메뉴 건너뛰기




Volumn 95, Issue 2, 2017, Pages 245-258

Neuroscience-Inspired Artificial Intelligence

Author keywords

artificial intelligence; brain; cognition; learning; neural network

Indexed keywords

ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; ATTENTION; BRAIN; EPISODIC MEMORY; HISTORY; HUMAN; IMAGINATION; MACHINE; MACHINE LEARNING; NEUROSCIENCE; NONHUMAN; PLANNING; PRIORITY JOURNAL; REINFORCEMENT; RESEARCH; REVIEW; WORKING MEMORY; ANIMAL; INTELLIGENCE; LEARNING; PHYSIOLOGY;

EID: 85029563607     PISSN: 08966273     EISSN: 10974199     Source Type: Journal    
DOI: 10.1016/j.neuron.2017.06.011     Document Type: Review
Times cited : (1266)

References (178)
  • 3
    • 85030666795 scopus 로고    scopus 로고
    • Multiple object recognition with visual attention. arXiv, arXiv:14127755.
    • Ba, J.L., Mnih, V., and Kavukcuoglu, K. (2015). Multiple object recognition with visual attention. arXiv, arXiv:14127755.
    • (2015)
    • Ba, J.L.1    Mnih, V.2    Kavukcuoglu, K.3
  • 4
    • 82955240686 scopus 로고    scopus 로고
    • Working memory: theories, models, and controversies
    • Baddeley, A., Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63 (2012), 1–29.
    • (2012) Annu. Rev. Psychol. , vol.63 , pp. 1-29
    • Baddeley, A.1
  • 5
    • 85030669703 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate. arXiv, arXiv:14090473.
    • Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv, arXiv:14090473.
    • (2014)
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 6
    • 84968867568 scopus 로고    scopus 로고
    • Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network
    • Balaguer, J., Spiers, H., Hassabis, D., Summerfield, C., Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network. Neuron 90 (2016), 893–903.
    • (2016) Neuron , vol.90 , pp. 893-903
    • Balaguer, J.1    Spiers, H.2    Hassabis, D.3    Summerfield, C.4
  • 7
    • 0001979913 scopus 로고
    • Sensory mechanisms, the reduction of redundancy, and intelligence
    • National Physical Laboratory, UK: H.M. Stationery Office
    • Barlow, H., Sensory mechanisms, the reduction of redundancy, and intelligence. The Mechanisation of Thought Processes, 1959, National Physical Laboratory, UK: H.M. Stationery Office, 535–539.
    • (1959) The Mechanisation of Thought Processes , pp. 535-539
    • Barlow, H.1
  • 8
    • 85047672328 scopus 로고    scopus 로고
    • When and where do we apply what we learn? A taxonomy for far transfer
    • Barnett, S.M., Ceci, S.J., When and where do we apply what we learn? A taxonomy for far transfer. Psychol. Bull. 128 (2002), 612–637.
    • (2002) Psychol. Bull. , vol.128 , pp. 612-637
    • Barnett, S.M.1    Ceci, S.J.2
  • 11
    • 85030691846 scopus 로고    scopus 로고
    • Interaction networks for learning about objects, relations and physics. arXiv, arXiv:161200222.
    • Battaglia, P., Pascanu, R., Lai, M., Rezende, D., and Kavukcuoglu, K. (2016). Interaction networks for learning about objects, relations and physics. arXiv, arXiv:161200222.
    • (2016)
    • Battaglia, P.1    Pascanu, R.2    Lai, M.3    Rezende, D.4    Kavukcuoglu, K.5
  • 12
    • 85030659507 scopus 로고    scopus 로고
    • Towards biologically plausible deep learning. arXiv, arXiv:150204156.
    • Bengio, Y., Lee, D.H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards biologically plausible deep learning. arXiv, arXiv:150204156.
    • (2015)
    • Bengio, Y.1    Lee, D.H.2    Bornschein, J.3    Mesnard, T.4    Lin, Z.5
  • 13
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi, G.Q., Poo, M.M., Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18 (1998), 10464–10472.
    • (1998) J. Neurosci. , vol.18 , pp. 10464-10472
    • Bi, G.Q.1    Poo, M.M.2
  • 15
    • 33744552729 scopus 로고    scopus 로고
    • Short-term memory for serial order: a recurrent neural network model
    • Botvinick, M.M., Plaut, D.C., Short-term memory for serial order: a recurrent neural network model. Psychol. Rev. 113 (2006), 201–233.
    • (2006) Psychol. Rev. , vol.113 , pp. 201-233
    • Botvinick, M.M.1    Plaut, D.C.2
  • 16
    • 84859198465 scopus 로고    scopus 로고
    • Turing centenary: is the brain a good model for machine intelligence?
    • Brooks, R., Hassabis, D., Bray, D., Shashua, A., Turing centenary: is the brain a good model for machine intelligence?. Nature 482 (2012), 462–463.
    • (2012) Nature , vol.482 , pp. 462-463
    • Brooks, R.1    Hassabis, D.2    Bray, D.3    Shashua, A.4
  • 18
    • 85030693819 scopus 로고    scopus 로고
    • A compositional object-based approach to learning physical dynamics. arXiv, arXiv:161200341.
    • Chang, M.B., Ullman, T., Torralba, A., and Tenenbaum, J.B. (2016). A compositional object-based approach to learning physical dynamics. arXiv, arXiv:161200341.
    • (2016)
    • Chang, M.B.1    Ullman, T.2    Torralba, A.3    Tenenbaum, J.B.4
  • 20
    • 0023697030 scopus 로고
    • Perspectives on cognitive neuroscience
    • Churchland, P.S., Sejnowski, T.J., Perspectives on cognitive neuroscience. Science 242 (1988), 741–745.
    • (1988) Science , vol.242 , pp. 741-745
    • Churchland, P.S.1    Sejnowski, T.J.2
  • 21
    • 84927551061 scopus 로고    scopus 로고
    • Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity
    • Cichon, J., Gan, W.B., Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature 520 (2015), 180–185.
    • (2015) Nature , vol.520 , pp. 180-185
    • Cichon, J.1    Gan, W.B.2
  • 22
    • 84896732667 scopus 로고    scopus 로고
    • Resolving human object recognition in space and time
    • Cichy, R.M., Pantazis, D., Oliva, A., Resolving human object recognition in space and time. Nat. Neurosci. 17 (2014), 455–462.
    • (2014) Nat. Neurosci. , vol.17 , pp. 455-462
    • Cichy, R.M.1    Pantazis, D.2    Oliva, A.3
  • 23
    • 84858980829 scopus 로고    scopus 로고
    • Reasoning, learning, and creativity: frontal lobe function and human decision-making
    • Collins, A., Koechlin, E., Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS Biol., 10, 2012, e1001293.
    • (2012) PLoS Biol. , vol.10 , pp. e1001293
    • Collins, A.1    Koechlin, E.2
  • 24
    • 84975105737 scopus 로고    scopus 로고
    • Organizing conceptual knowledge in humans with a gridlike code
    • Constantinescu, A.O., O'Reilly, J.X., Behrens, T.E., Organizing conceptual knowledge in humans with a gridlike code. Science 352 (2016), 1464–1468.
    • (2016) Science , vol.352 , pp. 1464-1468
    • Constantinescu, A.O.1    O'Reilly, J.X.2    Behrens, T.E.3
  • 25
    • 0004148080 scopus 로고
    • The Nature of Explanation
    • Cambridge University Press
    • Craik, K., The Nature of Explanation. 1943, Cambridge University Press.
    • (1943)
    • Craik, K.1
  • 26
    • 84878560032 scopus 로고    scopus 로고
    • Attention during natural vision warps semantic representation across the human brain
    • Çukur, T., Nishimoto, S., Huth, A.G., Gallant, J.L., Attention during natural vision warps semantic representation across the human brain. Nat. Neurosci. 16 (2013), 763–770.
    • (2013) Nat. Neurosci. , vol.16 , pp. 763-770
    • Çukur, T.1    Nishimoto, S.2    Huth, A.G.3    Gallant, J.L.4
  • 27
    • 28044450875 scopus 로고    scopus 로고
    • Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
    • Daw, N.D., Niv, Y., Dayan, P., Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8 (2005), 1704–1711.
    • (2005) Nat. Neurosci. , vol.8 , pp. 1704-1711
    • Daw, N.D.1    Niv, Y.2    Dayan, P.3
  • 28
    • 84887002027 scopus 로고    scopus 로고
    • Engineering approaches to illuminating brain structure and dynamics
    • Deisseroth, K., Schnitzer, M.J., Engineering approaches to illuminating brain structure and dynamics. Neuron 80 (2013), 568–577.
    • (2013) Neuron , vol.80 , pp. 568-577
    • Deisseroth, K.1    Schnitzer, M.J.2
  • 29
    • 85030672985 scopus 로고    scopus 로고
    • Imagenet: a large-scale hierarchical image database. In Computer Vision and Pattern Recognition
    • Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and Fei-Fei, L. (2009). Imagenet: a large-scale hierarchical image database. In Computer Vision and Pattern Recognition, pp. 1–8.
    • (2009) , pp. 1-8
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.J.4    Li, K.5    Fei-Fei, L.6
  • 30
    • 85030687733 scopus 로고    scopus 로고
    • Learning to perform physics experiments via deep reinforcement learning. arXiv, arXiv:161101843.
    • Denil, M., Agrawal, P., Kulkarni, T.D., Erez, T., Battaglia, P., and de Freitas, N. (2016). Learning to perform physics experiments via deep reinforcement learning. arXiv, arXiv:161101843.
    • (2016)
    • Denil, M.1    Agrawal, P.2    Kulkarni, T.D.3    Erez, T.4    Battaglia, P.5    de Freitas, N.6
  • 31
    • 84885802926 scopus 로고    scopus 로고
    • Goals and habits in the brain
    • Dolan, R.J., Dayan, P., Goals and habits in the brain. Neuron 80 (2013), 312–325.
    • (2013) Neuron , vol.80 , pp. 312-325
    • Dolan, R.J.1    Dayan, P.2
  • 33
    • 84903295903 scopus 로고    scopus 로고
    • Human cognition. Foundations of human reasoning in the prefrontal cortex
    • Donoso, M., Collins, A.G., Koechlin, E., Human cognition. Foundations of human reasoning in the prefrontal cortex. Science 344 (2014), 1481–1486.
    • (2014) Science , vol.344 , pp. 1481-1486
    • Donoso, M.1    Collins, A.G.2    Koechlin, E.3
  • 34
    • 39049091453 scopus 로고    scopus 로고
    • A theory of the discovery and predication of relational concepts
    • Doumas, L.A., Hummel, J.E., Sandhofer, C.M., A theory of the discovery and predication of relational concepts. Psychol. Rev. 115 (2008), 1–43.
    • (2008) Psychol. Rev. , vol.115 , pp. 1-43
    • Doumas, L.A.1    Hummel, J.E.2    Sandhofer, C.M.3
  • 35
    • 85030687838 scopus 로고    scopus 로고
    • RLˆ2: fast reinforcement learning via slow reinforcement learning. arXiv, arXiv:1611.02779.
    • Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., and Abbeel, P. (2016). RLˆ2: fast reinforcement learning via slow reinforcement learning. arXiv, arXiv:1611.02779.
    • (2016)
    • Duan, Y.1    Schulman, J.2    Chen, X.3    Bartlett, P.L.4    Sutskever, I.5    Abbeel, P.6
  • 36
  • 37
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L., Finding structure in time. Cogn. Sci. 14 (1990), 179–211.
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 38
    • 85030716662 scopus 로고    scopus 로고
    • Attend, infer, repeat: fast scene understanding with generative models. arXiv, arXiv:160308575.
    • Eslami, A., Heess, N., Weber, T.Y.T., Szepesvari, D., Kavukcuoglu, K., and Hinton, G. (2016). Attend, infer, repeat: fast scene understanding with generative models. arXiv, arXiv:160308575.
    • (2016)
    • Eslami, A.1    Heess, N.2    Weber, T.Y.T.3    Szepesvari, D.4    Kavukcuoglu, K.5    Hinton, G.6
  • 40
    • 0023968207 scopus 로고
    • Connectionism and cognitive architecture: a critical analysis
    • Fodor, J.A., Pylyshyn, Z.W., Connectionism and cognitive architecture: a critical analysis. Cognition 28 (1988), 3–71.
    • (1988) Cognition , vol.28 , pp. 3-71
    • Fodor, J.A.1    Pylyshyn, Z.W.2
  • 41
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks
    • French, R.M., Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3 (1999), 128–135.
    • (1999) Trends Cogn. Sci. , vol.3 , pp. 128-135
    • French, R.M.1
  • 42
    • 0019152630 scopus 로고
    • Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K., Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36 (1980), 193–202.
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 43
    • 13844266723 scopus 로고    scopus 로고
    • Cascade models of synaptically stored memories
    • Fusi, S., Drew, P.J., Abbott, L.F., Cascade models of synaptically stored memories. Neuron 45 (2005), 599–611.
    • (2005) Neuron , vol.45 , pp. 599-611
    • Fusi, S.1    Drew, P.J.2    Abbott, L.F.3
  • 44
    • 84889496423 scopus 로고    scopus 로고
    • Memory and the Computational Brain: Why Cognitive Science will Transform Neuroscience
    • Wiley-Blackwell
    • Gallistel, C., King, A.P., Memory and the Computational Brain: Why Cognitive Science will Transform Neuroscience. 2009, Wiley-Blackwell.
    • (2009)
    • Gallistel, C.1    King, A.P.2
  • 45
    • 85030666457 scopus 로고    scopus 로고
    • A neural algorithm of artistic style. arXiv, arXiv:1508.06576.
    • Gatys, L.A., Ecker, A.S., and Bethge, M. (2015). A neural algorithm of artistic style. arXiv, arXiv:1508.06576.
    • (2015)
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 47
    • 85009518318 scopus 로고    scopus 로고
    • Reinforcement learning and episodic memory in humans and animals: an integrative framework
    • Gershman, S.J., Daw, N.D., Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68 (2017), 101–128.
    • (2017) Annu. Rev. Psychol. , vol.68 , pp. 101-128
    • Gershman, S.J.1    Daw, N.D.2
  • 48
    • 34249882763 scopus 로고    scopus 로고
    • Symbolic arithmetic knowledge without instruction
    • Gilmore, C.K., McCarthy, S.E., Spelke, E.S., Symbolic arithmetic knowledge without instruction. Nature 447 (2007), 589–591.
    • (2007) Nature , vol.447 , pp. 589-591
    • Gilmore, C.K.1    McCarthy, S.E.2    Spelke, E.S.3
  • 50
    • 0025651555 scopus 로고
    • Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates
    • Goldman-Rakic, P.S., Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Prog. Brain Res. 85 (1990), 325–335.
    • (1990) Prog. Brain Res. , vol.85 , pp. 325-335
    • Goldman-Rakic, P.S.1
  • 51
    • 4143101506 scopus 로고    scopus 로고
    • Mechanisms of theory formation in young children
    • Gopnik, A., Schulz, L., Mechanisms of theory formation in young children. Trends Cogn. Sci. 8 (2004), 371–377.
    • (2004) Trends Cogn. Sci. , vol.8 , pp. 371-377
    • Gopnik, A.1    Schulz, L.2
  • 52
    • 85030715216 scopus 로고    scopus 로고
    • Neural turing machines. arXiv, arXiv:1410.5401.
    • Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv, arXiv:1410.5401.
    • (2014)
    • Graves, A.1    Wayne, G.2    Danihelka, I.3
  • 54
    • 85030703639 scopus 로고    scopus 로고
    • DRAW: a recurrent neural network for image generation. arXiv, arXiv:150204623.
    • Gregor, K., Danihelka, I., Graves, A., Renzende, D., and Wierstra, D. (2015). DRAW: a recurrent neural network for image generation. arXiv, arXiv:150204623.
    • (2015)
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Renzende, D.4    Wierstra, D.5
  • 55
    • 79958779459 scopus 로고    scopus 로고
    • Reinforcement learning in feedback control
    • Hafner, R., Riedmiller, M., Reinforcement learning in feedback control. Mach. Learn. 84 (2011), 137–169.
    • (2011) Mach. Learn. , vol.84 , pp. 137-169
    • Hafner, R.1    Riedmiller, M.2
  • 57
    • 0002833950 scopus 로고
    • The formation of learning sets
    • Harlow, H.F., The formation of learning sets. Psychol. Rev. 56 (1949), 51–65.
    • (1949) Psychol. Rev. , vol.56 , pp. 51-65
    • Harlow, H.F.1
  • 58
    • 34250706782 scopus 로고    scopus 로고
    • Deconstructing episodic memory with construction
    • Hassabis, D., Maguire, E.A., Deconstructing episodic memory with construction. Trends Cogn. Sci. 11 (2007), 299–306.
    • (2007) Trends Cogn. Sci. , vol.11 , pp. 299-306
    • Hassabis, D.1    Maguire, E.A.2
  • 60
    • 0003685133 scopus 로고
    • Artificial Intelligence: The Very Idea
    • MIT Press
    • Haugeland, J., Artificial Intelligence: The Very Idea. 1985, MIT Press.
    • (1985)
    • Haugeland, J.1
  • 62
    • 0004230131 scopus 로고
    • The Organization of Behavior
    • John Wiley & Sons
    • Hebb, D.O., The Organization of Behavior. 1949, John Wiley & Sons.
    • (1949)
    • Hebb, D.O.1
  • 65
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 66
    • 85030670354 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors. arXiv, arXiv:12070580.
    • Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv, arXiv:12070580.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.R.5
  • 69
    • 85030675677 scopus 로고    scopus 로고
    • Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. arXiv, arXiv:151207928.
    • Hong, S., Oh, J., Bohyung, H., and Lee, H. (2015). Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. arXiv, arXiv:151207928.
    • (2015)
    • Hong, S.1    Oh, J.2    Bohyung, H.3    Lee, H.4
  • 70
    • 84959087247 scopus 로고    scopus 로고
    • Explicit information for category-orthogonal object properties increases along the ventral stream
    • Hong, H., Yamins, D.L., Majaj, N.J., DiCarlo, J.J., Explicit information for category-orthogonal object properties increases along the ventral stream. Nat. Neurosci. 19 (2016), 613–622.
    • (2016) Nat. Neurosci. , vol.19 , pp. 613-622
    • Hong, H.1    Yamins, D.L.2    Majaj, N.J.3    DiCarlo, J.J.4
  • 71
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79 (1982), 2554–2558.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 72
    • 0022504321 scopus 로고
    • Computing with neural circuits: a model
    • Hopfield, J.J., Tank, D.W., Computing with neural circuits: a model. Science 233 (1986), 625–633.
    • (1986) Science , vol.233 , pp. 625-633
    • Hopfield, J.J.1    Tank, D.W.2
  • 73
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • Hubel, D.H., Wiesel, T.N., Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148 (1959), 574–591.
    • (1959) J. Physiol. , vol.148 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 74
    • 84859371025 scopus 로고    scopus 로고
    • Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees
    • Huys, Q.J., Eshel, N., O'Nions, E., Sheridan, L., Dayan, P., Roiser, J.P., Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol., 8, 2012, e1002410.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002410
    • Huys, Q.J.1    Eshel, N.2    O'Nions, E.3    Sheridan, L.4    Dayan, P.5    Roiser, J.P.6
  • 75
    • 36048937548 scopus 로고    scopus 로고
    • Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point
    • Johnson, A., Redish, A.D., Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27 (2007), 12176–12189.
    • (2007) J. Neurosci. , vol.27 , pp. 12176-12189
    • Johnson, A.1    Redish, A.D.2
  • 76
    • 85011385290 scopus 로고    scopus 로고
    • Could a neuroscientist understand a microprocessor?
    • Jonas, E., Kording, K.P., Could a neuroscientist understand a microprocessor?. PLoS Comput. Biol., 13, 2017, e1005268.
    • (2017) PLoS Comput. Biol. , vol.13 , pp. e1005268
    • Jonas, E.1    Kording, K.P.2
  • 77
    • 77956729294 scopus 로고    scopus 로고
    • Serial order: a parallel distributed processing approach
    • Jordan, M.I., Serial order: a parallel distributed processing approach. Adv. Psychol. 121 (1997), 471–495.
    • (1997) Adv. Psychol. , vol.121 , pp. 471-495
    • Jordan, M.I.1
  • 78
    • 78650147550 scopus 로고    scopus 로고
    • Learning to learn causal models
    • Kemp, C., Goodman, N.D., Tenenbaum, J.B., Learning to learn causal models. Cogn. Sci. 34 (2010), 1185–1243.
    • (2010) Cogn. Sci. , vol.34 , pp. 1185-1243
    • Kemp, C.1    Goodman, N.D.2    Tenenbaum, J.B.3
  • 79
    • 84912102994 scopus 로고    scopus 로고
    • Deep supervised, but not unsupervised, models may explain IT cortical representation
    • Khaligh-Razavi, S.M., Kriegeskorte, N., Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol., 10, 2014, e1003915.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003915
    • Khaligh-Razavi, S.M.1    Kriegeskorte, N.2
  • 81
    • 0022388528 scopus 로고
    • Shifts in selective visual attention: towards the underlying neural circuitry
    • Koch, C., Ullman, S., Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4 (1985), 219–227.
    • (1985) Hum. Neurobiol. , vol.4 , pp. 219-227
    • Koch, C.1    Ullman, S.2
  • 83
    • 84880938482 scopus 로고    scopus 로고
    • Representational geometry: integrating cognition, computation, and the brain
    • Kriegeskorte, N., Kievit, R.A., Representational geometry: integrating cognition, computation, and the brain. Trends Cogn. Sci. 17 (2013), 401–412.
    • (2013) Trends Cogn. Sci. , vol.17 , pp. 401-412
    • Kriegeskorte, N.1    Kievit, R.A.2
  • 84
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25
    • Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, pp. 1097–1105.
    • (2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 85
    • 84867022077 scopus 로고    scopus 로고
    • Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system
    • Kumaran, D., McClelland, J.L., Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. Psychol. Rev. 119 (2012), 573–616.
    • (2012) Psychol. Rev. , vol.119 , pp. 573-616
    • Kumaran, D.1    McClelland, J.L.2
  • 86
    • 84974531647 scopus 로고    scopus 로고
    • What learning systems do intelligent agents need? Complementary learning systems theory updated
    • Kumaran, D., Hassabis, D., McClelland, J.L., What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20 (2016), 512–534.
    • (2016) Trends Cogn. Sci. , vol.20 , pp. 512-534
    • Kumaran, D.1    Hassabis, D.2    McClelland, J.L.3
  • 87
    • 84991274127 scopus 로고    scopus 로고
    • Fast sequences of non-spatial state representations in humans
    • Kurth-Nelson, Z., Economides, M., Dolan, R.J., Dayan, P., Fast sequences of non-spatial state representations in humans. Neuron 91 (2016), 194–204.
    • (2016) Neuron , vol.91 , pp. 194-204
    • Kurth-Nelson, Z.1    Economides, M.2    Dolan, R.J.3    Dayan, P.4
  • 88
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., Human-level concept learning through probabilistic program induction. Science 350 (2015), 1332–1338.
    • (2015) Science , vol.350 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 89
    • 85030673997 scopus 로고    scopus 로고
    • Building machines that learn and think like people. arXiv, arXiv:1604.00289.
    • Lake, B.M., Ullman, T.D., Tenenbaum, J.B., and Gershman, S.J. (2016). Building machines that learn and think like people. arXiv, arXiv:1604.00289.
    • (2016)
    • Lake, B.M.1    Ullman, T.D.2    Tenenbaum, J.B.3    Gershman, S.J.4
  • 90
    • 85042043248 scopus 로고    scopus 로고
    • Learning to combine foveal glimpses with a third-order Boltzmann machine. NIPS’10 Proceedings of the International Conference on Neural Information Processing Systems
    • Larochelle, H., and Hinton, G. (2010). Learning to combine foveal glimpses with a third-order Boltzmann machine. NIPS’10 Proceedings of the International Conference on Neural Information Processing Systems, pp. 1243–1251.
    • (2010) , pp. 1243-1251
    • Larochelle, H.1    Hinton, G.2
  • 93
    • 85007478095 scopus 로고    scopus 로고
    • View-tolerant face recognition and Hebbian Learning imply mirror-symmetric neural tuning to head orientation
    • Leibo, J.Z., Liao, Q., Anselmi, F., Freiwald, W.A., Poggio, T., View-tolerant face recognition and Hebbian Learning imply mirror-symmetric neural tuning to head orientation. Curr. Biol. 27 (2017), 62–67.
    • (2017) Curr. Biol. , vol.27 , pp. 62-67
    • Leibo, J.Z.1    Liao, Q.2    Anselmi, F.3    Freiwald, W.A.4    Poggio, T.5
  • 95
    • 84969265234 scopus 로고    scopus 로고
    • Hippocampal contributions to control: the third way. In Advances in Neural Information Processing Systems 20
    • Lengyel, M., and Dayan, P. (2007). Hippocampal contributions to control: the third way. In Advances in Neural Information Processing Systems 20, pp. 889–896.
    • (2007) , pp. 889-896
    • Lengyel, M.1    Dayan, P.2
  • 96
    • 85030715634 scopus 로고    scopus 로고
    • How important is weight symmetry in backpropagation? arXiv, arXiv:151005067.
    • Liao, Q., Leibo, J.Z., and Poggio, T. (2015). How important is weight symmetry in backpropagation? arXiv, arXiv:151005067.
    • (2015)
    • Liao, Q.1    Leibo, J.Z.2    Poggio, T.3
  • 97
    • 84994417427 scopus 로고    scopus 로고
    • Random synaptic feedback weights support error backpropagation for deep learning
    • Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J., Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun., 7, 2016, 13276.
    • (2016) Nat. Commun. , vol.7 , pp. 13276
    • Lillicrap, T.P.1    Cownden, D.2    Tweed, D.B.3    Akerman, C.J.4
  • 98
    • 84867605841 scopus 로고    scopus 로고
    • Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats
    • Lloyd, K., Becker, N., Jones, M.W., Bogacz, R., Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats. Front. Comput. Neurosci., 6, 2012, 87.
    • (2012) Front. Comput. Neurosci. , vol.6 , pp. 87
    • Lloyd, K.1    Becker, N.2    Jones, M.W.3    Bogacz, R.4
  • 100
    • 0032247463 scopus 로고    scopus 로고
    • Rethinking eliminative connectionism
    • Marcus, G.F., Rethinking eliminative connectionism. Cognit. Psychol. 37 (1998), 243–282.
    • (1998) Cognit. Psychol. , vol.37 , pp. 243-282
    • Marcus, G.F.1
  • 101
    • 31444442519 scopus 로고    scopus 로고
    • The blue brain project
    • Markram, H., The blue brain project. Nat. Rev. Neurosci. 7 (2006), 153–160.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 153-160
    • Markram, H.1
  • 102
    • 35848962383 scopus 로고
    • From understanding computation to understanding neural circuitry
    • Marr, D., Poggio, T., From understanding computation to understanding neural circuitry. A.I. Memo 357 (1976), 1–22.
    • (1976) A.I. Memo , vol.357 , pp. 1-22
    • Marr, D.1    Poggio, T.2
  • 103
    • 0038100264 scopus 로고    scopus 로고
    • The parallel distributed processing approach to semantic cognition
    • McClelland, J.L., Rogers, T.T., The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4 (2003), 310–322.
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 310-322
    • McClelland, J.L.1    Rogers, T.T.2
  • 104
    • 0029340352 scopus 로고
    • Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
    • McClelland, J.L., McNaughton, B.L., O'Reilly, R.C., Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102 (1995), 419–457.
    • (1995) Psychol. Rev. , vol.102 , pp. 419-457
    • McClelland, J.L.1    McNaughton, B.L.2    O'Reilly, R.C.3
  • 105
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • McCulloch, W., Pitts, W., A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943), 115–133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 106
    • 85030656348 scopus 로고    scopus 로고
    • Recurrent models of visual attention. arXiv, arXiv:14066247.
    • Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. (2014). Recurrent models of visual attention. arXiv, arXiv:14066247.
    • (2014)
    • Mnih, V.1    Heess, N.2    Graves, A.3    Kavukcuoglu, K.4
  • 108
    • 85009446695 scopus 로고    scopus 로고
    • Neural mechanisms of selective visual attention
    • Moore, T., Zirnsak, M., Neural mechanisms of selective visual attention. Annu. Rev. Psychol. 68 (2017), 47–72.
    • (2017) Annu. Rev. Psychol. , vol.68 , pp. 47-72
    • Moore, T.1    Zirnsak, M.2
  • 110
    • 85030659325 scopus 로고    scopus 로고
    • Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. arXiv, arXiv:160509304.
    • Nguyen, A., Dosovitskiy, A., Yosinski, J., Borx, T., and Clune, J. (2016). Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. arXiv, arXiv:160509304.
    • (2016)
    • Nguyen, A.1    Dosovitskiy, A.2    Yosinski, J.3    Borx, T.4    Clune, J.5
  • 111
    • 84937405392 scopus 로고    scopus 로고
    • Biochemical computation for spine structural plasticity
    • Nishiyama, J., Yasuda, R., Biochemical computation for spine structural plasticity. Neuron 87 (2015), 63–75.
    • (2015) Neuron , vol.87 , pp. 63-75
    • Nishiyama, J.1    Yasuda, R.2
  • 112
    • 0037987978 scopus 로고    scopus 로고
    • Temporal difference models and reward-related learning in the human brain
    • O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H., Dolan, R.J., Temporal difference models and reward-related learning in the human brain. Neuron 38 (2003), 329–337.
    • (2003) Neuron , vol.38 , pp. 329-337
    • O'Doherty, J.P.1    Dayan, P.2    Friston, K.3    Critchley, H.4    Dolan, R.J.5
  • 114
    • 33644927837 scopus 로고    scopus 로고
    • Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
    • O'Reilly, R.C., Frank, M.J., Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18 (2006), 283–328.
    • (2006) Neural Comput. , vol.18 , pp. 283-328
    • O'Reilly, R.C.1    Frank, M.J.2
  • 115
    • 85030674396 scopus 로고    scopus 로고
    • Action-conditional video prediction using deep networks in Atari games. arXiv, arXiv:150708750.
    • Oh, J., Guo, X., Lee, H., Lewis, R., and Singh, S. (2015). Action-conditional video prediction using deep networks in Atari games. arXiv, arXiv:150708750.
    • (2015)
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.4    Singh, S.5
  • 116
    • 84937060789 scopus 로고    scopus 로고
    • Hippocampal place cells construct reward related sequences through unexplored space
    • Ólafsdóttir, H.F., Barry, C., Saleem, A.B., Hassabis, D., Spiers, H.J., Hippocampal place cells construct reward related sequences through unexplored space. eLife, 4, 2015, e06063.
    • (2015) eLife , vol.4 , pp. e06063
    • Ólafsdóttir, H.F.1    Barry, C.2    Saleem, A.B.3    Hassabis, D.4    Spiers, H.J.5
  • 117
    • 0027379242 scopus 로고
    • A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information
    • Olshausen, B.A., Anderson, C.H., Van Essen, D.C., A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13 (1993), 4700–4719.
    • (1993) J. Neurosci. , vol.13 , pp. 4700-4719
    • Olshausen, B.A.1    Anderson, C.H.2    Van Essen, D.C.3
  • 118
    • 84877578934 scopus 로고    scopus 로고
    • Hippocampal place-cell sequences depict future paths to remembered goals
    • Pfeiffer, B.E., Foster, D.J., Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497 (2013), 74–79.
    • (2013) Nature , vol.497 , pp. 74-79
    • Pfeiffer, B.E.1    Foster, D.J.2
  • 119
    • 0025318243 scopus 로고
    • The attention system of the human brain
    • Posner, M.I., Petersen, S.E., The attention system of the human brain. Annu. Rev. Neurosci. 13 (1990), 25–42.
    • (1990) Annu. Rev. Neurosci. , vol.13 , pp. 25-42
    • Posner, M.I.1    Petersen, S.E.2
  • 120
    • 33847205014 scopus 로고    scopus 로고
    • Planning for the future by western scrub-jays
    • Raby, C.R., Alexis, D.M., Dickinson, A., Clayton, N.S., Planning for the future by western scrub-jays. Nature 445 (2007), 919–921.
    • (2007) Nature , vol.445 , pp. 919-921
    • Raby, C.R.1    Alexis, D.M.2    Dickinson, A.3    Clayton, N.S.4
  • 121
    • 84959096800 scopus 로고    scopus 로고
    • Vicarious trial and error
    • Redish, A.D., Vicarious trial and error. Nat. Rev. Neurosci. 17 (2016), 147–159.
    • (2016) Nat. Rev. Neurosci. , vol.17 , pp. 147-159
    • Redish, A.D.1
  • 122
    • 84965113821 scopus 로고    scopus 로고
    • th International Conference on Neural Information Processing Systems
    • th International Conference on Neural Information Processing Systems, pp. 1252–1260.
    • (2015) , pp. 1252-1260
    • Reed, S.1    Zhang, Y.2    Zhang, Y.3    Lee, S.4
  • 123
    • 85030721212 scopus 로고    scopus 로고
    • Learning what and where to draw. arXiv, arXiv:161002454.
    • Reed, S., Akata, Z., Mohan, S., Tenka, S., Schiele, B., and Lee, H. (2016). Learning what and where to draw. arXiv, arXiv:161002454.
    • (2016)
    • Reed, S.1    Akata, Z.2    Mohan, S.3    Tenka, S.4    Schiele, B.5    Lee, H.6
  • 124
  • 125
    • 85030695431 scopus 로고    scopus 로고
    • One-shot generalization in deep generative models. arXiv, arXiv:160305106.
    • Rezende, D., Mohamed, S., Danihelka, I., Gregor, K., and Wierstra, D. (2016b). One-shot generalization in deep generative models. arXiv, arXiv:160305106.
    • (2016)
    • Rezende, D.1    Mohamed, S.2    Danihelka, I.3    Gregor, K.4    Wierstra, D.5
  • 126
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M., Poggio, T., Hierarchical models of object recognition in cortex. Nat. Neurosci. 2 (1999), 1019–1025.
    • (1999) Nat. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 127
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65 (1958), 386–408.
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 132
    • 85030686324 scopus 로고    scopus 로고
    • Sim-to-real robot learning from pixels with progressive nets. arXiv, arXiv:161004286.
    • Rusu, A.A., Vecerik, M., Rothorl, T., Heess, N., Pascanu, R., and Hadsell, R. (2016b). Sim-to-real robot learning from pixels with progressive nets. arXiv, arXiv:161004286.
    • (2016)
    • Rusu, A.A.1    Vecerik, M.2    Rothorl, T.3    Heess, N.4    Pascanu, R.5    Hadsell, R.6
  • 133
    • 0030749942 scopus 로고    scopus 로고
    • Invariant visual responses from attentional gain fields
    • Salinas, E., Abbott, L.F., Invariant visual responses from attentional gain fields. J. Neurophysiol. 77 (1997), 3267–3272.
    • (1997) J. Neurophysiol. , vol.77 , pp. 3267-3272
    • Salinas, E.1    Abbott, L.F.2
  • 134
    • 85030661772 scopus 로고    scopus 로고
    • One-shot Learning with Memory-Augmented Neural Networks. arXiv, arXiv:160506065.
    • Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016). One-shot Learning with Memory-Augmented Neural Networks. arXiv, arXiv:160506065.
    • (2016)
    • Santoro, A.1    Bartunov, S.2    Botvinick, M.3    Wierstra, D.4    Lillicrap, T.5
  • 136
    • 85030698099 scopus 로고    scopus 로고
    • Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv, arXiv:13126120v3.
    • Saxe, A.M., Ganguli, S., and McClelland, J.L. (2013). Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv, arXiv:13126120v3.
    • (2013)
    • Saxe, A.M.1    Ganguli, S.2    McClelland, J.L.3
  • 137
    • 85030683202 scopus 로고    scopus 로고
    • Equilibrium propagation: bridging the gap between energy-based models and backpropagation. arXiv, arXiv:160205179.
    • Scellier, B., and Bengio, Y. (2016). Equilibrium propagation: bridging the gap between energy-based models and backpropagation. arXiv, arXiv:160205179.
    • (2016)
    • Scellier, B.1    Bengio, Y.2
  • 139
    • 85030696399 scopus 로고    scopus 로고
    • Prioritized experience replay. bioRxiv, arXiv:1511.05952.
    • Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. bioRxiv, arXiv:1511.05952.
    • (2015)
    • Schaul, T.1    Quan, J.2    Antonoglou, I.3    Silver, D.4
  • 140
    • 84920366580 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. arXiv, 2014, 14047828.
    • (2014) arXiv , pp. 14047828
    • Schmidhuber, J.1
  • 141
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz, W., Dayan, P., Montague, P.R., A neural substrate of prediction and reward. Science 275 (1997), 1593–1599.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 143
    • 0003665550 scopus 로고
    • From Neuropsychology to Mental Structure
    • Cambridge University Press
    • Shallice, T., From Neuropsychology to Mental Structure. 1988, Cambridge University Press.
    • (1988)
    • Shallice, T.1
  • 145
    • 85030710276 scopus 로고    scopus 로고
    • Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv, arXiv:13126034.
    • Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv, arXiv:13126034.
    • (2013)
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 146
    • 72149101860 scopus 로고    scopus 로고
    • Rewarded outcomes enhance reactivation of experience in the hippocampus
    • Singer, A.C., Frank, L.M., Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron 64 (2009), 910–921.
    • (2009) Neuron , vol.64 , pp. 910-921
    • Singer, A.C.1    Frank, L.M.2
  • 147
    • 0030012117 scopus 로고    scopus 로고
    • Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience
    • Skaggs, W.E., McNaughton, B.L., Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271 (1996), 1870–1873.
    • (1996) Science , vol.271 , pp. 1870-1873
    • Skaggs, W.E.1    McNaughton, B.L.2
  • 152
    • 0025522389 scopus 로고
    • Learning and applying contextual constraints in sentence comprehension
    • St. John, M.F., McClelland, J.L., Learning and applying contextual constraints in sentence comprehension. Artif. Intell. 46 (1990), 217–257.
    • (1990) Artif. Intell. , vol.46 , pp. 217-257
    • St. John, M.F.1    McClelland, J.L.2
  • 153
    • 84937876815 scopus 로고    scopus 로고
    • Design principles of hippocampal cognitive maps. In Advances in Neural Information Processing Systems 27
    • Stachenfeld, K., Botvinick, M.M., and Gershman, S.J. (2014). Design principles of hippocampal cognitive maps. In Advances in Neural Information Processing Systems 27, pp. 2528–2536.
    • (2014) , pp. 2528-2536
    • Stachenfeld, K.1    Botvinick, M.M.2    Gershman, S.J.3
  • 154
    • 85030672014 scopus 로고    scopus 로고
    • End-to-end memory networks. arXiv, arXiv:150308895.
    • Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). End-to-end memory networks. arXiv, arXiv:150308895.
    • (2015)
    • Sukhbaatar, S.1    Szlam, A.2    Weston, J.3    Fergus, R.4
  • 156
    • 0012929784 scopus 로고
    • Dyna, an integrated architecture for learning, planning, and reacting
    • Sutton, R.S., Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART Bull. 2 (1991), 160–163.
    • (1991) ACM SIGART Bull. , vol.2 , pp. 160-163
    • Sutton, R.S.1
  • 157
    • 0019537951 scopus 로고
    • Toward a modern theory of adaptive networks: expectation and prediction
    • Sutton, R.S., Barto, A.G., Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88 (1981), 135–170.
    • (1981) Psychol. Rev. , vol.88 , pp. 135-170
    • Sutton, R.S.1    Barto, A.G.2
  • 158
    • 0004102479 scopus 로고    scopus 로고
    • Reinforcement Learning
    • MIT Press
    • Sutton, R., Barto, A., Reinforcement Learning. 1998, MIT Press.
    • (1998)
    • Sutton, R.1    Barto, A.2
  • 159
    • 0029276036 scopus 로고
    • Temporal difference learning and TD-Gammon
    • Tesauro, G., Temporal difference learning and TD-Gammon. Commun. ACM 38 (1995), 58–68.
    • (1995) Commun. ACM , vol.38 , pp. 58-68
    • Tesauro, G.1
  • 161
    • 58149442669 scopus 로고
    • Cognitive maps in rats and men
    • Tolman, E.C., Cognitive maps in rats and men. Psychol. Rev. 55 (1948), 189–208.
    • (1948) Psychol. Rev. , vol.55 , pp. 189-208
    • Tolman, E.C.1
  • 162
    • 84987837281 scopus 로고    scopus 로고
    • A dynamic code for economic object valuation in prefrontal cortex neurons
    • Tsutsui, K., Grabenhorst, F., Kobayashi, S., Schultz, W., A dynamic code for economic object valuation in prefrontal cortex neurons. Nat. Commun., 7, 2016, 12554.
    • (2016) Nat. Commun. , vol.7 , pp. 12554
    • Tsutsui, K.1    Grabenhorst, F.2    Kobayashi, S.3    Schultz, W.4
  • 163
    • 0001644568 scopus 로고
    • How many memory systems are there?
    • Tulving, E., How many memory systems are there?. American Psychologist 40 (1985), 385–398.
    • (1985) American Psychologist , vol.40 , pp. 385-398
    • Tulving, E.1
  • 164
    • 0036405911 scopus 로고    scopus 로고
    • Episodic memory: from mind to brain
    • Tulving, E., Episodic memory: from mind to brain. Annu. Rev. Psychol. 53 (2002), 1–25.
    • (2002) Annu. Rev. Psychol. , vol.53 , pp. 1-25
    • Tulving, E.1
  • 165
    • 84960561455 scopus 로고
    • On computable numbers, with an application to the Entscheidungs problem
    • Turing, A.M., On computable numbers, with an application to the Entscheidungs problem. Proc. Lond. Math. Soc. 2 (1936), 230–265.
    • (1936) Proc. Lond. Math. Soc. , vol.2 , pp. 230-265
    • Turing, A.M.1
  • 166
    • 0002988210 scopus 로고
    • Computing machinery and intelligence
    • Turing, A., Computing machinery and intelligence. Mind 236 (1950), 433–460.
    • (1950) Mind , vol.236 , pp. 433-460
    • Turing, A.1
  • 170
    • 0003529238 scopus 로고
    • Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
    • Harvard University
    • Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. 1974, Harvard University.
    • (1974)
    • Werbos, P.J.1
  • 171
    • 85030704537 scopus 로고    scopus 로고
    • Memory networks. arXiv, arXiv:14103916.
    • Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. arXiv, arXiv:14103916.
    • (2014)
    • Weston, J.1    Chopra, S.2    Bordes, A.3
  • 172
    • 85017439802 scopus 로고    scopus 로고
    • An approximation of the error backpropagation algorithm in a predictive coding network with local Hebbian synaptic plasticity
    • Whittington, J.C.R., Bogacz, R., An approximation of the error backpropagation algorithm in a predictive coding network with local Hebbian synaptic plasticity. Neural Comput. 29 (2017), 1229–1262.
    • (2017) Neural Comput. , vol.29 , pp. 1229-1262
    • Whittington, J.C.R.1    Bogacz, R.2
  • 173
    • 85030704886 scopus 로고    scopus 로고
    • Google's neural machine translation system: bridging the gap between human and machine translation. arXiv, arXiv:160908144.
    • Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google's neural machine translation system: bridging the gap between human and machine translation. arXiv, arXiv:160908144.
    • (2016)
    • Wu, Y.1    Schuster, M.2    Chen, Z.3    Le, Q.V.4    Norouzi, M.5    Macherey, W.6    Krikun, M.7    Cao, Y.8    Gao, Q.9    Macherey, K.10
  • 174
    • 85030687217 scopus 로고    scopus 로고
    • Show, attend and tell: neural image caption generation with visual attention. arXiv, arXiv:150203044.
    • Xu, K., Kiros, J., Courville, A., Salakhutdinov, R., and Bengio, Y. (2015). Show, attend and tell: neural image caption generation with visual attention. arXiv, arXiv:150203044.
    • (2015)
    • Xu, K.1    Kiros, J.2    Courville, A.3    Salakhutdinov, R.4    Bengio, Y.5
  • 175
    • 84975760699 scopus 로고    scopus 로고
    • Using goal-driven deep learning models to understand sensory cortex
    • Yamins, D.L., DiCarlo, J.J., Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19 (2016), 356–365.
    • (2016) Nat. Neurosci. , vol.19 , pp. 356-365
    • Yamins, D.L.1    DiCarlo, J.J.2
  • 176
    • 72449182586 scopus 로고    scopus 로고
    • Stably maintained dendritic spines are associated with lifelong memories
    • Yang, G., Pan, F., Gan, W.B., Stably maintained dendritic spines are associated with lifelong memories. Nature 462 (2009), 920–924.
    • (2009) Nature , vol.462 , pp. 920-924
    • Yang, G.1    Pan, F.2    Gan, W.B.3
  • 177
    • 85030667765 scopus 로고    scopus 로고
    • Graying the black box: understanding DQNs. arXiv, arXiv:160202658.
    • Zahavy, T., Zrihem, N.B., and Mannor, S. (2016). Graying the black box: understanding DQNs. arXiv, arXiv:160202658.
    • (2016)
    • Zahavy, T.1    Zrihem, N.B.2    Mannor, S.3
  • 178
    • 85030702978 scopus 로고    scopus 로고
    • Learning to execute. arXiv, arXiv:1410.4615.
    • Zaremba, W., and Sutskever, I. (2014). Learning to execute. arXiv, arXiv:1410.4615.
    • (2014)
    • Zaremba, W.1    Sutskever, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.