메뉴 건너뛰기




Volumn 2, Issue 10, 2018, Pages 719-731

Artificial intelligence in healthcare

Author keywords

[No Author keywords available]

Indexed keywords

DATA ACQUISITION; HEALTH CARE; LEARNING SYSTEMS; MEDICAL APPLICATIONS;

EID: 85054494974     PISSN: None     EISSN: 2157846X     Source Type: Journal    
DOI: 10.1038/s41551-018-0305-z     Document Type: Review
Times cited : (1705)

References (151)
  • 1
    • 85054621623 scopus 로고    scopus 로고
    • Google’s AI eye doctor gets ready to go to work in India
    • 6 August
    • Simonite, T. Google’s AI eye doctor gets ready to go to work in India. WIRED (6 August 2017)
    • (2017) WIRED
    • Simonite, T.1
  • 2
    • 85132189046 scopus 로고    scopus 로고
    • Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss
    • Lee, R., Wong, T. Y. & Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2, 17 (2015)
    • (2015) Eye Vis. , vol.2
    • Lee, R.1    Wong, T.Y.2    Sabanayagam, C.3
  • 3
    • 0036326496 scopus 로고    scopus 로고
    • The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography
    • PID: 12140027
    • Lin, D. Y., Blumenkranz, M. S., Brothers, R. J. & Grosvenor, D. M. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am. J. Ophthalmol. 134, 204–213 (2002)
    • (2002) Am. J. Ophthalmol. , vol.134 , pp. 204-213
    • Lin, D.Y.1    Blumenkranz, M.S.2    Brothers, R.J.3    Grosvenor, D.M.4
  • 4
    • 84866358054 scopus 로고    scopus 로고
    • The worldwide epidemic of diabetic retinopathy
    • PID: 22944754
    • Zheng, Y., He, M. & Congdon, N. The worldwide epidemic of diabetic retinopathy. Indian J. Ophthalmol. 60, 428–431 (2012)
    • (2012) Indian J. Ophthalmol. , vol.60 , pp. 428-431
    • Zheng, Y.1    He, M.2    Congdon, N.3
  • 5
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 6
    • 85042201755 scopus 로고    scopus 로고
    • Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
    • Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018)
    • (2018) Nat. Biomed. Eng. , vol.2 , pp. 158-164
    • Poplin, R.1
  • 7
    • 85095168170 scopus 로고    scopus 로고
    • Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
    • Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 1, 39 (2018)
    • (2018) NPJ Digit. Med. , vol.1 , pp. 39
    • Abràmoff, M.D.1    Lavin, P.T.2    Birch, M.3    Shah, N.4    Folk, J.C.5
  • 11
    • 0033908714 scopus 로고    scopus 로고
    • Knowledge-based ECG interpretation: a critical review
    • Kundu, M., Nasipuri, M. & Basu, D. K. Knowledge-based ECG interpretation: a critical review. Pattern Recognit. 33, 351–373 (2000)
    • (2000) Pattern Recognit. , vol.33 , pp. 351-373
    • Kundu, M.1    Nasipuri, M.2    Basu, D.K.3
  • 12
    • 85007524689 scopus 로고    scopus 로고
    • Adapting to artificial intelligence: radiologists and pathologists as information specialists
    • PID: 27898975
    • Jha, S. & Topol, E. J. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 316, 2353–2354 (2016)
    • (2016) JAMA , vol.316 , pp. 2353-2354
    • Jha, S.1    Topol, E.J.2
  • 13
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • COI: 1:CAS:528:DyaK1MXmvVOhu7g%3D, PID: 10521349
    • Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 14
    • 12444320350 scopus 로고    scopus 로고
    • Gene selection from microarray data for cancer classification—a machine learning approach
    • PID: 15680584
    • Wang, Y. et al. Gene selection from microarray data for cancer classification—a machine learning approach. Comput. Biol. Chem. 29, 37–46 (2005)
    • (2005) Comput. Biol. Chem. , vol.29 , pp. 37-46
    • Wang, Y.1
  • 15
    • 84981313253 scopus 로고    scopus 로고
    • Predicting ovarian cancer patients’ clinical response to platinum-based chemotherapy by their tumor proteomic signatures
    • COI: 1:CAS:528:DC%2BC28XhtVSrsrzI, PID: 27312948
    • Yu, K. H. et al. Predicting ovarian cancer patients’ clinical response to platinum-based chemotherapy by their tumor proteomic signatures. J. Proteome Res. 15, 2455–2465 (2016)
    • (2016) J. Proteome Res. , vol.15 , pp. 2455-2465
    • Yu, K.H.1
  • 16
    • 85040588585 scopus 로고    scopus 로고
    • Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction
    • Yu, K. H. et al. Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction. Bioinformatics 34, 319–320 (2017)
    • (2017) Bioinformatics , vol.34 , pp. 319-320
    • Yu, K.H.1
  • 17
    • 84922335093 scopus 로고    scopus 로고
    • The automated lab
    • COI: 1:CAS:528:DC%2BC2cXitVakt7%2FM, PID: 25471888
    • Check Hayden, E. The automated lab. Nature 516, 131–132 (2014)
    • (2014) Nature , vol.516 , pp. 131-132
    • Check Hayden, E.1
  • 18
    • 0028367412 scopus 로고
    • Medical diagnostic decision support systems–past, present, and future: a threaded bibliography and brief commentary
    • COI: 1:STN:280:DyaK2M3js1Wnsw%3D%3D, PID: 7719792
    • Miller, R. A. Medical diagnostic decision support systems–past, present, and future: a threaded bibliography and brief commentary. J. Am. Med. Inform. Assoc. 1, 8–27 (1994)
    • (1994) J. Am. Med. Inform. Assoc. , vol.1 , pp. 8-27
    • Miller, R.A.1
  • 19
  • 21
    • 0023949557 scopus 로고
    • Artificial intelligence in medical diagnosis
    • COI: 1:STN:280:DyaL1c7gsFShtQ%3D%3D, PID: 3276267
    • Szolovits, P., Patil, R. S. & Schwartz, W. B. Artificial intelligence in medical diagnosis. Ann. Intern. Med. 108, 80–87 (1988)
    • (1988) Ann. Intern. Med. , vol.108 , pp. 80-87
    • Szolovits, P.1    Patil, R.S.2    Schwartz, W.B.3
  • 23
    • 84886614002 scopus 로고
    • Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system
    • COI: 1:STN:280:DyaE28%2Fgt1eitQ%3D%3D, PID: 1157471
    • Shortliffe, E. H. et al. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput. Biomed. Res. 8, 303–320 (1975)
    • (1975) Comput. Biomed. Res. , vol.8 , pp. 303-320
    • Shortliffe, E.H.1
  • 24
    • 85047694791 scopus 로고
    • DXplain
    • COI: 1:STN:280:DyaL2s3is1KnsQ%3D%3D, PID: 3295316
    • Barnett, G. O., Cimino, J. J., Hupp, J. A. & Hoffer, E. P. DXplain. An evolving diagnostic decision-support system. JAMA 258, 67–74 (1987)
    • (1987) JAMA , vol.258 , Issue.1 , pp. 67
    • Barnett, G.O.1
  • 25
    • 0022886346 scopus 로고
    • The INTERNIST-1/QUICK MEDICAL REFERENCE Project — status report
    • Miller, R. A., McNeil, M. A., Challinor, S. M., Masarie, F. E. Jr & Myers, J. D. The INTERNIST-1/QUICK MEDICAL REFERENCE Project — status report. Western J. Med. 145, 816–822 (1986)
    • (1986) Western J. Med. , vol.145 , pp. 816-822
    • Miller, R.A.1    McNeil, M.A.2    Challinormasarie, S.M.3    Myers, J.D.4
  • 26
    • 0028234740 scopus 로고
    • Performance of four computer-based diagnostic systems
    • COI: 1:STN:280:DyaK2c3kslCrtA%3D%3D, PID: 8190157
    • Berner, E. S. et al. Performance of four computer-based diagnostic systems. N. Engl. J. Med. 330, 1792–1796 (1994)
    • (1994) N. Engl. J. Med. , vol.330 , pp. 1792-1796
    • Berner, E.S.1
  • 27
    • 0018000788 scopus 로고
    • Categorical and probabilistic reasoning in medical diagnosis
    • Szolovits, P. & Pauker, S. G. Categorical and probabilistic reasoning in medical diagnosis. Artif. Intell. 11, 115–144 (1978)
    • (1978) Artif. Intell. , vol.11 , pp. 115-144
    • Szolovits, P.1    Pauker, S.G.2
  • 28
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • PID: 5831252
    • Deo, R. C. Machine learning in medicine. Circulation 132, 1920–1930 (2015)
    • (2015) Circulation , vol.132 , pp. 1920-1930
    • Deo, R.C.1
  • 29
    • 84982823011 scopus 로고    scopus 로고
    • Omics profiling in precision oncology
    • COI: 1:CAS:528:DC%2BC28Xht1OktbvN, PID: 27099341
    • Yu, K. H. & Snyder, M. Omics profiling in precision oncology. Mol. Cell. Proteomics 15, 2525–2536 (2016)
    • (2016) Mol. Cell. Proteomics , vol.15 , pp. 2525-2536
    • Yu, K.H.1    Snyder, M.2
  • 30
    • 85019160724 scopus 로고    scopus 로고
    • Biomedical informatics advancing the national health agenda: the AMIA 2015 year-in-review in clinical and consumer informatics
    • Roberts, K. et al. Biomedical informatics advancing the national health agenda: the AMIA 2015 year-in-review in clinical and consumer informatics. J. Am. Med. Inform. Assoc. 24, 185–190 (2017)
    • (2017) J. Am. Med. Inform. Assoc. , vol.24 , pp. 185-190
    • Roberts, K.1
  • 31
    • 85054604733 scopus 로고    scopus 로고
    • ALPHA (Google Cloud); https://cloud.google.com/automl/
  • 35
    • 85007559018 scopus 로고    scopus 로고
    • Translating artificial intelligence into clinical care
    • PID: 27898974
    • Beam, A. L. & Kohane, I. S. Translating artificial intelligence into clinical care. JAMA 316, 2368–2369 (2016)
    • (2016) JAMA , vol.316 , pp. 2368-2369
    • Beam, A.L.1    Kohane, I.S.2
  • 36
    • 79954500285 scopus 로고    scopus 로고
    • Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software
    • COI: 1:CAS:528:DC%2BC3MXksFKlu78%3D, PID: 21349861
    • Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179–1180 (2011)
    • (2011) Bioinformatics , vol.27 , pp. 1179-1180
    • Kamentsky, L.1
  • 37
    • 85045190865 scopus 로고    scopus 로고
    • Opportunities and obstacles for deep learning in biology and medicine
    • Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018)
    • (2018) J. R. Soc. Interface , vol.15 , pp. 20170387
    • Ching, T.1
  • 38
    • 84934922563 scopus 로고    scopus 로고
    • The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge
    • Tomczak, K., Czerwinska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, 68–77 (2015)
    • (2015) Contemp. Oncol. , vol.19 , pp. 68-77
    • Tomczak, K.1    Czerwinska, P.2    Wiznerowicz, M.3
  • 39
    • 84926430250 scopus 로고    scopus 로고
    • UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
    • PID: 25826379
    • Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015)
    • (2015) PLoS Med. , vol.12
    • Sudlow, C.1
  • 40
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • COI: 1:CAS:528:DC%2BC38XhtVKnt73I, PID: 22743765
    • Ljosa, V., Sokolnicki, K. L. & Carpenter, A. E. Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 (2012)
    • (2012) Nat. Methods , vol.9 , pp. 637
    • Ljosa, V.1    Sokolnicki, K.L.2    Carpenter, A.E.3
  • 41
    • 85026475117 scopus 로고    scopus 로고
    • The image data resource: a bioimage data integration and publication platform
    • COI: 1:CAS:528:DC%2BC2sXhtVantL%2FN, PID: 28775673
    • Williams, E. et al. The image data resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017)
    • (2017) Nat. Methods , vol.14 , pp. 775-781
    • Williams, E.1
  • 42
    • 46449113799 scopus 로고    scopus 로고
    • Electronic health records in ambulatory care–a national survey of physicians
    • COI: 1:CAS:528:DC%2BD1cXotFSisLc%3D, PID: 18565855
    • DesRoches, C. M. et al. Electronic health records in ambulatory care–a national survey of physicians. N. Engl. J. Med. 359, 50–60 (2008)
    • (2008) N. Engl. J. Med. , vol.359 , pp. 50-60
    • DesRoches, C.M.1
  • 43
    • 84884221972 scopus 로고    scopus 로고
    • Office-based physicians are responding to incentives and assistance by adopting and using electronic health records
    • Hsiao, C. J. et al. Office-based physicians are responding to incentives and assistance by adopting and using electronic health records. Health Aff. 32, 1470–1477 (2013)
    • (2013) Health Aff. , vol.32 , pp. 1470-1477
    • Hsiao, C.J.1
  • 44
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D
    • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 45
    • 81055146760 scopus 로고    scopus 로고
    • Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
    • PID: 22072638
    • Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011)
    • (2011) Sci. Transl. Med. , vol.3 , pp. 108ra113
    • Beck, A.H.1
  • 46
    • 84982218412 scopus 로고    scopus 로고
    • Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
    • COI: 1:CAS:528:DC%2BC28Xhtlylsb7E, PID: 27527408
    • Yu, K. H. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016)
    • (2016) Nat. Commun. , vol.7
    • Yu, K.H.1
  • 47
    • 84969980426 scopus 로고    scopus 로고
    • Supervised autonomous robotic soft tissue surgery
    • Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8, 337ra364 (2016)
    • (2016) Sci. Transl. Med. , vol.8 , pp. 337ra364
    • Shademan, A.1
  • 49
  • 51
    • 85025112337 scopus 로고    scopus 로고
    • Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
    • PID: 28436741
    • Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017)
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2
  • 55
    • 85000788384 scopus 로고    scopus 로고
    • Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
    • PID: 27908154
    • Samala, R. K. et al. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med. Phys. 43, 6654–6666 (2016)
    • (2016) Med. Phys. , vol.43 , pp. 6654-6666
    • Samala, R.K.1
  • 57
    • 85054698110 scopus 로고    scopus 로고
    • 510(k) Premarket Notification, FDA
    • 510(k) Premarket Notification (FDA, 2017); https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163253
    • (2017)
  • 58
    • 85038816366 scopus 로고    scopus 로고
    • First FDA approval for clinical cloud-based deep learning in healthcare
    • 20 January
    • Marr, B. First FDA approval for clinical cloud-based deep learning in healthcare. Forbes (20 January 2017)
    • (2017) Forbes
    • Marr, B.1
  • 59
    • 24044498349 scopus 로고    scopus 로고
    • ABCDE—an evolving concept in the early detection of melanoma
    • PID: 16103334
    • Rigel, D. S., Friedman, R. J., Kopf, A. W. & Polsky, D. ABCDE—an evolving concept in the early detection of melanoma. Arch. Dermatol. 141, 1032–1034 (2005)
    • (2005) Arch. Dermatol. , vol.141 , pp. 1032-1034
    • Rigel, D.S.1    Friedman, R.J.2    Kopf, A.W.3    Polsky, D.4
  • 60
    • 0031819345 scopus 로고    scopus 로고
    • Semiological value of ABCDE criteria in the diagnosis of cutaneous pigmented tumors
    • COI: 1:STN:280:DyaK1cznslaqtw%3D%3D, PID: 9693179
    • Thomas, L. et al. Semiological value of ABCDE criteria in the diagnosis of cutaneous pigmented tumors. Dermatology 197, 11–17 (1998)
    • (1998) Dermatology , vol.197 , pp. 11-17
    • Thomas, L.1
  • 61
    • 0028105994 scopus 로고
    • Neural network diagnosis of malignant melanoma from color images
    • COI: 1:STN:280:DyaK2M%2FkvVCisQ%3D%3D, PID: 7959811
    • Ercal, F., Chawla, A., Stoecker, W. V., Lee, H. C. & Moss, R. H. Neural network diagnosis of malignant melanoma from color images. IEEE Trans. Biomed. Eng. 41, 837–845 (1994)
    • (1994) IEEE Trans. Biomed. Eng. , vol.41 , pp. 837-845
    • Ercal, F.1    Chawla, A.2    Stoecker, W.V.3    Lee, H.C.4    Moss, R.H.5
  • 62
    • 84876128311 scopus 로고    scopus 로고
    • Diagnostic inaccuracy of smartphone applications for melanoma detection
    • PID: 23325302
    • Wolf, J. A. et al. Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA Dermatol. 149, 422–426 (2013)
    • (2013) JAMA Dermatol. , vol.149 , pp. 422-426
    • Wolf, J.A.1
  • 63
    • 84962170796 scopus 로고    scopus 로고
    • Fundus photography in the 21st century — a review of recent technological advances and their implications for worldwide healthcare
    • PID: 26308281
    • Panwar, N. et al. Fundus photography in the 21st century — a review of recent technological advances and their implications for worldwide healthcare. Telemed. J. E. Health 22, 198–208 (2016)
    • (2016) Telemed. J. E. Health , vol.22 , pp. 198-208
    • Panwar, N.1
  • 64
    • 85009192407 scopus 로고    scopus 로고
    • 10. Microvascular complications and foot care
    • American Diabetes Association. 10. Microvascular complications and foot care. Diabetes Care 40, 88–98 (2017)
    • (2017) Diabetes Care , vol.40 , pp. 88-98
  • 65
    • 84941702063 scopus 로고    scopus 로고
    • Prevalence of and trends in diabetes among adults in the United States, 1988–2012
    • COI: 1:CAS:528:DC%2BC28XkslKjtA%3D%3D, PID: 26348752
    • Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314, 1021–1029 (2015)
    • (2015) JAMA , vol.314 , pp. 1021-1029
    • Menke, A.1    Casagrande, S.2    Geiss, L.3    Cowie, C.C.4
  • 67
    • 0031046295 scopus 로고    scopus 로고
    • Pathologic diagnosis as the gold standard
    • COI: 1:STN:280:DyaK2s7nslWmsg%3D%3D, PID: 9024702
    • Rorke, L. B. Pathologic diagnosis as the gold standard. Cancer 79, 665–667 (1997)
    • (1997) Cancer , vol.79 , pp. 665-667
    • Rorke, L.B.1
  • 68
    • 0035525289 scopus 로고    scopus 로고
    • Microarray and histopathological analysis of tumours: the future and the past?
    • COI: 1:CAS:528:DC%2BD38XlvF2qsLs%3D, PID: 11905806
    • Lakhani, S. R. & Ashworth, A. Microarray and histopathological analysis of tumours: the future and the past? Nat. Rev. Cancer 1, 151–157 (2001)
    • (2001) Nat. Rev. Cancer , vol.1 , pp. 151-157
    • Lakhani, S.R.1    Ashworth, A.2
  • 69
    • 0037145318 scopus 로고    scopus 로고
    • Automated diagnosis of pigmented skin lesions
    • COI: 1:CAS:528:DC%2BD38Xns1eqsrg%3D, PID: 12237900
    • Rubegni, P. et al. Automated diagnosis of pigmented skin lesions. Int. J. Cancer 101, 576–580 (2002)
    • (2002) Int. J. Cancer , vol.101 , pp. 576-580
    • Rubegni, P.1
  • 70
    • 33644759126 scopus 로고    scopus 로고
    • Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case-control study
    • PID: 16476504
    • Stang, A. et al. Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case-control study. Lung Cancer 52, 29–36 (2006)
    • (2006) Lung Cancer , vol.52 , pp. 29-36
    • Stang, A.1
  • 71
    • 85033780544 scopus 로고    scopus 로고
    • Association of omics features with histopathology patterns in lung adenocarcinoma
    • COI: 1:CAS:528:DC%2BC1cXhs1OltQ%3D%3D, PID: 29153840
    • Yu, K. H. et al. Association of omics features with histopathology patterns in lung adenocarcinoma. Cell Syst. 5, 620–627 (2017)
    • (2017) Cell Syst. , vol.5 , pp. 620-627
    • Yu, K.H.1
  • 72
    • 84970028091 scopus 로고    scopus 로고
    • Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
    • COI: 1:CAS:528:DC%2BC28XosVSht70%3D, PID: 27212078
    • Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)
    • (2016) Sci. Rep. , vol.6
    • Litjens, G.1
  • 73
    • 85054606390 scopus 로고    scopus 로고
    • Machine learning detection of breast cancer lymph node metastases
    • Bejnordi, B. E. et al. Machine learning detection of breast cancer lymph node metastases. JAMA 318, 2199–2210 (2017)
    • (2017) JAMA , vol.318 , pp. 2199-2210
    • Bejnordi, B.E.1
  • 76
    • 84892765381 scopus 로고    scopus 로고
    • Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply
    • PID: 23738764
    • Robboy, S. J. et al. Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply. Arch. Pathol. Lab. Med. 137, 1723–1732 (2013)
    • (2013) Arch. Pathol. Lab. Med. , vol.137 , pp. 1723-1732
    • Robboy, S.J.1
  • 77
    • 85026529300 scopus 로고    scopus 로고
    • A survey on deep learning in medical image analysis
    • PID: 28778026
    • Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
    • (2017) Med. Image Anal. , vol.42 , pp. 60-88
    • Litjens, G.1
  • 78
    • 84928997067 scopus 로고    scopus 로고
    • DANN: a deep learning approach for annotating the pathogenicity of genetic variants
    • COI: 1:CAS:528:DC%2BC28Xht1GntLfP, PID: 25338716
    • Quang, D., Chen, Y. & Xie, X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–763 (2015)
    • (2015) Bioinformatics , vol.31 , pp. 761-763
    • Quang, D.1    Chen, Y.2    Xie, X.3
  • 79
    • 84976413226 scopus 로고    scopus 로고
    • DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
    • PID: 27084946
    • Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 (2016)
    • (2016) Nucleic Acids Research , vol.44 , Issue.11 , pp. e107
    • Quang, D.1    Xie, X.2
  • 82
    • 85011690505 scopus 로고    scopus 로고
    • Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification
    • Kamps, R. et al. Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int. J. Mol. Sci. 18, 308 (2017)
    • (2017) Int. J. Mol. Sci. , vol.18 , pp. 308
    • Kamps, R.1
  • 83
    • 77958449045 scopus 로고    scopus 로고
    • Stable feature selection for biomarker discovery
    • COI: 1:CAS:528:DC%2BC3cXhtlens7zN, PID: 20702140
    • He, Z. & Yu, W. Stable feature selection for biomarker discovery. Comput. Biol. Chem. 34, 215–225 (2010)
    • (2010) Comput. Biol. Chem. , vol.34 , pp. 215-225
    • He, Z.1    Yu, W.2
  • 84
    • 4143067096 scopus 로고    scopus 로고
    • Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer
    • COI: 1:CAS:528:DC%2BD2cXmslaks7Y%3D, PID: 15313933
    • Zhang, Z. et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 64, 5882–5890 (2004)
    • (2004) Cancer Res. , vol.64 , pp. 5882-5890
    • Zhang, Z.1
  • 85
    • 84939808101 scopus 로고    scopus 로고
    • Development and verification of the PAM50-based Prosigna breast cancer gene signature assay
    • PID: 26297356
    • Wallden, B. et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med. Genomics 8, 54 (2015)
    • (2015) BMC Med. Genomics , vol.8
    • Wallden, B.1
  • 86
    • 84978062345 scopus 로고    scopus 로고
    • Robust classification of bacterial and viral infections via integrated host gene expression diagnostics
    • Sweeney, T. E., Wong, H. R. & Khatri, P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci. Transl. Med. 8, 346ra391 (2016)
    • (2016) Sci. Transl. Med. , vol.8 , pp. 346ra391
    • Sweeney, T.E.1    Wong, H.R.2    Khatri, P.3
  • 87
    • 77951734507 scopus 로고    scopus 로고
    • Prediction of adverse pregnancy outcomes by combinations of first and second trimester biochemistry markers used in the routine prenatal screening of Down syndrome
    • PID: 20440736
    • Huang, T., Hoffman, B., Meschino, W., Kingdom, J. & Okun, N. Prediction of adverse pregnancy outcomes by combinations of first and second trimester biochemistry markers used in the routine prenatal screening of Down syndrome. Prenat. Diagn. 30, 471–477 (2010)
    • (2010) Prenat. Diagn. , vol.30 , pp. 471-477
    • Huang, T.1    Hoffman, B.2    Meschino, W.3    Kingdom, J.4    Okun, N.5
  • 88
    • 77952095549 scopus 로고    scopus 로고
    • Metastatic potential of T1 breast cancer can be predicted by the 70-gene MammaPrint signature
    • PID: 20094918
    • Mook, S. et al. Metastatic potential of T1 breast cancer can be predicted by the 70-gene MammaPrint signature. Ann. Surg. Oncol. 17, 1406–1413 (2010)
    • (2010) Ann. Surg. Oncol. , vol.17 , pp. 1406-1413
    • Mook, S.1
  • 89
    • 85025679781 scopus 로고    scopus 로고
    • Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation
    • Farina, D. et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat. Biomed. Eng. 1, 0025 (2017)
    • (2017) Nat. Biomed. Eng. , vol.1 , pp. 0025
    • Farina, D.1
  • 90
    • 85018521903 scopus 로고    scopus 로고
    • Artificial intelligence (AI) systems for interpreting complex medical datasets
    • COI: 1:STN:280:DC%2BC1c3lt1Wktw%3D%3D, PID: 28182259
    • Altman, R. B. Artificial intelligence (AI) systems for interpreting complex medical datasets. Clin. Pharmacol. Ther. 101, 585–586 (2017)
    • (2017) Clin. Pharmacol. Ther. , vol.101 , pp. 585-586
    • Altman, R.B.1
  • 91
    • 84979055388 scopus 로고    scopus 로고
    • Real-time prediction of mortality, readmission, and length of stay using electronic health record data
    • PID: 26374704
    • Cai, X. et al. Real-time prediction of mortality, readmission, and length of stay using electronic health record data. J. Am. Med. Inform. Assoc. 23, 553–561 (2016)
    • (2016) J. Am. Med. Inform. Assoc. , vol.23 , pp. 553-561
    • Cai, X.1
  • 92
    • 84983219407 scopus 로고    scopus 로고
    • Short-term mortality prediction for elderly patients using medicare claims data
    • PID: 28018571
    • Makar, M., Ghassemi, M., Cutler, D. M. & Obermeyer, Z. Short-term mortality prediction for elderly patients using medicare claims data. Int. J. Mach. Learn. Comput. 5, 192–197 (2015)
    • (2015) Int. J. Mach. Learn. Comput. , vol.5 , pp. 192-197
    • Makar, M.1    Ghassemi, M.2    Cutler, D.M.3    Obermeyer, Z.4
  • 93
    • 84864609657 scopus 로고    scopus 로고
    • A clinical decision support tool to predict survival in cancer patients beyond 120 days after palliative chemotherapy
    • PID: 22690950
    • Ng, T., Chew, L. & Yap, C. W. A clinical decision support tool to predict survival in cancer patients beyond 120 days after palliative chemotherapy. J. Palliat. Med. 15, 863–869 (2012)
    • (2012) J. Palliat. Med. , vol.15 , pp. 863-869
    • Ng, T.1    Chew, L.2    Yap, C.W.3
  • 94
    • 77951625860 scopus 로고    scopus 로고
    • A machine learning-based approach to prognostic analysis of thoracic transplantations
    • PID: 20153956
    • Delen, D., Oztekin, A. & Kong, Z. J. A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif. Intell. Med. 49, 33–42 (2010)
    • (2010) Artif. Intell. Med. , vol.49 , pp. 33-42
    • Delen, D.1    Oztekin, A.2    Kong, Z.J.3
  • 95
    • 84860555453 scopus 로고    scopus 로고
    • Predicting cardiac arrest on the wards: a nested case-control study
    • PID: 22052772
    • Churpek, M. M. et al. Predicting cardiac arrest on the wards: a nested case-control study. Chest 141, 1170–1176 (2012)
    • (2012) Chest , vol.141 , pp. 1170-1176
    • Churpek, M.M.1
  • 96
    • 84921697939 scopus 로고    scopus 로고
    • Multicenter development and validation of a risk stratification tool for ward patients
    • PID: 25089847
    • Churpek, M. M. et al. Multicenter development and validation of a risk stratification tool for ward patients. Am. J. Respir. Crit. Care Med. 190, 649–655 (2014)
    • (2014) Am. J. Respir. Crit. Care Med. , vol.190 , pp. 649-655
    • Churpek, M.M.1
  • 97
    • 85054648327 scopus 로고    scopus 로고
    • Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
    • Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 10.1038/s41551-018-0304-0 (2018)
    • (2018) Nat. Biomed. Eng.
    • Lundberg, S.M.1
  • 99
    • 85009999439 scopus 로고    scopus 로고
    • Wearable sensors for remote health monitoring
    • Majumder, S., Mondal, T. & Deen, M. J. Wearable sensors for remote health monitoring. Sensors 17, 130 (2017)
    • (2017) Sensors , vol.17 , pp. 130
    • Majumder, S.1    Mondal, T.2    Deen, M.J.3
  • 100
    • 84880315431 scopus 로고    scopus 로고
    • Wearable sensor network for health monitoring: the case of Parkinson disease
    • Pastorino, M., Arredondo, M., Cancela, J. & Guillen, S. Wearable sensor network for health monitoring: the case of Parkinson disease. J. Phys. Conf. Ser. 450, 012055 (2013)
    • (2013) J. Phys. Conf. Ser. , vol.450 , pp. 012055
    • Pastorino, M.1    Arredondo, M.2    Cancela, J.3    Guillen, S.4
  • 101
    • 84975143046 scopus 로고    scopus 로고
    • Behavior change techniques present in wearable activity trackers: a critical analysis
    • PID: 27122452
    • Mercer, K., Li, M., Giangregorio, L., Burns, C. & Grindrod, K. Behavior change techniques present in wearable activity trackers: a critical analysis. JMIR Mhealth Uhealth 4, e40 (2016)
    • (2016) JMIR Mhealth Uhealth , vol.4
    • Mercer, K.1    Li, M.2    Giangregorio, L.3    Burns, C.4    Grindrod, K.5
  • 102
    • 84906324524 scopus 로고    scopus 로고
    • Validation of the Fitbit One activity monitor device during treadmill walking
    • PID: 24268570
    • Takacs, J. et al. Validation of the Fitbit One activity monitor device during treadmill walking. J. Sci. Med. Sport 17, 496–500 (2014)
    • (2014) J. Sci. Med. Sport , vol.17 , pp. 496-500
    • Takacs, J.1
  • 104
    • 85054661620 scopus 로고    scopus 로고
    • Inside wearables: How the science of human behavior change offers the secret to long-term engagement
    • Endeavour Partners. Inside wearables: how the science of human behavior change offers the secret to long-term engagement. Medium https://blog.endeavour.partners/inside-wearable-how-the-science-of-human-behavior-change-offers-the-secret-to-long-term-engagement-a15b3c7d4cf3 (2017)
    • (2017) Medium
  • 105
    • 84942888100 scopus 로고    scopus 로고
    • Wearables are totally failing the people who need them most
    • 11 June
    • Herz, J. C. Wearables are totally failing the people who need them most. Wired (11 June 2014)
    • (2014) Wired
    • Herz, J.C.1
  • 107
    • 34250378327 scopus 로고    scopus 로고
    • Overview on robotics in the laboratory
    • COI: 1:STN:280:DC%2BD2s3kslOnsQ%3D%3D, PID: 17456291
    • Wheeler, M. J. Overview on robotics in the laboratory. Ann. Clin. Biochem. 44, 209–218 (2007)
    • (2007) Ann. Clin. Biochem. , vol.44 , pp. 209-218
    • Wheeler, M.J.1
  • 109
    • 78649330405 scopus 로고    scopus 로고
    • Surgical robotics: reviewing the past, analysing the present, imagining the future
    • Gomes, P. Surgical robotics: reviewing the past, analysing the present, imagining the future. Robot. Comput. Integr. Manuf. 27, 261–266 (2011)
    • (2011) Robot. Comput. Integr. Manuf. , vol.27 , pp. 261-266
    • Gomes, P.1
  • 110
    • 68549139903 scopus 로고    scopus 로고
    • A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study
    • PID: 20033531
    • Majdani, O. et al. A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int. J. Comput. Assist. Radiol. Surg. 4, 475–486 (2009)
    • (2009) Int. J. Comput. Assist. Radiol. Surg. , vol.4 , pp. 475-486
    • Majdani, O.1
  • 112
    • 85044135004 scopus 로고    scopus 로고
    • The future of radiology augmented with artificial intelligence: a strategy for success
    • PID: 29685530
    • Liew, C. The future of radiology augmented with artificial intelligence: a strategy for success. Eur. J. Radiol. 102, 152–156 (2018)
    • (2018) Eur. J. Radiol. , vol.102 , pp. 152-156
    • Liew, C.1
  • 113
    • 85045140990 scopus 로고    scopus 로고
    • Artificial intelligence, machine learning and the evolution of healthcare
    • COI: 1:STN:280:DC%2BC1MbptlSrsg%3D%3D
    • Jones, L., Golan, D., Hanna, S. & Ramachandran, M. Artificial intelligence, machine learning and the evolution of healthcare: a bright future or cause for concern? Bone Joint Res. 7, 223–225 (2018)
    • (2018) Bone & Joint Research , vol.7 , Issue.3 , pp. 223-225
    • Jones, L.D.1    Golan, D.2    Hanna, S.A.3    Ramachandran, M.4
  • 114
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the future — big data, machine learning, and clinical medicine
    • PID: 27682033
    • Obermeyer, Z. & Emanuel, E. J. Predicting the future — big data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219 (2016)
    • (2016) N. Engl. J. Med. , vol.375 , pp. 1216-1219
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 115
    • 85043470011 scopus 로고    scopus 로고
    • Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
    • PID: 29548646
    • Krause, J. et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125, 1264–1272 (2018)
    • (2018) Ophthalmology , vol.125 , pp. 1264-1272
    • Krause, J.1
  • 116
    • 85037377178 scopus 로고    scopus 로고
    • The CALBC silver standard corpus for biomedical named entities—a study in harmonizing the contributions from four independent named entity taggers
    • Rebholz-Schuhmann, D. et al. The CALBC silver standard corpus for biomedical named entities—a study in harmonizing the contributions from four independent named entity taggers. In LREC 568–573 (2010)
    • (2010) LREC , pp. 568-573
    • Rebholz-Schuhmann, D.1
  • 117
    • 84994697920 scopus 로고    scopus 로고
    • PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability
    • PID: 27026615
    • Kirby, J. C. et al. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. J. Am. Med. Inform. Assoc. 23, 1046–1052 (2016)
    • (2016) J. Am. Med. Inform. Assoc. , vol.23 , pp. 1046-1052
    • Kirby, J.C.1
  • 120
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
    • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 123
    • 67649983043 scopus 로고    scopus 로고
    • Ethical collection, storage, and use of public health data: a proposal for a national privacy protection
    • COI: 1:CAS:528:DC%2BD1MXotF2ms7w%3D, PID: 19567443
    • Lee, L. M. & Gostin, L. O. Ethical collection, storage, and use of public health data: a proposal for a national privacy protection. JAMA 302, 82–84 (2009)
    • (2009) JAMA , vol.302 , pp. 82-84
    • Lee, L.M.1    Gostin, L.O.2
  • 125
    • 29244445108 scopus 로고    scopus 로고
    • HL7 Clinical Document Architecture, Release 2
    • PID: 16221939
    • Dolin, R. H. et al. HL7 Clinical Document Architecture, Release 2. J. Am. Med. Inform. Assoc. 13, 30–39 (2006)
    • (2006) J. Am. Med. Inform. Assoc. , vol.13 , pp. 30-39
    • Dolin, R.H.1
  • 126
    • 84862200972 scopus 로고    scopus 로고
    • Escaping the EHR trap—the future of health IT
    • &
    • Mandl, K. D. & Kohane, I. S. Escaping the EHR trap—the future of health IT. N. Engl. J. Med. 366, 2240–2242 (2012)
    • (2012) N. Engl. J. Med. , vol.366 , pp. 2240-2242
    • Mandl, K.D.1    Kohane, I.S.2
  • 127
    • 84995784013 scopus 로고    scopus 로고
    • SMART on FHIR: a standards-based, interoperable apps platform for electronic health records
    • PID: 26911829
    • Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S. & Ramoni, R. B. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J. Am. Med. Inform. Assoc. 23, 899–908 (2016)
    • (2016) J. Am. Med. Inform. Assoc. , vol.23 , pp. 899-908
    • Mandel, J.C.1    Kreda, D.A.2    Mandl, K.D.3    Kohane, I.S.4    Ramoni, R.B.5
  • 128
    • 85054105226 scopus 로고    scopus 로고
    • All eyes are on AI
    • All eyes are on AI. Nat. Biomed. Eng. 2, 139 (2018)
    • (2018) Nat. Biomed. Eng , vol.2 , pp. 139
  • 129
    • 85054483394 scopus 로고    scopus 로고
    • Framing the challenges of artificial intelligence in medicine
    • Yu, K. H. & Kohane I. S. Framing the challenges of artificial intelligence in medicine. BMJ Qual. Safety https://doi.org/10.1136/bmjqs-2018-008551 (2018)
    • (2018) BMJ Qual. Safety
    • Yu, K.H.1    Kohane, I.S.2
  • 130
    • 85041905529 scopus 로고    scopus 로고
    • Ethics in artificial intelligence: introduction to the special issue
    • Dignum, V. Ethics in artificial intelligence: introduction to the special issue. Ethics Inf. Technol. 20, 1–3 (2018)
    • (2018) Ethics and Information Technology , vol.20 , Issue.1 , pp. 1-3
    • Dignum, V.1
  • 133
    • 33746851719 scopus 로고    scopus 로고
    • Computerized provider order entry implementation: no association with increased mortality rates in an intensive care unit
    • PID: 16818577
    • Del Beccaro, M. A., Jeffries, H. E., Eisenberg, M. A. & Harry, E. D. Computerized provider order entry implementation: no association with increased mortality rates in an intensive care unit. Pediatrics 118, 290–295 (2006)
    • (2006) Pediatrics , vol.118 , pp. 290-295
    • Del Beccaro, M.A.1    Jeffries, H.E.2    Eisenberg, M.A.3    Harry, E.D.4
  • 134
    • 77954373218 scopus 로고    scopus 로고
    • Decrease in hospital-wide mortality rate after implementation of a commercially sold computerized physician order entry system
    • PID: 20439590
    • Longhurst, C. A. et al. Decrease in hospital-wide mortality rate after implementation of a commercially sold computerized physician order entry system. Pediatrics 126, 14–21 (2010)
    • (2010) Pediatrics , vol.126 , pp. 14-21
    • Longhurst, C.A.1
  • 135
    • 84878716417 scopus 로고    scopus 로고
    • A clinical case of electronic health record drug alert fatigue: consequences for patient outcome
    • Carspecken, C. W., Sharek, P. J., Longhurst, C. & Pageler, N. M. A clinical case of electronic health record drug alert fatigue: consequences for patient outcome. Pediatrics 131, 1970–1973 (2013)
    • (2013) Pediatrics , vol.131 , pp. 1970-1973
    • Carspecken, C.W.1    Sharek, P.J.2    Longhurst, C.3    Pageler, N.M.4
  • 136
    • 1542327773 scopus 로고    scopus 로고
    • Some unintended consequences of information technology in health care: the nature of patient care information system-related errors
    • PID: 14633936
    • Ash, J. S., Berg, M. & Coiera, E. Some unintended consequences of information technology in health care: the nature of patient care information system-related errors. J. Am. Med. Inform. Assoc. 11, 104–112 (2004)
    • (2004) J. Am. Med. Inform. Assoc. , vol.11 , pp. 104-112
    • Ash, J.S.1    Berg, M.2    Coiera, E.3
  • 137
    • 84946119874 scopus 로고    scopus 로고
    • Diagnostic accuracy of digital screening mammography with and without computer-aided detection
    • PID: 26414882
    • Lehman, C. D. et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern. Med. 175, 1828–1837 (2015)
    • (2015) JAMA Intern. Med. , vol.175 , pp. 1828-1837
    • Lehman, C.D.1
  • 138
    • 14544304095 scopus 로고    scopus 로고
    • Role of computerized physician order entry systems in facilitating medication errors
    • COI: 1:CAS:528:DC%2BD2MXit1WksbY%3D, PID: 15755942
    • Koppel, R. et al. Role of computerized physician order entry systems in facilitating medication errors. JAMA 293, 1197–1203 (2005)
    • (2005) JAMA , vol.293 , pp. 1197-1203
    • Koppel, R.1
  • 139
    • 84881354155 scopus 로고    scopus 로고
    • Enhancing patient safety and quality of care by improving the usability of electronic health record systems: recommendations from AMIA
    • Middleton, B. et al. Enhancing patient safety and quality of care by improving the usability of electronic health record systems: recommendations from AMIA. J. Am. Med. Inform. Assoc. 20, 2–8 (2013)
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , pp. 2-8
    • Middleton, B.1
  • 140
    • 85054640341 scopus 로고    scopus 로고
    • 12 April
    • Gottlieb, S. Twitter (12 April 2018); https://twitter.com/SGottliebFDA/status/984378648781312002
    • (2018) Twitter
    • Gottlieb, S.1
  • 141
    • 85054637036 scopus 로고    scopus 로고
    • Digital Health Software Precertification (Pre-Cert) Program (FDA); https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/default.htm
  • 142
    • 78149290264 scopus 로고    scopus 로고
    • Open mHealth architecture: an engine for health care innovation
    • COI: 1:CAS:528:DC%2BC3cXhsVClu7bE, PID: 21051617
    • Estrin, D. & Sim, I. Open mHealth architecture: an engine for health care innovation. Science 330, 759–760 (2010)
    • (2010) Science , vol.330 , pp. 759-760
    • Estrin, D.1    Sim, I.2
  • 143
    • 0023181523 scopus 로고
    • Computer programs to support clinical decision making
    • COI: 1:STN:280:DyaL2s3is1KnsA%3D%3D, PID: 3586293
    • Shortliffe, E. H. Computer programs to support clinical decision making. JAMA 258, 61–66 (1987)
    • (1987) JAMA , vol.258 , pp. 61-66
    • Shortliffe, E.H.1
  • 144
    • 84939228529 scopus 로고    scopus 로고
    • Clinical chemistry laboratory automation in the 21st century—amat victoria curam (Victory loves careful preparation)
    • Armbruster, D. A., Overcash, D. R. & Reyes, J. Clinical chemistry laboratory automation in the 21st century—amat victoria curam (victory loves careful preparation). Clin. Biochem. Rev. 35, 143–153 (2014)
    • (2014) Clin. Biochem. Rev , vol.35 , pp. 143-153
    • Armbruster, D.A.1    Overcash, D.R.2    Reyes, J.3
  • 145
    • 0034293025 scopus 로고    scopus 로고
    • A golden age of clinical chemistry: 1948–1960
    • COI: 1:CAS:528:DC%2BD3cXnsFOhurY%3D, PID: 11017957
    • Rosenfeld, L. A golden age of clinical chemistry: 1948–1960. Clin. Chem. 46, 1705–1714 (2000)
    • (2000) Clin. Chem. , vol.46 , pp. 1705-1714
    • Rosenfeld, L.1
  • 146
    • 33845439066 scopus 로고    scopus 로고
    • Medication-related clinical decision support in computerized provider order entry systems: a review
    • PID: 17068355
    • Kuperman, G. J. et al. Medication-related clinical decision support in computerized provider order entry systems: a review. J. Am. Med. Inform. Assoc. 14, 29–40 (2007)
    • (2007) J. Am. Med. Inform. Assoc. , vol.14 , pp. 29-40
    • Kuperman, G.J.1
  • 147
    • 0036884965 scopus 로고    scopus 로고
    • Improving recognition of drug interactions: benefits and barriers to using automated drug alerts
    • PID: 12458299
    • Glassman, P. A., Simon, B., Belperio, P. & Lanto, A. Improving recognition of drug interactions: benefits and barriers to using automated drug alerts. Med. Care 40, 1161–1171 (2002)
    • (2002) Med. Care , vol.40 , pp. 1161-1171
    • Glassman, P.A.1    Simon, B.2    Belperio, P.3    Lanto, A.4
  • 149
    • 85054158054 scopus 로고    scopus 로고
    • Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
    • COI: 1:STN:280:DC%2BC1MbhslCjtA%3D%3D, PID: 29846502
    • Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018)
    • (2018) Ann. Oncol. , vol.29 , pp. 1836-1842
    • Haenssle, H.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.