메뉴 건너뛰기




Volumn 318, Issue 22, 2017, Pages 2184-2186

Deep learning algorithms for detection of lymph node metastases from breast cancer helping artificial intelligence be seen

Author keywords

[No Author keywords available]

Indexed keywords

ADENOCARCINOMA; AREA UNDER THE CURVE; ARTIFICIAL INTELLIGENCE; BRAIN TUMOR; BREAST CANCER; BREAST CARCINOMA; BREAST LESION; CANCER DIAGNOSIS; CANCER GROWTH; CANCER SURVIVAL; CLINICAL PRACTICE; COMPARATIVE STUDY; COMPUTER ASSISTED TOMOGRAPHY; COST EFFECTIVENESS ANALYSIS; DERMATOLOGIST; DIABETES MELLITUS; DIABETIC RETINOPATHY; DIAGNOSTIC PROCEDURE; DIGITAL IMAGING; ELECTRON MICROSCOPY; EMERGENCY WARD; EVALUATION STUDY; FRAUD; GENERAL PRACTITIONER; HEALTH CARE COST; HEALTH CARE DELIVERY; HEALTH CARE INDUSTRY; HEALTH CARE QUALITY; HISTOPATHOLOGY; HUMAN; IMAGE ANALYSIS; IMMUNOHISTOCHEMISTRY; INTENSIVE CARE UNIT; LEARNING ALGORITHM; LUNG INFECTION; LUNG NODULE; MACHINE LEARNING; MACULAR EDEMA; MAMMOGRAPHY; MELANOMA; MORPHOMETRY; NEUROBLASTOMA; NUCLEAR MAGNETIC RESONANCE IMAGING; PATHOLOGIST; PATHOLOGY; PATIENT CARE; PATIENT RISK; PREDICTION; PRIORITY JOURNAL; RADIOLOGICAL PROCEDURES; RADIOLOGIST; REIMBURSEMENT; REVIEW; SAFETY PROCEDURE; SENSITIVITY AND SPECIFICITY; SENTINEL LYMPH NODE METASTASIS; SKIN BIOPSY; SKIN CANCER; SKIN DEFECT; SPEECH DISCRIMINATION; SQUAMOUS CELL CARCINOMA; TELECONSULTATION; TISSUE MICROARRAY; TUMOR VOLUME; VIDEO GAME; ALGORITHM; AXILLA; BREAST TUMOR; LYMPH NODE; LYMPH NODE METASTASIS;

EID: 85038218695     PISSN: 00987484     EISSN: 15383598     Source Type: Journal    
DOI: 10.1001/jama.2017.14580     Document Type: Review
Times cited : (155)

References (16)
  • 2
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 3
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542 (7639):115-118.
    • (2017) Nature , vol.542 , Issue.7639 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 4
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316(22):2402-2410.
    • (2016) JAMA , vol.316 , Issue.22 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 5
    • 79551563631 scopus 로고    scopus 로고
    • Computer-aided diagnosis of pulmonary infections using texture analysis and support vector Machine classification
    • Yao J, Dwyer A, Summers RM, Mollura DJ. Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification. Acad Radiol. 2011; 18(3):306-314.
    • (2011) Acad Radiol. , vol.18 , Issue.3 , pp. 306-314
    • Yao, J.1    Dwyer, A.2    Summers, R.M.3    Mollura, D.J.4
  • 6
    • 84974555742 scopus 로고    scopus 로고
    • Discrimination of Breast cancer with microcalcifications on mammography by deep learning
    • Wang J, Yang X, Cai H, Tan W, Jin C, Li L. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep. 2016; 6:27327.
    • (2016) Sci Rep. , vol.6 , pp. 27327
    • Wang, J.1    Yang, X.2    Cai, H.3    Tan, W.4    Jin, C.5    Li, L.6
  • 7
    • 84991063753 scopus 로고    scopus 로고
    • High-throughput classification of radiographs using deep convolutional neural networks
    • Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J. High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging. 2017; 30(1):95-101.
    • (2017) J Digit Imaging , vol.30 , Issue.1 , pp. 95-101
    • Rajkomar, A.1    Lingam, S.2    Taylor, A.G.3    Blum, M.4    Mongan, J.5
  • 8
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: Applications to Breast lesions in US images and pulmonary nodules in CT scans
    • Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep. 2016; 6: 24454.
    • (2016) Sci Rep. , vol.6 , pp. 24454
    • Cheng, J.Z.1    Ni, D.2    Chou, Y.H.3
  • 9
    • 84969855998 scopus 로고    scopus 로고
    • MRI texture features as biomarkersto predict MGMT methylation status in glioblastomas
    • Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkersto predict MGMT methylation status in glioblastomas. Med Phys. 2016; 43(6):2835-2844.
    • (2016) Med Phys. , vol.43 , Issue.6 , pp. 2835-2844
    • Korfiatis, P.1    Kline, T.L.2    Coufalova, L.3
  • 10
    • 85038431889 scopus 로고    scopus 로고
    • Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with Breast cancer
    • Ehteshami Bejnordi B, Veta M, van Diest PJ, et al.; CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. doi:10.1001/jama.2017.14585
    • JAMA
    • Ehteshami Bejnordi, B.1    Veta, M.2    Van Diest, P.J.3
  • 11
    • 85039033946 scopus 로고    scopus 로고
    • Accessed October 2, 2017
    • CAMELYON16. https://camelyon16.grand-challenge.org/. Accessed October 2, 2017.
  • 12
    • 0030755529 scopus 로고    scopus 로고
    • Computerized scanning devices for pap smear screening: Current status and critical review
    • Rosenthal DL Computerized scanning devices for Pap smear screening: current status and critical review. Clin Lab Med. 1997; 17(2):263-284.
    • (1997) Clin Lab Med , vol.17 , Issue.2 , pp. 263-284
    • Rosenthal, D.L.1
  • 13
    • 33751218291 scopus 로고    scopus 로고
    • Computerized morphometryasan aid in determining the grade of dysplasia and progression to adenocarcinoma in Barrett's esophagus
    • Sabo E, Beck AH, Montgomery EA, et al. Computerized morphometryasan aid in determining the grade of dysplasia and progression to adenocarcinoma in Barrett's esophagus. Lab Invest. 2006; 86(12):1261-1271.
    • (2006) Lab Invest. , vol.86 , Issue.12 , pp. 1261-1271
    • Sabo, E.1    Beck, A.H.2    Montgomery, E.A.3
  • 14
    • 59349090297 scopus 로고    scopus 로고
    • Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development
    • Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN. Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recognit. 2009; 42(6):1093-1103.
    • (2009) Pattern Recognit. , vol.42 , Issue.6 , pp. 1093-1103
    • Sertel, O.1    Kong, J.2    Shimada, H.3    Catalyurek, U.V.4    Saltz, J.H.5    Gurcan, M.N.6
  • 15
    • 81055146760 scopus 로고    scopus 로고
    • Systematic analysis of Breast cancer morphology uncovers stromal features associated with survival
    • Beck AH, Sangoi AR, Leung S, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med. 2011; 3(108):108ra113.
    • (2011) Sci Transl Med. , vol.3 , Issue.108 , pp. 108-113
    • Beck, A.H.1    Sangoi, A.R.2    Leung, S.3
  • 16
    • 84982218412 scopus 로고    scopus 로고
    • Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
    • Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016; 7:12474.
    • (2016) Nat Commun. , vol.7 , pp. 12474
    • Yu, K.H.1    Zhang, C.2    Berry, G.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.