LM, Tourassi GD, eds. Proceedings of SPIE: medical imaging 2015-computer-aided diagnosis. Vol 9414. Bellingham, Wash: International Society for Optics and Photonics, 2015; 94140V.
    • (2015) Proceedings of SPIE: Medical Imaging 2015-computer-aided Diagnosis , vol.9414 , pp. 94140V
    • Bar, Y.1    Diamant, I.2    Wolf, L.3    Greenspan, H.4
  • 15
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
    • Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35(5):1285-1298.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3
  • 16
    • 84939781083 scopus 로고    scopus 로고
    • Computer-aided classification of lung nodules on computed tomography images via deep learning technique
    • Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther 2015;8:2015-2022.
    • (2015) Onco Targets Ther , vol.8 , pp. 2015-2022
    • Hua, K.L.1    Hsu, C.H.2    Hidayati, S.C.3    Cheng, W.H.4    Chen, Y.J.5
  • 17
    • 84943426034 scopus 로고    scopus 로고
    • Deep convolutional networks for pancreas segmentation in CT imaging
    • Ourselin S, Styner MA, eds. Bellingham, Wash: International Society for Optics and Photonics
    • Roth HR, Farag A, Lu L, Turkbey EB, Summers RM. Deep convolutional networks for pancreas segmentation in CT imaging. In: Ourselin S, Styner MA, eds. Proceedings of SPIE: medical imaging 2015-image processing. Vol 9413. Bellingham, Wash: International Society for Optics and Photonics, 2015; 94131G.
    • (2015) Proceedings of SPIE: Medical Imaging 2015-image Processing , vol.9413 , pp. 94131G
    • Roth, H.R.1    Farag, A.2    Lu, L.3    Turkbey, E.B.4    Summers, R.M.5
  • 18
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang W, Li R, Deng H, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015;108:214-224.
    • (2015) Neuroimage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3
  • 19
    • 84988799202 scopus 로고    scopus 로고
    • A novel approach for tuberculosis screening based on deep convolutional neural networks
    • Tourassi GD, Armato SG, eds. Bellingham, Wash: International Society for Optics and Photonics
    • Hwang S, Kim HE, Jeong J, Kim HJ. A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Tourassi GD, Armato SG, eds. Proceedings of SPIE: medical imaging 2016-title. Vol 9785. Bellingham, Wash: International Society for Optics and Photonics, 2016; 97852W.
    • (2016) Proceedings of SPIE: Medical Imaging 2016-title , vol.9785 , pp. 97852W
    • Hwang, S.1    Kim, H.E.2    Jeong, J.3    Kim, H.J.4
  • 21
    • 85025100431 scopus 로고    scopus 로고
    • Published September 1, 2011. Updated July 17, 2015. Accessed August 20
    • Belarus Tuberculosis Portal. Belarus Public Health Web site. http://obsolete.tuberculosis. by/. Published September 1, 2011. Updated July 17, 2015. Accessed August 20, 2016.
    • (2016) Belarus Public Health Web Site
  • 25
    • 0037663875 scopus 로고    scopus 로고
    • U.S. National Institutes of Health, Bethesda, Maryland, USA
    • Rasband WS. Image J. U.S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/. 1997-2016.
    • (1997) Image J.
    • Rasband, W.S.1
  • 27
    • 0141518516 scopus 로고    scopus 로고
    • Receiver operating characteristic curves and their use in radiology
    • Obuchowski NA. Receiver operating characteristic curves and their use in radiology. Radiology 2003;229(1):3-8.
    • (2003) Radiology , vol.229 , Issue.1 , pp. 3-8
    • Obuchowski, N.A.1
  • 28
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988;44(3):837-845.
    • (1988) Biometrics , vol.44 , Issue.3 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 29
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: A framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010;21(1):128-138.
    • (2010) Epidemiology , vol.21 , Issue.1 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 30
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 1997;30 (7):1145-1159.
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 31
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for researchers
    • Fawcett T. ROC graphs: Notes and practical considerations for researchers. Mach Learn 2004;31(1):1-38.
    • (2004) Mach Learn , vol.31 , Issue.1 , pp. 1-38
    • Fawcett, T.1
  • 32
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than "exact" for interval estimation of binomial proportions
    • Agresti A, Coull BA. Approximate is better than "exact" for interval estimation of binomial proportions. Am Stat 1998;52(2):119-126.
    • (1998) Am Stat , vol.52 , Issue.2 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2
  • 33
    • 84861986826 scopus 로고    scopus 로고
    • Machine learning and radiology
    • Wang S, Summers RM. Machine learning and radiology. Med Image Anal 2012;16(5):933-951.
    • (2012) Med Image Anal , vol.16 , Issue.5 , pp. 933-951
    • Wang, S.1    Summers, R.M.2
  • 34
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 35
    • 84930572185 scopus 로고    scopus 로고
    • arXiv preprint. Published January 13, 2015. Updated July 6, 2015. Accessed September 21
    • Wu R, Yan S, Shan Y, Dang Q, Sun G. Deep image: Scaling up image recognition. arXiv preprint. https://arxiv.org/abs/1501.02876. Published January 13, 2015. Updated July 6, 2015. Accessed September 21, 2016.
    • (2016) Deep Image: Scaling Up Image Recognition
    • Wu, R.1    Yan, S.2    Shan, Y.3    Dang, Q.4    Sun, G.5
  • 37
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Dietterich TG. Ensemble methods in machine learning. Lect Notes Comput Sci 2000;1857:1-15.
    • (2000) Lect Notes Comput Sci , vol.1857 , pp. 1-15
    • Dietterich, T.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.