-
1
-
-
34447505077
-
Imaging after brain injury
-
Coles, JP, Imaging after brain injury. Br J Anaesth 99 (2007), 49–60.
-
(2007)
Br J Anaesth
, vol.99
, pp. 49-60
-
-
Coles, J.P.1
-
2
-
-
78650609722
-
National trends in CT use in the emergency department: 1995–2007
-
Larson, DB, Johnson, LW, Schnell, BM, Salisbury, SR, Forman, HP, National trends in CT use in the emergency department: 1995–2007. Radiology 258 (2011), 164–173.
-
(2011)
Radiology
, vol.258
, pp. 164-173
-
-
Larson, D.B.1
Johnson, L.W.2
Schnell, B.M.3
Salisbury, S.R.4
Forman, H.P.5
-
3
-
-
84856011100
-
Performance of the Canadian CT head rule and the New Orleans criteria for predicting any traumatic intracranial injury on computed tomography in a United States level I trauma center
-
Papa, L, Stiell, IG, Clement, CM, et al. Performance of the Canadian CT head rule and the New Orleans criteria for predicting any traumatic intracranial injury on computed tomography in a United States level I trauma center. Acad Emerg Med 19 (2012), 2–10.
-
(2012)
Acad Emerg Med
, vol.19
, pp. 2-10
-
-
Papa, L.1
Stiell, I.G.2
Clement, C.M.3
-
4
-
-
85041796117
-
2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association
-
Powers, WJ, Rabinstein, AA, Ackerson, T, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49 (2018), e46–e110.
-
(2018)
Stroke
, vol.49
, pp. e46-e110
-
-
Powers, W.J.1
Rabinstein, A.A.2
Ackerson, T.3
-
5
-
-
0036150955
-
Radiology resident evaluation of head CT scan orders in the emergency department
-
Erly, WK, Berger, WG, Krupinski, E, Seeger, JF, Guisto, JA, Radiology resident evaluation of head CT scan orders in the emergency department. AJNR Am J Neuroradiol 23 (2002), 103–107.
-
(2002)
AJNR Am J Neuroradiol
, vol.23
, pp. 103-107
-
-
Erly, W.K.1
Berger, W.G.2
Krupinski, E.3
Seeger, J.F.4
Guisto, J.A.5
-
6
-
-
85042155331
-
-
Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017 IEEE Conference on Computer Vision And Pattern Recognition (CVPR); Honolulu, HI; July 21–26 3462–71.
-
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017 IEEE Conference on Computer Vision And Pattern Recognition (CVPR); Honolulu, HI; July 21–26, 2017. 3462–71.
-
(2017)
-
-
Wang, X.1
Peng, Y.2
Lu, L.3
Lu, Z.4
Bagheri, M.5
Summers, R.M.6
-
7
-
-
85042494529
-
CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning
-
(Accessed 20 August 2018)
-
Rajpurkar, P, Irvin, J, Zhu, K, et al. CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. https://arxiv.org/abs/1711.05225, 2017. (Accessed 20 August 2018)
-
(2017)
-
-
Rajpurkar, P.1
Irvin, J.2
Zhu, K.3
-
8
-
-
84992650028
-
Classification of CT brain images based on deep learning networks
-
Gao, XW, Hui, R, Tian, Z, Classification of CT brain images based on deep learning networks. Comput Methods Programs Biomed 138 (2017), 49–56.
-
(2017)
Comput Methods Programs Biomed
, vol.138
, pp. 49-56
-
-
Gao, X.W.1
Hui, R.2
Tian, Z.3
-
9
-
-
85046582158
-
RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans
-
(Accessed 20 August 2018)
-
Grewal, M, Srivastava, MM, Kumar, P, Varadarajan, S, RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans. https://arxiv.org/abs/1710.04934, 2017. (Accessed 20 August 2018)
-
(2017)
-
-
Grewal, M.1
Srivastava, M.M.2
Kumar, P.3
Varadarajan, S.4
-
10
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V, Peng, L, Coram, M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
11
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A, Kuprel, B, Novoa, RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
12
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
Anthimopoulos, M, Christodoulidis, S, Ebner, L, Christe, A, Mougiakakou, S, Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35 (2016), 1207–1216.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
13
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
-
Cheng, J-Z, Ni, D, Chou, Y-H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep, 6, 2016, 24454.
-
(2016)
Sci Rep
, vol.6
, pp. 24454
-
-
Cheng, J.-Z.1
Ni, D.2
Chou, Y.-H.3
-
14
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
Prasoon, A, Petersen, K, Igel, C, Lauze, F, Dam, E, Nielsen, M, Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv 16 (2013), 246–253.
-
(2013)
Med Image Comput Comput Assist Interv
, vol.16
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
Lauze, F.4
Dam, E.5
Nielsen, M.6
-
15
-
-
84897576138
-
Representation learning: a unified deep learning framework for automatic prostate MR segmentation
-
Liao, S, Gao, Y, Oto, A, Shen, D, Representation learning: a unified deep learning framework for automatic prostate MR segmentation. Med Image Comput Comput Assist Interv 16 (2013), 254–261.
-
(2013)
Med Image Comput Comput Assist Interv
, vol.16
, pp. 254-261
-
-
Liao, S.1
Gao, Y.2
Oto, A.3
Shen, D.4
-
16
-
-
85050678482
-
2D-3D fully convolutional neural networks for cardiac MR segmentation
-
(Accessed 20 August 2018)
-
Patravali, J, Jain, S, Chilamkurthy, S, 2D-3D fully convolutional neural networks for cardiac MR segmentation. https://arxiv.org/abs/1707.09813, 2017. (Accessed 20 August 2018)
-
(2017)
-
-
Patravali, J.1
Jain, S.2
Chilamkurthy, S.3
-
17
-
-
85026529300
-
A survey on deep learning in medical image analysis
-
Litjens, G, Kooi, T, Bejnordi, BE, et al. A survey on deep learning in medical image analysis. Med Image Anal 42 (2017), 60–88.
-
(2017)
Med Image Anal
, vol.42
, pp. 60-88
-
-
Litjens, G.1
Kooi, T.2
Bejnordi, B.E.3
-
18
-
-
70849126253
-
The unreasonable effectiveness of data
-
Halevy, A, Norvig, P, Pereira, F, The unreasonable effectiveness of data. IEEE Intelligent Systems 24 (2009), 8–12.
-
(2009)
IEEE Intelligent Systems
, vol.24
, pp. 8-12
-
-
Halevy, A.1
Norvig, P.2
Pereira, F.3
-
19
-
-
67349257802
-
Estimating age by assessing the ossification degree of cranial sutures with the aid of flat-panel-CT
-
Harth, S, Obert, M, Ramsthaler, F, Reuss, C, Traupe, H, Verhoff, MA, Estimating age by assessing the ossification degree of cranial sutures with the aid of flat-panel-CT. Leg Med (Tokyo) 11 (2009), S186–S189.
-
(2009)
Leg Med (Tokyo)
, vol.11
, pp. S186-S189
-
-
Harth, S.1
Obert, M.2
Ramsthaler, F.3
Reuss, C.4
Traupe, H.5
Verhoff, M.A.6
-
20
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley, JA, McNeil, BJ, The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982), 29–36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
21
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
Clopper, CJ, Pearson, ES, The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26 (1934), 404–413.
-
(1934)
Biometrika
, vol.26
, pp. 404-413
-
-
Clopper, C.J.1
Pearson, E.S.2
-
22
-
-
18544372466
-
Understanding interobserver agreement: the kappa statistic
-
Viera, AJ, Garrett, JM, Understanding interobserver agreement: the kappa statistic. Fam Med 37 (2005), 360–363.
-
(2005)
Fam Med
, vol.37
, pp. 360-363
-
-
Viera, A.J.1
Garrett, J.M.2
-
23
-
-
3343019470
-
Measuring nominal scale agreement among many raters
-
Fleiss, JL, Measuring nominal scale agreement among many raters. Psychol Bull, 76, 1971, 378.
-
(1971)
Psychol Bull
, vol.76
, pp. 378
-
-
Fleiss, J.L.1
-
24
-
-
0003877646
-
Statistical methods for rates and proportions
-
John Wiley & Sons Hoboken, NJ, USA
-
Fleiss, JL, Levin, B, Paik, MC, Statistical methods for rates and proportions. 2013, John Wiley & Sons, Hoboken, NJ, USA.
-
(2013)
-
-
Fleiss, J.L.1
Levin, B.2
Paik, M.C.3
-
25
-
-
79551672468
-
The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (LDRI): a completed reference database of lung nodules on CT scans
-
Armato, SG, McLennan, G, Bidaut, L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (LDRI): a completed reference database of lung nodules on CT scans. Med Phys 38 (2011), 915–931.
-
(2011)
Med Phys
, vol.38
, pp. 915-931
-
-
Armato, S.G.1
McLennan, G.2
Bidaut, L.3
-
26
-
-
76549092265
-
A new approach of skull fracture detection in CT brain images
-
H Badioze Zaman P Robinson M Petrou P Olivier H Schröder TK Shih Springer Berlin
-
Zaki, WMDW, Fauzi, MFA, Besar, R, A new approach of skull fracture detection in CT brain images. Badioze Zaman, H, Robinson, P, Petrou, M, Olivier, P, Schröder, H, Shih, TK, (eds.) Visual informatics: bridging research and practice, 2009, Springer, Berlin, 156–167.
-
(2009)
Visual informatics: bridging research and practice
, pp. 156-167
-
-
Zaki, W.M.D.W.1
Fauzi, M.F.A.2
Besar, R.3
-
27
-
-
85009067468
-
-
Preliminary study on the automated skull fracture detection in CT images using black-hat transform. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Orlando, FL; Aug 17–20 6437–40.
-
Yamada A, Teramoto A, Otsuka T, Kudo K, Anno H, Fujita H. Preliminary study on the automated skull fracture detection in CT images using black-hat transform. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Orlando, FL; Aug 17–20, 2016. 6437–40.
-
(2016)
-
-
Yamada, A.1
Teramoto, A.2
Otsuka, T.3
Kudo, K.4
Anno, H.5
Fujita, H.6
-
28
-
-
84891436639
-
Automated midline shift and intracranial pressure estimation based on brain CT images
-
Chen, W, Belle, A, Cockrell, C, Ward, KR, Najarian, K, Automated midline shift and intracranial pressure estimation based on brain CT images. J Vis Exp, 74, 2013, 3871.
-
(2013)
J Vis Exp
, vol.74
, pp. 3871
-
-
Chen, W.1
Belle, A.2
Cockrell, C.3
Ward, K.R.4
Najarian, K.5
-
29
-
-
85059309892
-
A simple, fast and fully automated approach for midline shift measurement on brain computed tomography
-
(Accessed 20 August 2018)
-
Wang, H-C, Ho, S-H, Xiao, F, Chou, J-H, A simple, fast and fully automated approach for midline shift measurement on brain computed tomography. https://arxiv.org/abs/1703.00797, 2017. (Accessed 20 August 2018)
-
(2017)
-
-
Wang, H.-C.1
Ho, S.-H.2
Xiao, F.3
Chou, J.-H.4
-
30
-
-
77957778128
-
Automated assessment of midline shift in head injury patients
-
Xiao, F, Liao, C-C, Huang, K-C, Chiang, I-J, Wong, J-M, Automated assessment of midline shift in head injury patients. Clin Neurol Neurosurg 112 (2010), 785–790.
-
(2010)
Clin Neurol Neurosurg
, vol.112
, pp. 785-790
-
-
Xiao, F.1
Liao, C.-C.2
Huang, K.-C.3
Chiang, I.-J.4
Wong, J.-M.5
-
31
-
-
85034811319
-
Automated critical test findings identification and online notification system using artificial intelligence in imaging
-
Prevedello, LM, Erdal, BS, Ryu, JL, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285 (2017), 923–931.
-
(2017)
Radiology
, vol.285
, pp. 923-931
-
-
Prevedello, L.M.1
Erdal, B.S.2
Ryu, J.L.3
|