-
1
-
-
34250903631
-
Adding value to the electronic health record through secondary use of data for quality assurance, research, and surveillance
-
Hersh, W. R. Adding value to the electronic health record through secondary use of data for quality assurance, research, and surveillance. Am. J. Manag. Care 13, 277-278 (2007).
-
(2007)
Am. J. Manag. Care
, vol.13
, pp. 277-278
-
-
Hersh, W.R.1
-
2
-
-
84858329412
-
Data-driven prediction of drug effects and interactions
-
Tatonetti, N. P., Ye, P. P., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4, 125ra131 (2012).
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Tatonetti, N.P.1
Ye, P.P.2
Daneshjou, R.3
Altman, R.B.4
-
3
-
-
84946040296
-
Identification of type 2 diabetes subgroups through topological analysis of patient similarity
-
Li, L. et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7, 311ra174 (2015).
-
(2015)
Sci. Transl. Med.
, vol.7
-
-
Li, L.1
-
4
-
-
84891815406
-
Comorbidity clusters in autism spectrum disorders: An electronic health record time-series analysis
-
Doshi-Velez, F., Ge, Y. & Kohane, I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics 133, e54-63 (2014).
-
(2014)
Pediatrics
, vol.133
, pp. e54-e63
-
-
Doshi-Velez, F.1
Ge, Y.2
Kohane, I.3
-
5
-
-
84940389461
-
Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials
-
Miotto, R. & Weng, C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J. Am. Med. Inform. Assoc. 22, E141-E150 (2015).
-
(2015)
J. Am. Med. Inform. Assoc.
, vol.22
, pp. E141-E150
-
-
Miotto, R.1
Weng, C.2
-
6
-
-
37249089420
-
Predictive data mining in clinical medicine: Current issues and guidelines
-
Bellazzi, R. & Zupan, B. Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Inform. 77, 81-97 (2008).
-
(2008)
Int. J. Med. Inform
, vol.77
, pp. 81-97
-
-
Bellazzi, R.1
Zupan, B.2
-
7
-
-
84861235431
-
Mining electronic health records: Towards better research applications and clinical care
-
Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13, 395-405 (2012).
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
8
-
-
84936106123
-
Predictability bounds of electronic health records
-
Dahlem, D., Maniloff, D. & Ratti, C. Predictability bounds of electronic health records. Sci. Rep. 5, 11865 (2015).
-
(2015)
Sci. Rep.
, vol.5
-
-
Dahlem, D.1
Maniloff, D.2
Ratti, C.3
-
9
-
-
77953635924
-
Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches
-
Wu, J. L., Roy, J. & Stewart, W. F. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med. Care 48, S106-S113 (2010).
-
(2010)
Med. Care
, vol.48
, pp. S106-S113
-
-
Wu, J.L.1
Roy, J.2
Stewart, W.F.3
-
10
-
-
84883774090
-
Defining and measuring completeness of electronic health records for secondary use
-
Weiskopf, N. G., Hripcsak, G., Swaminathan, S. & Weng, C. Defining and measuring completeness of electronic health records for secondary use. J. Biomed. Inform. 46, 830-836 (2013).
-
(2013)
J. Biomed. Inform
, vol.46
, pp. 830-836
-
-
Weiskopf, N.G.1
Hripcsak, G.2
Swaminathan, S.3
Weng, C.4
-
11
-
-
84871882786
-
Methods and dimensions of electronic health record data quality assessment: Enabling reuse for clinical research
-
Weiskopf, N. G. & Weng, C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J. Am. Med. Inform. Assoc. 20, 144-151 (2013).
-
(2013)
J. Am. Med. Inform. Assoc.
, vol.20
, pp. 144-151
-
-
Weiskopf, N.G.1
Weng, C.2
-
12
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE T. Pattern Anal. Mach. Intell. 35, 1798-1828 (2013).
-
(2013)
IEEE T. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
13
-
-
84937801713
-
Machine learning: Trends, perspectives, and prospects
-
Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255-260 (2015).
-
(2015)
Science
, vol.349
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
14
-
-
84929045024
-
Toward personalizing treatment for depression: Predicting diagnosis and severity
-
Huang, S. H. et al. Toward personalizing treatment for depression: predicting diagnosis and severity. J. Am. Med. Inform. Assoc. 21, 1069-1075 (2014).
-
(2014)
J. Am. Med. Inform. Assoc.
, vol.21
, pp. 1069-1075
-
-
Huang, S.H.1
-
15
-
-
84890337404
-
Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records
-
Lyalina, S. et al. Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. J. Am. Med. Inform. Assoc. 20, e297-305 (2013).
-
(2013)
J. Am. Med. Inform. Assoc.
, vol.20
, pp. e297-e305
-
-
Lyalina, S.1
-
16
-
-
84907021735
-
Unsupervised learning of disease progression models
-
Wang, X., Sontag, D. & Wang, F. Unsupervised learning of disease progression models. ACM SIGKDD, 85-94 (2014).
-
(2014)
ACM SIGKDD
, pp. 85-94
-
-
Wang, X.1
Sontag, D.2
Wang, F.3
-
17
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
18
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P. A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010).
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
19
-
-
70349881426
-
Comparison of concept recognizers for building the Open Biomedical Annotator
-
Shah, N. H. et al. Comparison of concept recognizers for building the Open Biomedical Annotator. BMC Bioinformatics 10, S14 (2009).
-
(2009)
BMC Bioinformatics
, vol.10
, pp. S14
-
-
Shah, N.H.1
-
20
-
-
84863393726
-
The National Center for Biomedical Ontology
-
Musen, M. A. et al. The National Center for Biomedical Ontology. J. Am. Med. Inform. Assoc. 19, 190-195 (2012).
-
(2012)
J. Am. Med. Inform. Assoc.
, vol.19
, pp. 190-195
-
-
Musen, M.A.1
-
21
-
-
77954506225
-
The Open Biomedical Annotator
-
Jonquet, C., Shah, N. H. & Musen, M. A. The Open Biomedical Annotator. Summit on Translat. Bioinforma. 2009, 56-60 (2009).
-
(2009)
Summit on Translat. Bioinforma
, vol.2009
, pp. 56-60
-
-
Jonquet, C.1
Shah, N.H.2
Musen, M.A.3
-
22
-
-
84899409127
-
Annotation analysis for testing drug safety signals using unstructured clinical notes
-
Lependu, P., Iyer, S. V., Fairon, C. & Shah, N. H. Annotation analysis for testing drug safety signals using unstructured clinical notes. J. Biomed. Semantics 3, S5 (2012).
-
(2012)
J. Biomed. Semantics
, vol.3
, pp. S5
-
-
Lependu, P.1
Iyer, S.V.2
Fairon, C.3
Shah, N.H.4
-
23
-
-
0035741485
-
A simple algorithm for identifying negated findings and diseases in discharge summaries
-
Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F. & Buchanan, B. G. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 34, 301-310 (2001).
-
(2001)
J. Biomed. Inform
, vol.34
, pp. 301-310
-
-
Chapman, W.W.1
Bridewell, W.2
Hanbury, P.3
Cooper, G.F.4
Buchanan, B.G.5
-
24
-
-
84872199113
-
Redundancy in electronic health record corpora: Analysis, impact on text mining performance and mitigation strategies
-
Cohen, R., Elhadad, M. & Elhadad, N. Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies. BMC Bioinformatics 14, 10 (2013).
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 10
-
-
Cohen, R.1
Elhadad, M.2
Elhadad, N.3
-
25
-
-
84861170800
-
Probabilistic topic models
-
Blei, D. M. Probabilistic topic models. Commun. ACM 55, 77-84 (2012).
-
(2012)
Commun. ACM
, vol.55
, pp. 77-84
-
-
Blei, D.M.1
-
26
-
-
84964987498
-
Clinical case-based retrieval using latent topic analysis
-
Arnold, C. W., El-Saden, S. M., Bui, A. A. & Taira, R. Clinical case-based retrieval using latent topic analysis. AMIA Annu. Symp. Proc., 26-30 (2010).
-
(2010)
AMIA Annu. Symp. Proc.
, pp. 26-30
-
-
Arnold, C.W.1
El-Saden, S.M.2
Bui, A.A.3
Taira, R.4
-
27
-
-
85162517687
-
Hierarchically supervised latent dirichlet allocation
-
Perotte, A., Bartlett, N., Elhadad, N. & Wood, F. Hierarchically supervised latent dirichlet allocation. NIPS, 2609-2617 (2011).
-
(2011)
NIPS
, pp. 2609-2617
-
-
Perotte, A.1
Bartlett, N.2
Elhadad, N.3
Wood, F.4
-
28
-
-
80054105160
-
Mining FDA drug labels using an unsupervised learning technique - topic modeling
-
Bisgin, H., Liu, Z., Fang, H., Xu, X. & Tong, W. Mining FDA drug labels using an unsupervised learning technique - topic modeling. BMC Bioinformatics 12, S11 (2011).
-
(2011)
BMC Bioinformatics
, vol.12
, pp. S11
-
-
Bisgin, H.1
Liu, Z.2
Fang, H.3
Xu, X.4
Tong, W.5
-
29
-
-
0141607824
-
Latent Dirichlet allocation
-
Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993-1022 (2003).
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
30
-
-
0032112666
-
Casemix adjustment of managed care claims data using the clinical classification for health policy research method
-
Cowen, M. E. et al. Casemix adjustment of managed care claims data using the clinical classification for health policy research method. Med. Care 36, 1108-1113 (1998).
-
(1998)
Med. Care
, vol.36
, pp. 1108-1113
-
-
Cowen, M.E.1
-
31
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
Larochelle, H., Bengio, Y., Louradour, J. & Lamblin, P. Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10, 1-40 (2009).
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
32
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests. Mach. Learn. 45, 5-32 (2001).
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
33
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems?
-
Fernandez-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133-3181 (2014).
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 3133-3181
-
-
Fernandez-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
35
-
-
84881453258
-
Connectomic reconstruction of the inner plexiform layer in the mouse retina
-
Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168-174 (2013).
-
(2013)
Nature
, vol.500
, pp. 168-174
-
-
Helmstaedter, M.1
-
36
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
Ma, J. S., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model 55, 263-274 (2015).
-
(2015)
J. Chem. Inf. Model
, vol.55
, pp. 263-274
-
-
Ma, J.S.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
37
-
-
84902462761
-
Deep learning of the tissue-regulated splicing code
-
Leung, M. K. K., Xiong, H. Y., Lee, L. J. & Frey, B. J. Deep learning of the tissue-regulated splicing code. Bioinformatics 30, 121-129 (2014).
-
(2014)
Bioinformatics
, vol.30
, pp. 121-129
-
-
Leung, M.K.K.1
Xiong, H.Y.2
Lee, L.J.3
Frey, B.J.4
-
38
-
-
84931570475
-
The human splicing code reveals new insights into the genetic determinants of disease
-
Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 144-151 (2015).
-
(2015)
Science
, vol.347
, pp. 144-151
-
-
Xiong, H.Y.1
-
39
-
-
84938888109
-
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
-
Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotech. 33, 831-838 (2015).
-
(2015)
Nature Biotech
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
40
-
-
84922784970
-
Deep learning for healthcare decision making with EMRs
-
Liang, Z., Zhang, G., Huang, J. X. & Hu, Q. V. Deep learning for healthcare decision making with EMRs. IEEE BIBM, 556-559 (2014).
-
(2014)
IEEE BIBM
, pp. 556-559
-
-
Liang, Z.1
Zhang, G.2
Huang, J.X.3
Hu, Q.V.4
-
41
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504-507 (2006).
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
42
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Lasko, T. A., Denny, J. C. & Levy, M. A. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One 8, e66341 (2013).
-
(2013)
PLoS One
, vol.8
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
43
-
-
84874118623
-
Improved cardiovascular risk prediction using non-parametric regression and electronic health record data
-
Kennedy, E. H., Wiitala, W. L., Hayward, R. A. & Sussman, J. B. Improved cardiovascular risk prediction using non-parametric regression and electronic health record data. Med. Care 51, 251-258 (2013).
-
(2013)
Med. Care
, vol.51
, pp. 251-258
-
-
Kennedy, E.H.1
Wiitala, W.L.2
Hayward, R.A.3
Sussman, J.B.4
-
44
-
-
84923122180
-
Prediction and informative risk factor selection of bone diseases
-
Hui, L., Xiaoyi, L., Ramanathan, M. & Aidong, Z. Prediction and informative risk factor selection of bone diseases. IEEE/ACM T. Comput. Biol. Bioinform. 12, 79-91 (2015).
-
(2015)
IEEE/ACM T. Comput. Biol. Bioinform
, vol.12
, pp. 79-91
-
-
Hui, L.1
Xiaoyi, L.2
Ramanathan, M.3
Aidong, Z.4
-
45
-
-
84940373302
-
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
-
Perotte, A., Ranganath, R., Hirsch, J. S., Blei, D. & Elhadad, N. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J. Am. Med. Inform. Assoc. 22, 872-880 (2015).
-
(2015)
J. Am. Med. Inform. Assoc.
, vol.22
, pp. 872-880
-
-
Perotte, A.1
Ranganath, R.2
Hirsch, J.S.3
Blei, D.4
Elhadad, N.5
-
46
-
-
84894070857
-
Diagnosis code assignment: Models and evaluation metrics
-
Perotte, A. et al. Diagnosis code assignment: Models and evaluation metrics. J. Am. Med. Inform. Assoc. 21, 231-237 (2014).
-
(2014)
J. Am. Med. Inform. Assoc.
, vol.21
, pp. 231-237
-
-
Perotte, A.1
-
47
-
-
84883142799
-
A method for inferring medical diagnoses from patient similarities
-
Gottlieb, A., Stein, G. Y., Ruppin, E., Altman, R. B. & Sharan, R. A method for inferring medical diagnoses from patient similarities. BMC Med. 11, 194-203 (2013).
-
(2013)
BMC Med.
, vol.11
, pp. 194-203
-
-
Gottlieb, A.1
Stein, G.Y.2
Ruppin, E.3
Altman, R.B.4
Sharan, R.5
-
48
-
-
79959710692
-
Electronic health records: Implications for drug discovery
-
Yao, L. X., Zhang, Y. Y., Li, Y., Sanseau, P. & Agarwal, P. Electronic health records: Implications for drug discovery. Drug Discov. Today 16, 594-599 (2011).
-
(2011)
Drug Discov. Today
, vol.16
, pp. 594-599
-
-
Yao, L.X.1
Zhang, Y.Y.2
Li, Y.3
Sanseau, P.4
Agarwal, P.5
|