메뉴 건너뛰기




Volumn 36, Issue 10, 2018, Pages 983-

A universal snp and small-indel variant caller using deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

GENES; MAMMALS; NEURAL NETWORKS;

EID: 85054719134     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.4235     Document Type: Article
Times cited : (743)

References (38)
  • 1
    • 84968903135 scopus 로고    scopus 로고
    • Coming of age: Ten years of next-generation sequencing technologies
    • Goodwin, S., McPherson, J.D. & McCombie, W.R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 333-351
    • Goodwin, S.1    McPherson, J.D.2    McCombie, W.R.3
  • 2
    • 79956314887 scopus 로고    scopus 로고
    • Genotype and SNP calling from next-generation sequencing data
    • Nielsen, R., Paul, J.S., Albrechtsen, A. & Song, Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011).
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 443-451
    • Nielsen, R.1    Paul, J.S.2    Albrechtsen, A.3    Song, Y.S.4
  • 3
    • 84913546864 scopus 로고    scopus 로고
    • Towards better understanding of artifacts in variant calling from high-coverage samples
    • Li, H. Towards better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 2843-2851
    • Li, H.1
  • 4
    • 84959324684 scopus 로고    scopus 로고
    • Medical implications of technical accuracy in genome sequencing
    • Goldfeder, R.L. et al. Medical implications of technical accuracy in genome sequencing. Genome Med. 8, 24 (2016).
    • (2016) Genome Med , vol.8 , pp. 24
    • Goldfeder, R.L.1
  • 5
    • 79955483667 scopus 로고    scopus 로고
    • A framework for variation discovery and genotyping using next-generation DNA sequencing data
    • DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 491-498
    • Depristo, M.A.1
  • 6
    • 84856080112 scopus 로고    scopus 로고
    • Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data
    • Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics 28, 167–175 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 167-175
    • Ding, J.1
  • 7
    • 84876933570 scopus 로고    scopus 로고
    • Shining a light on dark sequencing: Characterising errors in Ion Torrent PGM data
    • Bragg, L.M., Stone, G., Butler, M.K., Hugenholtz, P. & Tyson, G.W. Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 9, e1003031 (2013).
    • (2013) Plos Comput. Biol. , vol.9
    • Bragg, L.M.1    Stone, G.2    Butler, M.K.3    Hugenholtz, P.4    Tyson, G.W.5
  • 8
    • 84903459577 scopus 로고    scopus 로고
    • Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes
    • Yeo, Z.X., Wong, J.C.L., Rozen, S.G. & Lee, A.S.G. Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes. BMC Genomics 15, 516 (2014).
    • (2014) BMC Genomics , vol.15 , pp. 516
    • Yeo, Z.X.1    Wong, J.C.L.2    Rozen, S.G.3    Lee, A.S.G.4
  • 11
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 12
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1
  • 13
    • 85032586119 scopus 로고    scopus 로고
    • Deep learning in bioinformatics
    • Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 18, 851–869 (2017).
    • (2017) Brief. Bioinform. , vol.18 , pp. 851-869
    • Min, S.1    Lee, B.2    Yoon, S.3
  • 14
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M.T. & Frey, B.J. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 15
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J. & Troyanskaya, O.G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 16
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong, H.Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).
    • (2015) Science , vol.347 , pp. 1254806
    • Xiong, H.Y.1
  • 18
    • 85009151993 scopus 로고    scopus 로고
    • A reference dataset of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree
    • Eberle, M.A. et al. A reference dataset of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. Genome Res. 27, 157–164 (2017).
    • (2017) Genome Res , vol.27 , pp. 157-164
    • Eberle, M.A.1
  • 19
    • 55549097836 scopus 로고    scopus 로고
    • Mapping short DNA sequencing reads and calling variants using mapping quality scores
    • Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).
    • (2008) Genome Res , vol.18 , pp. 1851-1858
    • Li, H.1    Ruan, J.2    Durbin, R.3
  • 20
    • 66449114324 scopus 로고    scopus 로고
    • SNP detection for massively parallel whole-genome resequencing
    • Li, R. et al. SNP detection for massively parallel whole-genome resequencing. Genome Res. 19, 1124–1132 (2009).
    • (2009) Genome Res , vol.19 , pp. 1124-1132
    • Li, R.1
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 68549104404 scopus 로고    scopus 로고
    • The Sequence Alignment/Map format and SAMtools
    • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 2078-2079
    • Li, H.1
  • 24
    • 85028370314 scopus 로고    scopus 로고
    • 16GT: A fast and sensitive variant caller using a 16-genotype probabilistic model
    • Luo, R., Schatz, M.C. & Salzberg, S.L. 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model. Gigascience 6, 1–4 (2017).
    • (2017) Gigascience , vol.6 , pp. 1-4
    • Luo, R.1    Schatz, M.C.2    Salzberg, S.L.3
  • 27
    • 80052851950 scopus 로고    scopus 로고
    • Mouse genomic variation and its effect on phenotypes and gene regulation
    • Keane, T.M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).
    • (2011) Nature , vol.477 , pp. 289-294
    • Keane, T.M.1
  • 30
    • 84982253941 scopus 로고    scopus 로고
    • Analysis of protein-coding genetic variation in 60,706 humans
    • Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
    • (2016) Nature , vol.536 , pp. 285-291
    • Lek, M.1
  • 31
    • 84943171338 scopus 로고    scopus 로고
    • A global reference for human genetic variation
    • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
    • (2015) Nature , vol.526 , pp. 68-74
    • Auton, A.1
  • 32
    • 84890565382 scopus 로고    scopus 로고
    • The role of replicates for error mitigation in next-generation sequencing
    • Robasky, K., Lewis, N.E. & Church, G.M. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 15, 56–62 (2014).
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 56-62
    • Robasky, K.1    Lewis, N.E.2    Church, G.M.3
  • 36
    • 84877760312 scopus 로고    scopus 로고
    • Large scale distributed deep networks
    • Dean, J. et al. Large scale distributed deep networks. Adv. Neural Inf. Process. Syst. 25, 1223–1231 (2012).
    • (2012) Adv. Neural Inf. Process. Syst. , vol.25 , pp. 1223-1231
    • Dean, J.1
  • 37
    • 84897387657 scopus 로고    scopus 로고
    • Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls
    • Zook, J.M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 246-251
    • Zook, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.