메뉴 건너뛰기




Volumn 24, Issue 10, 2018, Pages 1559-1567

Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning

Author keywords

[No Author keywords available]

Indexed keywords

EPIDERMAL GROWTH FACTOR RECEPTOR; K RAS PROTEIN; PROTEIN KINASE LKB1; PROTEIN P53; TUMOR PROTEIN;

EID: 85053661755     PISSN: 10788956     EISSN: 1546170X     Source Type: Journal    
DOI: 10.1038/s41591-018-0177-5     Document Type: Article
Times cited : (2048)

References (67)
  • 1
    • 79551563284 scopus 로고    scopus 로고
    • International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma
    • Travis, W. D. et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 6, 244–285 (2011)
    • (2011) J. Thorac. Oncol. , vol.6 , pp. 244-285
    • Travis, W.D.1
  • 2
    • 85032427297 scopus 로고    scopus 로고
    • Systemic therapy for stage IV non–small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update
    • Hanna, N. et al. Systemic therapy for stage IV non–small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 35, 3484–3515 (2017)
    • (2017) J. Clin. Oncol. , vol.35 , pp. 3484-3515
    • Hanna, N.1
  • 3
    • 84931340760 scopus 로고    scopus 로고
    • Targeted therapy for non–small cell lung cancer: current standards and the promise of the future
    • COI: 1:CAS:528:DC%2BC2MXhtFCms7vL, PID: 25806345
    • Chan, B. A. & Hughes, B. G. Targeted therapy for non–small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res. 4, 36–54 (2015)
    • (2015) Transl. Lung Cancer Res. , vol.4 , pp. 36-54
    • Chan, B.A.1    Hughes, B.G.2
  • 4
    • 85047687980 scopus 로고    scopus 로고
    • Current status of targeted therapy in non–small cell lung cancer
    • COI: 1:STN:280:DC%2BC2cbpslOktQ%3D%3D
    • Parums, D. V. Current status of targeted therapy in non–small cell lung cancer. Drugs Today (Barc) 50, 503–525 (2014)
    • (2014) Drugs Today (Barc) , vol.50 , pp. 503-525
    • Parums, D.V.1
  • 5
    • 84968593329 scopus 로고    scopus 로고
    • Molecular characterization of pulmonary sarcomatoid carcinoma: analysis of 33 cases
    • COI: 1:CAS:528:DC%2BC28XotV2it7s%3D
    • Terra, S. B. et al. Molecular characterization of pulmonary sarcomatoid carcinoma: analysis of 33 cases. Mod. Pathol. 29, 824–831 (2016)
    • (2016) Mod. Pathol. , vol.29 , pp. 824-831
    • Terra, S.B.1
  • 6
    • 85024114589 scopus 로고    scopus 로고
    • Oncology drug approvals: evaluating endpoints and evidence in an era of breakthrough therapies
    • Blumenthal, G. M. et al. Oncology drug approvals: evaluating endpoints and evidence in an era of breakthrough therapies. Oncologist 22, 762–767 (2017)
    • (2017) Oncologist , vol.22 , pp. 762-767
    • Blumenthal, G.M.1
  • 7
    • 4344646459 scopus 로고    scopus 로고
    • Determinants of tumor response and survival with erlotinib in patients with non–small-cell lung cancer
    • Pérez-Soler, R. et al. Determinants of tumor response and survival with erlotinib in patients with non–small-cell lung cancer. J. Clin. Oncol. 22, 3238–3247 (2004)
    • (2004) J. Clin. Oncol. , vol.22 , pp. 3238-3247
    • Pérez-Soler, R.1
  • 8
    • 84871720411 scopus 로고    scopus 로고
    • Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study
    • Jänne, P. A. et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 14, 38–47 (2013)
    • (2013) Lancet Oncol. , vol.14 , pp. 38-47
    • Jänne, P.A.1
  • 9
    • 84897096705 scopus 로고    scopus 로고
    • Prognostic and predictive biomarkers in lung cancer. A review
    • COI: 1:CAS:528:DC%2BC2cXpvVGmug%3D%3D
    • Thunnissen, E., van der Oord, K. & den Bakker, M. Prognostic and predictive biomarkers in lung cancer. A review. Virchows Arch. 464, 347–358 (2014)
    • (2014) Virchows Arch. , vol.464 , pp. 347-358
    • Thunnissen, E.1    van der Oord, K.2    den Bakker, M.3
  • 10
    • 84930985726 scopus 로고    scopus 로고
    • Accuracy of classifying poorly differentiated non–small cell lung carcinoma biopsies with commonly used lung carcinoma markers
    • COI: 1:CAS:528:DC%2BC2MXksV2gs74%3D
    • Zachara-Szczakowski, S., Verdun, T. & Churg, A. Accuracy of classifying poorly differentiated non–small cell lung carcinoma biopsies with commonly used lung carcinoma markers. Hum. Pathol. 46, 776–782 (2015)
    • (2015) Hum. Pathol. , vol.46 , pp. 776-782
    • Zachara-Szczakowski, S.1    Verdun, T.2    Churg, A.3
  • 11
    • 85015306784 scopus 로고    scopus 로고
    • Comprehensive computational pathological image analysis predicts lung cancer prognosis
    • Luo, X. et al. Comprehensive computational pathological image analysis predicts lung cancer prognosis. J. Thorac. Oncol. 12, 501–509 (2017)
    • (2017) J. Thorac. Oncol. , vol.12 , pp. 501-509
    • Luo, X.1
  • 12
    • 84982218412 scopus 로고    scopus 로고
    • Predicting non–small cell lung cancer prognosis by fully automated microscopic pathology image features
    • COI: 1:CAS:528:DC%2BC28Xhtlylsb7E
    • Yu, K.-H. et al. Predicting non–small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016)
    • (2016) Nat. Commun. , vol.7
    • Yu, K.H.1
  • 13
    • 85039560062 scopus 로고    scopus 로고
    • Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images
    • Khosravi, P., Kazemi, E., Imielinski, M., Elemento, O. & Hajirasouliha, I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine 27, 317–328 (2018)
    • (2018) EBioMedicine , vol.27 , pp. 317-328
    • Khosravi, P.1    Kazemi, E.2    Imielinski, M.3    Elemento, O.4    Hajirasouliha, I.5
  • 14
    • 0642311916 scopus 로고    scopus 로고
    • Quantification of free circulating DNA as a diagnostic marker in lung cancer
    • COI: 1:CAS:528:DC%2BD2cXpsVajsLk%3D
    • Sozzi, G. et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol. 21, 3902–3908 (2003)
    • (2003) J. Clin. Oncol. , vol.21 , pp. 3902-3908
    • Sozzi, G.1
  • 15
    • 78650384780 scopus 로고    scopus 로고
    • Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples
    • Terry, J. et al. Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am. J. Surg. Pathol. 34, 1805–1811 (2010)
    • (2010) Am. J. Surg. Pathol. , vol.34 , pp. 1805-1811
    • Terry, J.1
  • 16
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 17
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
    • Greenspan, H., Ginneken, Bv & Summers, R. M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153–1159 (2016)
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1153-1159
    • Greenspan, H.1    Ginneken, B.2    Summers, R.M.3
  • 19
    • 85021145223 scopus 로고    scopus 로고
    • Deep learning in medical image analysis
    • COI: 1:CAS:528:DC%2BC2sXksVCqsLs%3D
    • Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)
    • (2017) Annu. Rev. Biomed. Eng. , vol.19 , pp. 221-248
    • Shen, D.1    Wu, G.2    Suk, H.I.3
  • 20
    • 84959431409 scopus 로고    scopus 로고
    • An automatic learning-based framework for robust nucleus segmentation
    • Xing, F., Xie, Y. & Yang, L. An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med. Imaging 35, 550–566 (2016)
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 550-566
    • Xing, F.1    Xie, Y.2    Yang, L.3
  • 21
    • 85049219019 scopus 로고    scopus 로고
    • Automatic segmentation of histopathological slides of renal tissue using deep learning
    • Eds. Tomaszewski, J. E. & Gurcan, M. N, International Society for Optics and Photonics, Bellingham, WA, USA
    • de Bel, T. et al. Automatic segmentation of histopathological slides of renal tissue using deep learning. In Medical Imaging 2018: Digital Pathology Vol. 10581 (Eds. Tomaszewski, J. E. & Gurcan, M. N.) 1058112 (International Society for Optics and Photonics, Bellingham, WA, USA, 2018)
    • (2018) Medical Imaging 2018: Digital Pathology , vol.10581 , pp. 1058112
    • de Bel, T.1
  • 22
    • 85041610167 scopus 로고    scopus 로고
    • Multi-radial LBP features as a tool for rapid glomerular detection and assessment in whole slide histopathology images
    • Simon, O., Yacoub, R., Jain, S., Tomaszewski, J. E. & Sarder, P. Multi-radial LBP features as a tool for rapid glomerular detection and assessment in whole slide histopathology images. Sci. Rep. 8, 2032 (2018)
    • (2018) Sci. Rep. , vol.8
    • Simon, O.1    Yacoub, R.2    Jain, S.3    Tomaszewski, J.E.4    Sarder, P.5
  • 23
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
    • COI: 1:CAS:528:DC%2BC28Xmt1eitLo%3D
    • Cheng, J.-Z. et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)
    • (2016) Sci. Rep. , vol.6
    • Cheng, J.Z.1
  • 24
    • 85017623447 scopus 로고    scopus 로고
    • Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent
    • COI: 1:CAS:528:DC%2BC2sXmtFKgurw%3D
    • Cruz-Roa, A. et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci. Rep. 7, 46450 (2017)
    • (2017) Sci. Rep. , vol.7
    • Cruz-Roa, A.1
  • 25
    • 84968542311 scopus 로고    scopus 로고
    • Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
    • Sirinukunwattana, K. et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35, 1196–1206 (2016)
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1196-1206
    • Sirinukunwattana, K.1
  • 26
    • 85042106575 scopus 로고
    • Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks
    • American Medical Informatics Association, Bethesda, MD, USA
    • Ertosun, M. G. & Rubin., D. L. Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. In AMIA Annual Symposium Proceedings. 1899–1908 (American Medical Informatics Association, Bethesda, MD, USA)
    • (1899) AMIA Annual Symposium Proceedings
    • Ertosun, M.G.1    Rubin, D.L.2
  • 27
    • 85049218026 scopus 로고    scopus 로고
    • Automated segmentation of epithelial tissue in prostatectomy slides using deep learning
    • Eds. Tomaszewski, J. E. & Gurcan, M. N, International Society for Optics and Photonics, Bellingham, WA, USA
    • Bulten, W., Kaa, C.A.H.-d., Laak, J.d. & Litjens, G.J. Automated segmentation of epithelial tissue in prostatectomy slides using deep learning. In Medical Imaging 2018: Digital Pathology. Vol. 10581 (Eds. Tomaszewski, J. E. & Gurcan, M. N.) 105810S (International Society for Optics and Photonics, Bellingham, WA, USA, 2018)
    • (2018) Medical Imaging 2018: Digital Pathology , vol.10581
    • Bulten, W.1    Kaa, C.A.H.-D.2    Laak, J.D.3    Litjens, G.J.4
  • 28
    • 85020721422 scopus 로고    scopus 로고
    • Histopathological Diagnosis for Viable and Non-viable Tumor Prediction for Osteosarcoma Using Convolutional Neural Network
    • Springer International Publishing, Cham
    • Mishra, R., Daescu, O., Leavey, P., Rakheja, D. & Sengupta, A. Histopathological Diagnosis for Viable and Non-viable Tumor Prediction for Osteosarcoma Using Convolutional Neural Network. In International Symposium on Bioinformatics Research and Applications Vol. 10330 (Eds. Cai, Z., D. Ovidiu, & Li, M.) 12–23 (Springer International Publishing, New York, 2018)
    • (2017) Bioinformatics Research and Applications , pp. 12-23
    • Mishra, R.1    Daescu, O.2    Leavey, P.3    Rakheja, D.4    Sengupta, A.5
  • 29
  • 32
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D
    • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 33
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J. Am. Med. Assoc. 316, 2402–2410 (2016)
    • (2016) J. Am. Med. Assoc. , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 34
    • 84988850450 scopus 로고    scopus 로고
    • Toward a shared vision for cancer genomic data
    • Grossman, R. L. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016)
    • (2016) N. Engl. J. Med. , vol.375 , pp. 1109-1112
    • Grossman, R.L.1
  • 35
    • 85034427958 scopus 로고    scopus 로고
    • Current state of the regulatory trajectory for whole slide imaging devices in the USA
    • Abels, E. & Pantanowitz, L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. J. Pathol. Inform. 8, 23 (2017)
    • (2017) J. Pathol. Inform. , vol.8 , pp. 23
    • Abels, E.1    Pantanowitz, L.2
  • 36
    • 0036645286 scopus 로고    scopus 로고
    • Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung
    • COI: 1:CAS:528:DC%2BD38XltF2jtLo%3D, PID: 12097271
    • Sanchez-Cespedes, M. et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002)
    • (2002) Cancer Res. , vol.62 , pp. 3659-3662
    • Sanchez-Cespedes, M.1
  • 37
    • 84873584845 scopus 로고    scopus 로고
    • LKB1 inactivation dictates therapeutic response of non–small cell lung cancer to the metabolism drug phenformin
    • COI: 1:CAS:528:DC%2BC3sXhsFGitro%3D
    • Shackelford, D. B. et al. LKB1 inactivation dictates therapeutic response of non–small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143–158 (2013)
    • (2013) Cancer Cell , vol.23 , pp. 143-158
    • Shackelford, D.B.1
  • 38
    • 50249143902 scopus 로고    scopus 로고
    • Role of LKB1 in lung cancer development
    • COI: 1:CAS:528:DC%2BD1cXhtVGgtb7N
    • Makowski, L. & Hayes, D. N. Role of LKB1 in lung cancer development. Br. J. Cancer 99, 683–688 (2008)
    • (2008) Br. J. Cancer , vol.99 , pp. 683-688
    • Makowski, L.1    Hayes, D.N.2
  • 39
    • 84874645357 scopus 로고    scopus 로고
    • Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation
    • COI: 1:CAS:528:DC%2BC3sXhsVaqsb8%3D
    • Morris, L. G. et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat. Genet. 45, 253–261 (2013)
    • (2013) Nat. Genet. , vol.45 , pp. 253-261
    • Morris, L.G.1
  • 40
    • 79952209189 scopus 로고    scopus 로고
    • TP53 mutations in nonsmall cell lung cancer
    • Mogi, A. & Kuwano, H. TP53 mutations in nonsmall cell lung cancer. J. Biomed. Biotechnol. 2011, 583929 (2011)
    • (2011) J. Biomed. Biotechnol. , vol.2011 , pp. 583929
    • Mogi, A.1    Kuwano, H.2
  • 41
    • 84885735554 scopus 로고    scopus 로고
    • Mutational landscape and significance across 12 major cancer types
    • COI: 1:CAS:528:DC%2BC3sXhs1ers7rM
    • Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)
    • (2013) Nature , vol.502 , pp. 333-339
    • Kandoth, C.1
  • 42
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer International Publishing, New York
    • Zeiler, M.D. & Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision. 818–833 (Springer International Publishing, New York, 2015)
    • (2015) European Conference on Computer Vision , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 43
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • Maaten, L. J. Pd Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014)
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3221-3245
    • Maaten, L.J.P.1
  • 44
    • 0030726659 scopus 로고    scopus 로고
    • Laser capture microdissection: molecular analysis of tissue
    • COI: 1:CAS:528:DyaK2sXnsVGktb4%3D, 1483
    • Bonner, R. F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997). 1483
    • (1997) Science , vol.278 , pp. 1481-1483
    • Bonner, R.F.1
  • 45
    • 58049205542 scopus 로고    scopus 로고
    • Correlation between morphology and EGFR mutations in lung adenocarcinomas significance of the micropapillary pattern and the hobnail cell type
    • Ninomiya, H. et al. Correlation between morphology and EGFR mutations in lung adenocarcinomas significance of the micropapillary pattern and the hobnail cell type. Lung Cancer 63, 235–240 (2009)
    • (2009) Lung Cancer , vol.63 , pp. 235-240
    • Ninomiya, H.1
  • 46
    • 84895512912 scopus 로고    scopus 로고
    • EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype
    • COI: 1:CAS:528:DC%2BC2cXnslKrsro%3D
    • Warth, A. et al. EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype. Eur. Respir. J. 43, 872–883 (2014)
    • (2014) Eur. Respir. J. , vol.43 , pp. 872-883
    • Warth, A.1
  • 47
    • 79953118839 scopus 로고    scopus 로고
    • Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors
    • Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011)
    • (2011) Sci. Transl. Med. , vol.3 , pp. 75ra26
    • Sequist, L.V.1
  • 48
    • 85006893195 scopus 로고    scopus 로고
    • IDH2 mutations define a unique subtype of breast cancer with altered nuclear polarity
    • COI: 1:CAS:528:DC%2BC28XitVylsrnJ
    • Chiang, S. et al. IDH2 mutations define a unique subtype of breast cancer with altered nuclear polarity. Cancer Res. 76, 7118–7129 (2016)
    • (2016) Cancer Res. , vol.76 , pp. 7118-7129
    • Chiang, S.1
  • 49
    • 2942729619 scopus 로고    scopus 로고
    • LKB1 tumor suppressor protein: partaker in cell polarity
    • COI: 1:CAS:528:DC%2BD2cXks1erur4%3D
    • Baas, A. F., Smit, L. & Clevers, H. LKB1 tumor suppressor protein: partaker in cell polarity. Trends Cell Biol. 14, 312–319 (2004)
    • (2004) Trends Cell Biol. , vol.14 , pp. 312-319
    • Baas, A.F.1    Smit, L.2    Clevers, H.3
  • 50
    • 0031472331 scopus 로고    scopus 로고
    • Changes in p53 expression can modify cell shape of ras-transformed fibroblasts and epitheliocytes
    • COI: 1:CAS:528:DyaK1cXmtFaq
    • Gloushankova, N., Ossovskaya, V., Vasiliev, J., Chumakov, P. & Kopnin, B. Changes in p53 expression can modify cell shape of ras-transformed fibroblasts and epitheliocytes. Oncogene 15, 2985–2989 (1997)
    • (1997) Oncogene , vol.15 , pp. 2985-2989
    • Gloushankova, N.1    Ossovskaya, V.2    Vasiliev, J.3    Chumakov, P.4    Kopnin, B.5
  • 51
    • 17744371335 scopus 로고    scopus 로고
    • EGFR mutation is specific for terminal respiratory unit type adenocarcinoma
    • Yatabe, Y. et al. EGFR mutation is specific for terminal respiratory unit type adenocarcinoma. Am. J. Surg. Pathol. 29, 633–639 (2005)
    • (2005) Am. J. Surg. Pathol. , vol.29 , pp. 633-639
    • Yatabe, Y.1
  • 52
    • 79961099514 scopus 로고    scopus 로고
    • Comprehensive histologic analysis of ALK-rearranged lung carcinomas
    • Yoshida, A. et al. Comprehensive histologic analysis of ALK-rearranged lung carcinomas. Am. J. Surg. Pathol. 35, 1226–1234 (2011)
    • (2011) Am. J. Surg. Pathol. , vol.35 , pp. 1226-1234
    • Yoshida, A.1
  • 53
    • 69349083935 scopus 로고    scopus 로고
    • Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population
    • COI: 1:CAS:528:DC%2BD1MXpvFeitrY%3D
    • Rodig, S. J. et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res. 15, 5216–5223 (2009)
    • (2009) Clin. Cancer Res. , vol.15 , pp. 5216-5223
    • Rodig, S.J.1
  • 54
    • 84883347910 scopus 로고    scopus 로고
    • Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap)
    • COI: 1:STN:280:DC%2BC3snot1ygsw%3D%3D
    • Dearden, S., Stevens, J., Wu, Y.-L. & Blowers, D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann. Oncol 24, 2371–2376 (2013)
    • (2013) Ann. Oncol , vol.24 , pp. 2371-2376
    • Dearden, S.1    Stevens, J.2    Wu, Y.L.3    Blowers, D.4
  • 55
    • 65649128973 scopus 로고    scopus 로고
    • Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer
    • COI: 1:CAS:528:DC%2BD1MXltFOrtLg%3D
    • Yu, J. et al. Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin. Cancer Res. 15, 3023–3028 (2009)
    • (2009) Clin. Cancer Res. , vol.15 , pp. 3023-3028
    • Yu, J.1
  • 56
    • 84961329529 scopus 로고    scopus 로고
    • EGFR mutation specific immunohistochemistry is a useful adjunct which helps to identify false negative mutation testing in lung cancer
    • COI: 1:CAS:528:DC%2BC2cXhsFertLvK
    • Houang, M. et al. EGFR mutation specific immunohistochemistry is a useful adjunct which helps to identify false negative mutation testing in lung cancer. Pathology 46, 501–508 (2014)
    • (2014) Pathology , vol.46 , pp. 501-508
    • Houang, M.1
  • 57
    • 80052428201 scopus 로고    scopus 로고
    • Standardization of epidermal growth factor receptor (EGFR) measurement by quantitative immunofluorescence and impact on antibody-based mutation detection in non–small cell lung cancer
    • COI: 1:CAS:528:DC%2BC3MXhtFGjs7fO
    • Dimou, A. et al. Standardization of epidermal growth factor receptor (EGFR) measurement by quantitative immunofluorescence and impact on antibody-based mutation detection in non–small cell lung cancer. Am. J. Pathol. 179, 580–589 (2011)
    • (2011) Am. J. Pathol. , vol.179 , pp. 580-589
    • Dimou, A.1
  • 59
    • 65249147752 scopus 로고    scopus 로고
    • A systems pathology model for predicting overall survival in patients with refractory, advanced non-small-cell lung cancer treated with gefitinib
    • COI: 1:CAS:528:DC%2BD1MXltVCltL8%3D
    • Donovan, M. J. et al. A systems pathology model for predicting overall survival in patients with refractory, advanced non-small-cell lung cancer treated with gefitinib. Eur. J. Cancer 45, 1518–1526 (2009)
    • (2009) Eur. J. Cancer , vol.45 , pp. 1518-1526
    • Donovan, M.J.1
  • 60
    • 84866894408 scopus 로고    scopus 로고
    • Comprehensive genomic characterization of squamous cell lung cancers
    • Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012)
    • (2012) Nature , vol.489 , pp. 519-525
  • 61
    • 84905029258 scopus 로고    scopus 로고
    • Comprehensive molecular profiling of lung adenocarcinoma
    • Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014)
    • (2014) Nature , vol.511 , pp. 543-550
  • 63
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • COI: 1:STN:280:DyaL387ltFyksQ%3D%3D
    • Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 64
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: machine learning in Python
    • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 66
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 67
    • 84867276477 scopus 로고    scopus 로고
    • Interrater reliability: the kappa statistic
    • McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Med. (Zagreb) 22, 276–282 (2012)
    • (2012) Biochem. Med. (Zagreb) , vol.22 , pp. 276-282
    • McHugh, M.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.