-
1
-
-
84968903135
-
Coming of age: Ten years of next-generation sequencing technologies
-
Goodwin, S., McPherson, J.D. & McCombie, W.R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).
-
(2016)
Nat. Rev. Genet.
, vol.17
, pp. 333-351
-
-
Goodwin, S.1
McPherson, J.D.2
McCombie, W.R.3
-
2
-
-
79956314887
-
Genotype and SNP calling from next-generation sequencing data
-
Nielsen, R., Paul, J.S., Albrechtsen, A. & Song, Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011).
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 443-451
-
-
Nielsen, R.1
Paul, J.S.2
Albrechtsen, A.3
Song, Y.S.4
-
3
-
-
84913546864
-
Towards better understanding of artifacts in variant calling from high-coverage samples
-
Li, H. Towards better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014).
-
(2014)
Bioinformatics
, vol.30
, pp. 2843-2851
-
-
Li, H.1
-
4
-
-
84959324684
-
Medical implications of technical accuracy in genome sequencing
-
Goldfeder, R.L. et al. Medical implications of technical accuracy in genome sequencing. Genome Med. 8, 24 (2016).
-
(2016)
Genome Med
, vol.8
, pp. 24
-
-
Goldfeder, R.L.1
-
5
-
-
79955483667
-
A framework for variation discovery and genotyping using next-generation DNA sequencing data
-
DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
-
(2011)
Nat. Genet.
, vol.43
, pp. 491-498
-
-
Depristo, M.A.1
-
6
-
-
84856080112
-
Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data
-
Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics 28, 167–175 (2012).
-
(2012)
Bioinformatics
, vol.28
, pp. 167-175
-
-
Ding, J.1
-
7
-
-
84876933570
-
Shining a light on dark sequencing: Characterising errors in Ion Torrent PGM data
-
Bragg, L.M., Stone, G., Butler, M.K., Hugenholtz, P. & Tyson, G.W. Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 9, e1003031 (2013).
-
(2013)
Plos Comput. Biol.
, vol.9
-
-
Bragg, L.M.1
Stone, G.2
Butler, M.K.3
Hugenholtz, P.4
Tyson, G.W.5
-
8
-
-
84903459577
-
Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes
-
Yeo, Z.X., Wong, J.C.L., Rozen, S.G. & Lee, A.S.G. Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes. BMC Genomics 15, 516 (2014).
-
(2014)
BMC Genomics
, vol.15
, pp. 516
-
-
Yeo, Z.X.1
Wong, J.C.L.2
Rozen, S.G.3
Lee, A.S.G.4
-
9
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process Syst. 25, 1097–1105 (2012).
-
(2012)
Adv. Neural Inf. Process Syst.
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
-
12
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
-
13
-
-
85032586119
-
Deep learning in bioinformatics
-
Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 18, 851–869 (2017).
-
(2017)
Brief. Bioinform.
, vol.18
, pp. 851-869
-
-
Min, S.1
Lee, B.2
Yoon, S.3
-
14
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi, B., Delong, A., Weirauch, M.T. & Frey, B.J. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
15
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou, J. & Troyanskaya, O.G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
16
-
-
84923276179
-
The human splicing code reveals new insights into the genetic determinants of disease
-
Xiong, H.Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).
-
(2015)
Science
, vol.347
, pp. 1254806
-
-
Xiong, H.Y.1
-
17
-
-
84990032289
-
-
Preprint at
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. Preprint at https://arxiv.org/abs/1512.00567 (2015).
-
(2015)
Rethinking the Inception Architecture for Computer Vision
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
18
-
-
85009151993
-
A reference dataset of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree
-
Eberle, M.A. et al. A reference dataset of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. Genome Res. 27, 157–164 (2017).
-
(2017)
Genome Res
, vol.27
, pp. 157-164
-
-
Eberle, M.A.1
-
19
-
-
55549097836
-
Mapping short DNA sequencing reads and calling variants using mapping quality scores
-
Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).
-
(2008)
Genome Res
, vol.18
, pp. 1851-1858
-
-
Li, H.1
Ruan, J.2
Durbin, R.3
-
20
-
-
66449114324
-
SNP detection for massively parallel whole-genome resequencing
-
Li, R. et al. SNP detection for massively parallel whole-genome resequencing. Genome Res. 19, 1124–1132 (2009).
-
(2009)
Genome Res
, vol.19
, pp. 1124-1132
-
-
Li, R.1
-
21
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).
-
(1989)
Neural Netw
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
23
-
-
68549104404
-
The Sequence Alignment/Map format and SAMtools
-
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
-
(2009)
Bioinformatics
, vol.25
, pp. 2078-2079
-
-
Li, H.1
-
24
-
-
85028370314
-
16GT: A fast and sensitive variant caller using a 16-genotype probabilistic model
-
Luo, R., Schatz, M.C. & Salzberg, S.L. 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model. Gigascience 6, 1–4 (2017).
-
(2017)
Gigascience
, vol.6
, pp. 1-4
-
-
Luo, R.1
Schatz, M.C.2
Salzberg, S.L.3
-
27
-
-
80052851950
-
Mouse genomic variation and its effect on phenotypes and gene regulation
-
Keane, T.M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).
-
(2011)
Nature
, vol.477
, pp. 289-294
-
-
Keane, T.M.1
-
30
-
-
84982253941
-
Analysis of protein-coding genetic variation in 60,706 humans
-
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
-
(2016)
Nature
, vol.536
, pp. 285-291
-
-
Lek, M.1
-
31
-
-
84943171338
-
A global reference for human genetic variation
-
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
-
(2015)
Nature
, vol.526
, pp. 68-74
-
-
Auton, A.1
-
32
-
-
84890565382
-
The role of replicates for error mitigation in next-generation sequencing
-
Robasky, K., Lewis, N.E. & Church, G.M. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 15, 56–62 (2014).
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 56-62
-
-
Robasky, K.1
Lewis, N.E.2
Church, G.M.3
-
33
-
-
84958264664
-
-
Preprint at
-
Abadi, M., Agarwal, A., Barham, P., Brevdo, E. & Chen, Z. TensorFlow: large-scale machine learning on heterogeneous systems, 2015. Preprint at https://arxiv.org/abs/1603.04467 (2015).
-
(2015)
Tensorflow: Large-Scale Machine Learning on Heterogeneous Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
-
34
-
-
85048288236
-
-
Preprint at bioRxiv
-
Luo, R., Sedlazeck, F.J., Lam, T.-W. & Schatz, M. Clairvoyante: a multi-task convolutional deep neural network for variant calling in single molecule sequencing. Preprint at bioRxiv https://doi.org/10.1101/310458 (2018).
-
(2018)
Clairvoyante: A Multi-Task Convolutional Deep Neural Network for Variant Calling in Single Molecule Sequencing
-
-
Luo, R.1
Sedlazeck, F.J.2
Lam, T.-W.3
Schatz, M.4
-
36
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, J. et al. Large scale distributed deep networks. Adv. Neural Inf. Process. Syst. 25, 1223–1231 (2012).
-
(2012)
Adv. Neural Inf. Process. Syst.
, vol.25
, pp. 1223-1231
-
-
Dean, J.1
-
37
-
-
84897387657
-
Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls
-
Zook, J.M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 246-251
-
-
Zook, J.M.1
|