메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

Author keywords

[No Author keywords available]

Indexed keywords

BIOSTATISTICS; ELECTRONIC HEALTH RECORD; HUMAN; INFORMATION PROCESSING; MACHINE LEARNING; PROGNOSIS;

EID: 84968813824     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep26094     Document Type: Article
Times cited : (1310)

References (48)
  • 1
    • 34250903631 scopus 로고    scopus 로고
    • Adding value to the electronic health record through secondary use of data for quality assurance, research, and surveillance
    • Hersh, W. R. Adding value to the electronic health record through secondary use of data for quality assurance, research, and surveillance. Am. J. Manag. Care 13, 277-278 (2007).
    • (2007) Am. J. Manag. Care , vol.13 , pp. 277-278
    • Hersh, W.R.1
  • 3
    • 84946040296 scopus 로고    scopus 로고
    • Identification of type 2 diabetes subgroups through topological analysis of patient similarity
    • Li, L. et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7, 311ra174 (2015).
    • (2015) Sci. Transl. Med. , vol.7
    • Li, L.1
  • 4
    • 84891815406 scopus 로고    scopus 로고
    • Comorbidity clusters in autism spectrum disorders: An electronic health record time-series analysis
    • Doshi-Velez, F., Ge, Y. & Kohane, I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics 133, e54-63 (2014).
    • (2014) Pediatrics , vol.133 , pp. e54-e63
    • Doshi-Velez, F.1    Ge, Y.2    Kohane, I.3
  • 5
    • 84940389461 scopus 로고    scopus 로고
    • Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials
    • Miotto, R. & Weng, C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J. Am. Med. Inform. Assoc. 22, E141-E150 (2015).
    • (2015) J. Am. Med. Inform. Assoc. , vol.22 , pp. E141-E150
    • Miotto, R.1    Weng, C.2
  • 6
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: Current issues and guidelines
    • Bellazzi, R. & Zupan, B. Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Inform. 77, 81-97 (2008).
    • (2008) Int. J. Med. Inform , vol.77 , pp. 81-97
    • Bellazzi, R.1    Zupan, B.2
  • 7
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: Towards better research applications and clinical care
    • Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13, 395-405 (2012).
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 8
    • 84936106123 scopus 로고    scopus 로고
    • Predictability bounds of electronic health records
    • Dahlem, D., Maniloff, D. & Ratti, C. Predictability bounds of electronic health records. Sci. Rep. 5, 11865 (2015).
    • (2015) Sci. Rep. , vol.5
    • Dahlem, D.1    Maniloff, D.2    Ratti, C.3
  • 9
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches
    • Wu, J. L., Roy, J. & Stewart, W. F. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med. Care 48, S106-S113 (2010).
    • (2010) Med. Care , vol.48 , pp. S106-S113
    • Wu, J.L.1    Roy, J.2    Stewart, W.F.3
  • 10
    • 84883774090 scopus 로고    scopus 로고
    • Defining and measuring completeness of electronic health records for secondary use
    • Weiskopf, N. G., Hripcsak, G., Swaminathan, S. & Weng, C. Defining and measuring completeness of electronic health records for secondary use. J. Biomed. Inform. 46, 830-836 (2013).
    • (2013) J. Biomed. Inform , vol.46 , pp. 830-836
    • Weiskopf, N.G.1    Hripcsak, G.2    Swaminathan, S.3    Weng, C.4
  • 11
    • 84871882786 scopus 로고    scopus 로고
    • Methods and dimensions of electronic health record data quality assessment: Enabling reuse for clinical research
    • Weiskopf, N. G. & Weng, C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J. Am. Med. Inform. Assoc. 20, 144-151 (2013).
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , pp. 144-151
    • Weiskopf, N.G.1    Weng, C.2
  • 13
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255-260 (2015).
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 14
    • 84929045024 scopus 로고    scopus 로고
    • Toward personalizing treatment for depression: Predicting diagnosis and severity
    • Huang, S. H. et al. Toward personalizing treatment for depression: predicting diagnosis and severity. J. Am. Med. Inform. Assoc. 21, 1069-1075 (2014).
    • (2014) J. Am. Med. Inform. Assoc. , vol.21 , pp. 1069-1075
    • Huang, S.H.1
  • 15
    • 84890337404 scopus 로고    scopus 로고
    • Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records
    • Lyalina, S. et al. Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. J. Am. Med. Inform. Assoc. 20, e297-305 (2013).
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , pp. e297-e305
    • Lyalina, S.1
  • 16
    • 84907021735 scopus 로고    scopus 로고
    • Unsupervised learning of disease progression models
    • Wang, X., Sontag, D. & Wang, F. Unsupervised learning of disease progression models. ACM SIGKDD, 85-94 (2014).
    • (2014) ACM SIGKDD , pp. 85-94
    • Wang, X.1    Sontag, D.2    Wang, F.3
  • 18
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P. A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010).
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 19
    • 70349881426 scopus 로고    scopus 로고
    • Comparison of concept recognizers for building the Open Biomedical Annotator
    • Shah, N. H. et al. Comparison of concept recognizers for building the Open Biomedical Annotator. BMC Bioinformatics 10, S14 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. S14
    • Shah, N.H.1
  • 20
    • 84863393726 scopus 로고    scopus 로고
    • The National Center for Biomedical Ontology
    • Musen, M. A. et al. The National Center for Biomedical Ontology. J. Am. Med. Inform. Assoc. 19, 190-195 (2012).
    • (2012) J. Am. Med. Inform. Assoc. , vol.19 , pp. 190-195
    • Musen, M.A.1
  • 22
    • 84899409127 scopus 로고    scopus 로고
    • Annotation analysis for testing drug safety signals using unstructured clinical notes
    • Lependu, P., Iyer, S. V., Fairon, C. & Shah, N. H. Annotation analysis for testing drug safety signals using unstructured clinical notes. J. Biomed. Semantics 3, S5 (2012).
    • (2012) J. Biomed. Semantics , vol.3 , pp. S5
    • Lependu, P.1    Iyer, S.V.2    Fairon, C.3    Shah, N.H.4
  • 23
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F. & Buchanan, B. G. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 34, 301-310 (2001).
    • (2001) J. Biomed. Inform , vol.34 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 24
    • 84872199113 scopus 로고    scopus 로고
    • Redundancy in electronic health record corpora: Analysis, impact on text mining performance and mitigation strategies
    • Cohen, R., Elhadad, M. & Elhadad, N. Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies. BMC Bioinformatics 14, 10 (2013).
    • (2013) BMC Bioinformatics , vol.14 , pp. 10
    • Cohen, R.1    Elhadad, M.2    Elhadad, N.3
  • 25
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • Blei, D. M. Probabilistic topic models. Commun. ACM 55, 77-84 (2012).
    • (2012) Commun. ACM , vol.55 , pp. 77-84
    • Blei, D.M.1
  • 27
    • 85162517687 scopus 로고    scopus 로고
    • Hierarchically supervised latent dirichlet allocation
    • Perotte, A., Bartlett, N., Elhadad, N. & Wood, F. Hierarchically supervised latent dirichlet allocation. NIPS, 2609-2617 (2011).
    • (2011) NIPS , pp. 2609-2617
    • Perotte, A.1    Bartlett, N.2    Elhadad, N.3    Wood, F.4
  • 28
    • 80054105160 scopus 로고    scopus 로고
    • Mining FDA drug labels using an unsupervised learning technique - topic modeling
    • Bisgin, H., Liu, Z., Fang, H., Xu, X. & Tong, W. Mining FDA drug labels using an unsupervised learning technique - topic modeling. BMC Bioinformatics 12, S11 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. S11
    • Bisgin, H.1    Liu, Z.2    Fang, H.3    Xu, X.4    Tong, W.5
  • 30
    • 0032112666 scopus 로고    scopus 로고
    • Casemix adjustment of managed care claims data using the clinical classification for health policy research method
    • Cowen, M. E. et al. Casemix adjustment of managed care claims data using the clinical classification for health policy research method. Med. Care 36, 1108-1113 (1998).
    • (1998) Med. Care , vol.36 , pp. 1108-1113
    • Cowen, M.E.1
  • 32
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 45, 5-32 (2001).
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 33
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernandez-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133-3181 (2014).
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3133-3181
    • Fernandez-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 35
    • 84881453258 scopus 로고    scopus 로고
    • Connectomic reconstruction of the inner plexiform layer in the mouse retina
    • Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168-174 (2013).
    • (2013) Nature , vol.500 , pp. 168-174
    • Helmstaedter, M.1
  • 36
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma, J. S., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model 55, 263-274 (2015).
    • (2015) J. Chem. Inf. Model , vol.55 , pp. 263-274
    • Ma, J.S.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 37
    • 84902462761 scopus 로고    scopus 로고
    • Deep learning of the tissue-regulated splicing code
    • Leung, M. K. K., Xiong, H. Y., Lee, L. J. & Frey, B. J. Deep learning of the tissue-regulated splicing code. Bioinformatics 30, 121-129 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 121-129
    • Leung, M.K.K.1    Xiong, H.Y.2    Lee, L.J.3    Frey, B.J.4
  • 38
    • 84931570475 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 144-151 (2015).
    • (2015) Science , vol.347 , pp. 144-151
    • Xiong, H.Y.1
  • 39
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotech. 33, 831-838 (2015).
    • (2015) Nature Biotech , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 40
    • 84922784970 scopus 로고    scopus 로고
    • Deep learning for healthcare decision making with EMRs
    • Liang, Z., Zhang, G., Huang, J. X. & Hu, Q. V. Deep learning for healthcare decision making with EMRs. IEEE BIBM, 556-559 (2014).
    • (2014) IEEE BIBM , pp. 556-559
    • Liang, Z.1    Zhang, G.2    Huang, J.X.3    Hu, Q.V.4
  • 41
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504-507 (2006).
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 42
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko, T. A., Denny, J. C. & Levy, M. A. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One 8, e66341 (2013).
    • (2013) PLoS One , vol.8
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 43
    • 84874118623 scopus 로고    scopus 로고
    • Improved cardiovascular risk prediction using non-parametric regression and electronic health record data
    • Kennedy, E. H., Wiitala, W. L., Hayward, R. A. & Sussman, J. B. Improved cardiovascular risk prediction using non-parametric regression and electronic health record data. Med. Care 51, 251-258 (2013).
    • (2013) Med. Care , vol.51 , pp. 251-258
    • Kennedy, E.H.1    Wiitala, W.L.2    Hayward, R.A.3    Sussman, J.B.4
  • 45
    • 84940373302 scopus 로고    scopus 로고
    • Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
    • Perotte, A., Ranganath, R., Hirsch, J. S., Blei, D. & Elhadad, N. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J. Am. Med. Inform. Assoc. 22, 872-880 (2015).
    • (2015) J. Am. Med. Inform. Assoc. , vol.22 , pp. 872-880
    • Perotte, A.1    Ranganath, R.2    Hirsch, J.S.3    Blei, D.4    Elhadad, N.5
  • 46
    • 84894070857 scopus 로고    scopus 로고
    • Diagnosis code assignment: Models and evaluation metrics
    • Perotte, A. et al. Diagnosis code assignment: Models and evaluation metrics. J. Am. Med. Inform. Assoc. 21, 231-237 (2014).
    • (2014) J. Am. Med. Inform. Assoc. , vol.21 , pp. 231-237
    • Perotte, A.1
  • 47
    • 84883142799 scopus 로고    scopus 로고
    • A method for inferring medical diagnoses from patient similarities
    • Gottlieb, A., Stein, G. Y., Ruppin, E., Altman, R. B. & Sharan, R. A method for inferring medical diagnoses from patient similarities. BMC Med. 11, 194-203 (2013).
    • (2013) BMC Med. , vol.11 , pp. 194-203
    • Gottlieb, A.1    Stein, G.Y.2    Ruppin, E.3    Altman, R.B.4    Sharan, R.5
  • 48


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.