메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

Erratum: DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning [Genome Biol. 18, (2017)(67)] DOI: 10.1186/s13059-017-1189-z;DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning

Author keywords

Artificial neural network; Deep learning; DNA methylation; Epigenetics; Machine learning; Single cell genomics

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER ANALYSIS; CONTROLLED STUDY; CPG ISLAND; DNA METHYLATION; DNA SEQUENCE; INTERMETHOD COMPARISON; MACHINE LEARNING; MATHEMATICAL MODEL; MATHEMATICAL PARAMETERS; MEASUREMENT ACCURACY; PREDICTION;

EID: 85018466550     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-017-1233-z     Document Type: Erratum
Times cited : (379)

References (72)
  • 1
    • 22844457491 scopus 로고    scopus 로고
    • DNA methylation and human disease
    • Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597-610.
    • (2005) Nat Rev Genet , vol.6 , pp. 597-610
    • Robertson, K.D.1
  • 2
    • 43749098985 scopus 로고    scopus 로고
    • DNA methylation landscapes: provocative insights from epigenomics
    • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465-76.
    • (2008) Nat Rev Genet , vol.9 , pp. 465-476
    • Suzuki, M.M.1    Bird, A.2
  • 3
    • 77249137168 scopus 로고    scopus 로고
    • Principles and challenges of genome-wide DNA methylation analysis
    • Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet. 2010;11:191-203.
    • (2010) Nat Rev Genet , vol.11 , pp. 191-203
    • Laird, P.W.1
  • 4
    • 84863986133 scopus 로고    scopus 로고
    • Functions of DNA methylation: islands, start sites, gene bodies and beyond
    • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484-92.
    • (2012) Nat Rev Genet , vol.13 , pp. 484-492
    • Jones, P.A.1
  • 5
  • 6
    • 84924601067 scopus 로고    scopus 로고
    • Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics
    • Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A, Klughammer J, et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 2015;10:1386-97.
    • (2015) Cell Rep , vol.10 , pp. 1386-1397
    • Farlik, M.1    Sheffield, N.C.2    Nuzzo, A.3    Datlinger, P.4    Schönegger, A.5    Klughammer, J.6
  • 7
    • 84890526238 scopus 로고    scopus 로고
    • Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing
    • Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23:2126-35.
    • (2013) Genome Res , vol.23 , pp. 2126-2135
    • Guo, H.1    Zhu, P.2    Wu, X.3    Li, X.4    Wen, L.5    Tang, F.6
  • 8
    • 84960091878 scopus 로고    scopus 로고
    • Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas
    • Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26:304-19.
    • (2016) Cell Res , vol.26 , pp. 304-319
    • Hou, Y.1    Guo, H.2    Cao, C.3    Li, X.4    Hu, B.5    Zhu, P.6
  • 9
    • 84919863433 scopus 로고    scopus 로고
    • Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation
    • Peat JR, Dean W, Clark SJ, Krueger F, Smallwood SA, Ficz G, et al. Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep. 2014;9:1990-2000.
    • (2014) Cell Rep , vol.9 , pp. 1990-2000
    • Peat, J.R.1    Dean, W.2    Clark, S.J.3    Krueger, F.4    Smallwood, S.A.5    Ficz, G.6
  • 10
  • 11
    • 84965048064 scopus 로고    scopus 로고
    • Simultaneous profiling of transcriptome and DNA methylome from a single cell
    • Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;16:14.
    • (2016) Genome Biol. , vol.16 , pp. 14
    • Hu, Y.1    Huang, K.2    An, Q.3    Du, G.4    Hu, G.5    Xue, J.6
  • 12
    • 84939205466 scopus 로고    scopus 로고
    • Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements
    • Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE. Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol. 2015;16:14.
    • (2015) Genome Biol , vol.16 , pp. 14
    • Zhang, W.1    Spector, T.D.2    Deloukas, P.3    Bell, J.T.4    Engelhardt, B.E.5
  • 13
    • 84883719710 scopus 로고    scopus 로고
    • Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods
    • Stevens M, Cheng JB, Li D, Xie M, Hong C, Maire CL, et al. Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res. 2013;23:1541-53.
    • (2013) Genome Res , vol.23 , pp. 1541-1553
    • Stevens, M.1    Cheng, J.B.2    Li, D.3    Xie, M.4    Hong, C.5    Maire, C.L.6
  • 14
    • 84926632357 scopus 로고    scopus 로고
    • Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues
    • Ernst J, Kellis M. Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues. Nat Biotechnol. 2015;33:364-76.
    • (2015) Nat Biotechnol , vol.33 , pp. 364-376
    • Ernst, J.1    Kellis, M.2
  • 15
    • 84923361176 scopus 로고    scopus 로고
    • iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition
    • Liu Z, Xiao X, Qiu W-R, Chou K-C. iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition. Anal Biochem. 2015;474:69-77.
    • (2015) Anal Biochem , vol.474 , pp. 69-77
    • Liu, Z.1    Xiao, X.2    Qiu, W.-R.3    Chou, K.-C.4
  • 16
    • 84923779988 scopus 로고    scopus 로고
    • Predicting the human epigenome from DNA motifs
    • Whitaker JW, Chen Z, Wang W. Predicting the human epigenome from DNA motifs. Nat Methods. 2015;12:265-72.
    • (2015) Nat Methods , vol.12 , pp. 265-272
    • Whitaker, J.W.1    Chen, Z.2    Wang, W.3
  • 20
    • 23644439586 scopus 로고    scopus 로고
    • Prediction of methylated CpGs in DNA sequences using a support vector machine
    • Bhasin M, Zhang H, Reinherz EL, Reche PA. Prediction of methylated CpGs in DNA sequences using a support vector machine. FEBS Lett. 2005;579:4302-8.
    • (2005) FEBS Lett , vol.579 , pp. 4302-4308
    • Bhasin, M.1    Zhang, H.2    Reinherz, E.L.3    Reche, P.A.4
  • 21
    • 84872895742 scopus 로고    scopus 로고
    • Predicting DNA, methylation status using word composition
    • Lu L. Predicting DNA, methylation status using word composition. J Biomed Sci Eng. 2010;3:672-6.
    • (2010) J Biomed Sci Eng , vol.3 , pp. 672-676
    • Lu, L.1
  • 22
    • 84858159518 scopus 로고    scopus 로고
    • Prediction of methylation CpGs and their methylation degrees in human DNA sequences
    • Zhou X, Li Z, Dai Z, Zou X. Prediction of methylation CpGs and their methylation degrees in human DNA sequences. Comput Biol Med. 2012;42:408-13.
    • (2012) Comput Biol Med , vol.42 , pp. 408-413
    • Zhou, X.1    Li, Z.2    Dai, Z.3    Zou, X.4
  • 23
    • 84896839862 scopus 로고    scopus 로고
    • The prediction of methylation states in human DNA sequences based on hexanucleotide composition and feature selection
    • Li Z, Chen L, Lai Y, Dai Z, Zou X. The prediction of methylation states in human DNA sequences based on hexanucleotide composition and feature selection. Anal Methods. 2014;6:1897.
    • (2014) Anal Methods , vol.6 , pp. 1897
    • Li, Z.1    Chen, L.2    Lai, Y.3    Dai, Z.4    Zou, X.5
  • 25
    • 84990890375 scopus 로고    scopus 로고
    • Character-level convolutional networks for text classification
    • arXiv
    • Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification. arXiv. 2015.
    • (2015)
    • Zhang, X.1    Zhao, J.2    LeCun, Y.3
  • 26
    • 84958589374 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • arXiv
    • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv. 2015.
    • (2015)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 27
    • 84983383396 scopus 로고    scopus 로고
    • Inception-v4, Inception-ResNet and the impact of residual connections on learning
    • arXiv
    • Szegedy C, Ioffe S, Vanhoucke V. Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv. 2016.
    • (2016)
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3
  • 28
    • 84970899194 scopus 로고    scopus 로고
    • Deep modeling of gene expression regulation in an erythropoiesis model
    • Denas O, Taylor J. Deep modeling of gene expression regulation in an erythropoiesis model. Represent. Learn. ICML Workshop. 2013
    • (2013) Represent. Learn. ICML Workshop
    • Denas, O.1    Taylor, J.2
  • 29
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831-8.
    • (2015) Nat Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 30
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015;12:931-4.
    • (2015) Nat Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 31
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347:1254806.
    • (2015) Science , vol.347 , pp. 1254806
    • Xiong, H.Y.1    Alipanahi, B.2    Lee, L.J.3    Bretschneider, H.4    Merico, D.5    Yuen, R.K.C.6
  • 32
    • 84976908652 scopus 로고    scopus 로고
    • Basset: Learning the Regulatory Code of the Accessible Genome with Deep Convolutional Neural Networks
    • Kelley DR, Snoek J, Rinn J. "Basset: Learning the Regulatory Code of the Accessible Genome with Deep Convolutional Neural Networks". Genom Res. doi: 10.1101/gr.200535.115.
    • Genom Res.
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.3
  • 34
    • 0020480251 scopus 로고
    • Use of the "Perceptron" algorithm to distinguish translational initiation sites in E. coli
    • Stormo GD, Schneider TD, Gold L, Ehrenfeucht A. Use of the "Perceptron" algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res. 1982;10:2997-3011.
    • (1982) Nucleic Acids Res , vol.10 , pp. 2997-3011
    • Stormo, G.D.1    Schneider, T.D.2    Gold, L.3    Ehrenfeucht, A.4
  • 35
    • 33747885942 scopus 로고    scopus 로고
    • On counting position weight matrix matches in a sequence, with application to discriminative motif finding
    • Sinha S. On counting position weight matrix matches in a sequence, with application to discriminative motif finding. Bioinformatics. 2006;22:e454-63.
    • (2006) Bioinformatics , vol.22 , pp. e454-e463
    • Sinha, S.1
  • 36
    • 84939821078 scopus 로고    scopus 로고
    • Empirical evaluation of gated recurrent neural networks on sequence modeling
    • arXiv
    • Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv. 2014.
    • (2014)
    • Chung, J.1    Gulcehre, C.2    Cho, K.3    Bengio, Y.4
  • 37
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 38
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
    • Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol. 2011;2:37-63.
    • (2011) J Mach Learn Technol , vol.2 , pp. 37-63
    • Powers, D.M.1
  • 39
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405:442-51.
    • (1975) Biochim Biophys Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 40
    • 77951116072 scopus 로고    scopus 로고
    • CpG islands influence chromatin structure via the CpG-binding protein Cfp1
    • Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464:1082-6.
    • (2010) Nature , vol.464 , pp. 1082-1086
    • Thomson, J.P.1    Skene, P.J.2    Selfridge, J.3    Clouaire, T.4    Guy, J.5    Webb, S.6
  • 42
    • 84907413210 scopus 로고    scopus 로고
    • Determination and inference of eukaryotic transcription factor sequence specificity
    • Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158:1431-43.
    • (2014) Cell , vol.158 , pp. 1431-1443
    • Weirauch, M.T.1    Yang, A.2    Albu, M.3    Cote, A.G.4    Montenegro-Montero, A.5    Drewe, P.6
  • 43
    • 58149200952 scopus 로고    scopus 로고
    • UniPROBE: an online database of protein binding microarray data on protein-DNA interactions
    • Newburger DE, Bulyk ML. UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res. 2009;37:D77-82.
    • (2009) Nucleic Acids Res , vol.37 , pp. D77-82
    • Newburger, D.E.1    Bulyk, M.L.2
  • 44
    • 73449113904 scopus 로고    scopus 로고
    • Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation
    • Hervouet E, Vallette FM, Cartron P-F. Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics. 2009;4:487-99.
    • (2009) Epigenetics , vol.4 , pp. 487-499
    • Hervouet, E.1    Vallette, F.M.2    Cartron, P.-F.3
  • 45
    • 84890504504 scopus 로고    scopus 로고
    • Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs
    • Luu P-L, Scholer HR, Arauzo-Bravo MJ. Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs. Genome Res. 2013;23:2013-29.
    • (2013) Genome Res , vol.23 , pp. 2013-2029
    • Luu, P.-L.1    Scholer, H.R.2    Arauzo-Bravo, M.J.3
  • 46
    • 33947201809 scopus 로고    scopus 로고
    • Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome
    • Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell. 2007;128:1231-45.
    • (2007) Cell , vol.128 , pp. 1231-1245
    • Kim, T.H.1    Abdullaev, Z.K.2    Smith, A.D.3    Ching, K.A.4    Loukinov, D.I.5    Green, R.D.6
  • 48
    • 79953172903 scopus 로고    scopus 로고
    • A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS -mediated cell growth
    • Fernandez-Zapico ME, Lomberk GA, Tsuji S, DeMars CJ, Bardsley MR, Lin Y-H, et al. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS -mediated cell growth. Biochem J. 2011;435:529-37.
    • (2011) Biochem J , vol.435 , pp. 529-537
    • Fernandez-Zapico, M.E.1    Lomberk, G.A.2    Tsuji, S.3    DeMars, C.J.4    Bardsley, M.R.5    Lin, Y.-H.6
  • 49
    • 12944336527 scopus 로고    scopus 로고
    • Foxa2 is required for the differentiation of pancreatic α-cells
    • Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH. Foxa2 is required for the differentiation of pancreatic α-cells. Dev Biol. 2005;278:484-95.
    • (2005) Dev Biol , vol.278 , pp. 484-495
    • Lee, C.S.1    Sund, N.J.2    Behr, R.3    Herrera, P.L.4    Kaestner, K.H.5
  • 50
    • 17144407948 scopus 로고    scopus 로고
    • Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis
    • Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang S-L, et al. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem. 2005;280:13809-16.
    • (2005) J Biol Chem , vol.280 , pp. 13809-13816
    • Wan, H.1    Dingle, S.2    Xu, Y.3    Besnard, V.4    Kaestner, K.H.5    Ang, S.-L.6
  • 51
    • 0027297647 scopus 로고
    • The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain
    • Marais R, Wynne J, Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell. 1993;73:381-93.
    • (1993) Cell , vol.73 , pp. 381-393
    • Marais, R.1    Wynne, J.2    Treisman, R.3
  • 52
    • 0032476590 scopus 로고    scopus 로고
    • Serum response factor is essential for mesoderm formation during mouse embryogenesis
    • Arsenian S, Weinhold B, Oelgeschläger M, Rüther U, Nordheim A. Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J. 1998;17:6289-99.
    • (1998) EMBO J , vol.17 , pp. 6289-6299
    • Arsenian, S.1    Weinhold, B.2    Oelgeschläger, M.3    Rüther, U.4    Nordheim, A.5
  • 53
    • 80555156105 scopus 로고    scopus 로고
    • In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions
    • Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell. 2011;44:361-72.
    • (2011) Mol Cell , vol.44 , pp. 361-372
    • Quenneville, S.1    Verde, G.2    Corsinotti, A.3    Kapopoulou, A.4    Jakobsson, J.5    Offner, S.6
  • 54
    • 84975705235 scopus 로고    scopus 로고
    • IL-6 mediates differentiation disorder during spermatogenesis in obesity-associated inflammation by affecting the expression of Zfp637 through the SOCS3/STAT3 pathway
    • Huang G, Yuan M, Zhang J, Li J, Gong D, Li Y, et al. IL-6 mediates differentiation disorder during spermatogenesis in obesity-associated inflammation by affecting the expression of Zfp637 through the SOCS3/STAT3 pathway. Sci Rep. 2016;6:28012.
    • (2016) Sci Rep , vol.6 , pp. 28012
    • Huang, G.1    Yuan, M.2    Zhang, J.3    Li, J.4    Gong, D.5    Li, Y.6
  • 55
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: visualising image classification models and saliency maps
    • arXiv
    • Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv. 2013.
    • (2013)
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 57
    • 0034067297 scopus 로고    scopus 로고
    • HMG20A and HMG20B map to human chromosomes 15q24 and 19p13.3 and constitute a distinct class of HMG-box genes with ubiquitous expression
    • Sumoy L, Carim L, Escarceller M, Nadal M, Gratacòs M, Pujana MA, et al. HMG20A and HMG20B map to human chromosomes 15q24 and 19p13.3 and constitute a distinct class of HMG-box genes with ubiquitous expression. Cytogenet Genome Res. 2000;88:62-7.
    • (2000) Cytogenet Genome Res , vol.88 , pp. 62-67
    • Sumoy, L.1    Carim, L.2    Escarceller, M.3    Nadal, M.4    Gratacòs, M.5    Pujana, M.A.6
  • 58
    • 84922389693 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • arXiv
    • Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv. 2014.
    • (2014)
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 59
    • 85018271332 scopus 로고    scopus 로고
    • Google's neural machine translation system: bridging the gap between human and machine translation
    • arXiv
    • Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, et al. Google's neural machine translation system: bridging the gap between human and machine translation. arXiv. 2016.
    • (2016)
    • Wu, Y.1    Schuster, M.2    Chen, Z.3    Le, Q.V.4    Norouzi, M.5    Macherey, W.6
  • 61
    • 84980031342 scopus 로고    scopus 로고
    • DNA-level splice junction prediction using deep recurrent neural networks
    • arXiv
    • Lee B, Lee T, Na B, Yoon S. DNA-level splice junction prediction using deep recurrent neural networks. arXiv. 2015.
    • (2015)
    • Lee, B.1    Lee, T.2    Na, B.3    Yoon, S.4
  • 62
    • 84976413226 scopus 로고    scopus 로고
    • DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
    • Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 2016;44:e107.
    • (2016) Nucleic Acids Res , vol.44
    • Quang, D.1    Xie, X.2
  • 64
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Int Conf Artif Intell Stat. 2016
    • (2016) Int Conf Artif Intell Stat.
    • Glorot, X.1    Bengio, Y.2
  • 65
    • 84941620184 scopus 로고    scopus 로고
    • Adam: a method for stochastic optimization
    • arXiv
    • Kingma D, Ba J. Adam: a method for stochastic optimization. arXiv. 2014.
    • (2014)
    • Kingma, D.1    Ba, J.2
  • 66
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13:281-305.
    • (2012) J Mach Learn Res , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 68
    • 84962029452 scopus 로고    scopus 로고
    • Keras: Theano-based deep learning library
    • Accessed 26 Mar
    • Chollet F. Keras: Theano-based deep learning library. https://github.com/fchollet/keras. Accessed 26 Mar 2017.
    • (2017)
    • Chollet, F.1
  • 69
    • 2142738304 scopus 로고    scopus 로고
    • WebLogo: a sequence logo generator
    • Crooks GE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188-90.
    • (2004) Genome Res , vol.14 , pp. 1188-1190
    • Crooks, G.E.1
  • 71
    • 23744458086 scopus 로고    scopus 로고
    • Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes
    • Siepel A. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034-50.
    • (2005) Genome Res , vol.15 , pp. 1034-1050
    • Siepel, A.1
  • 72
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829-36.
    • (1979) J Am Stat Assoc , vol.74 , pp. 829-836
    • Cleveland, W.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.