메뉴 건너뛰기




Volumn 392, Issue 10162, 2018, Pages 2388-2396

Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study

Author keywords

[No Author keywords available]

Indexed keywords

ADOLESCENT; ADULT; AGED; ARTICLE; BRAIN HEMORRHAGE; BRAIN RADIOGRAPHY; CHILD; COMPUTER ASSISTED TOMOGRAPHY; CONTROLLED STUDY; DISEASE CLASSIFICATION; DISEASE SEVERITY; FEMALE; FOLLOW UP; GOLD STANDARD; HUMAN; INDIA; LEARNING ALGORITHM; MAJOR CLINICAL STUDY; MALE; PRIORITY JOURNAL; RETROSPECTIVE STUDY; SKULL FRACTURE; SUBARACHNOID HEMORRHAGE; SUBDURAL HEMATOMA; VALIDATION STUDY; ALGORITHM; BRAIN INJURY; DIAGNOSTIC IMAGING; EMERGENCY HEALTH SERVICE; HEAD; INFORMATION PROCESSING; INJURY SCALE; PROCEDURES; X-RAY COMPUTED TOMOGRAPHY;

EID: 85058466258     PISSN: 01406736     EISSN: 1474547X     Source Type: Journal    
DOI: 10.1016/S0140-6736(18)31645-3     Document Type: Article
Times cited : (659)

References (31)
  • 1
    • 34447505077 scopus 로고    scopus 로고
    • Imaging after brain injury
    • Coles, JP, Imaging after brain injury. Br J Anaesth 99 (2007), 49–60.
    • (2007) Br J Anaesth , vol.99 , pp. 49-60
    • Coles, J.P.1
  • 3
    • 84856011100 scopus 로고    scopus 로고
    • Performance of the Canadian CT head rule and the New Orleans criteria for predicting any traumatic intracranial injury on computed tomography in a United States level I trauma center
    • Papa, L, Stiell, IG, Clement, CM, et al. Performance of the Canadian CT head rule and the New Orleans criteria for predicting any traumatic intracranial injury on computed tomography in a United States level I trauma center. Acad Emerg Med 19 (2012), 2–10.
    • (2012) Acad Emerg Med , vol.19 , pp. 2-10
    • Papa, L.1    Stiell, I.G.2    Clement, C.M.3
  • 4
    • 85041796117 scopus 로고    scopus 로고
    • 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association
    • Powers, WJ, Rabinstein, AA, Ackerson, T, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49 (2018), e46–e110.
    • (2018) Stroke , vol.49 , pp. e46-e110
    • Powers, W.J.1    Rabinstein, A.A.2    Ackerson, T.3
  • 6
    • 85042155331 scopus 로고    scopus 로고
    • Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017 IEEE Conference on Computer Vision And Pattern Recognition (CVPR); Honolulu, HI; July 21–26 3462–71.
    • Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017 IEEE Conference on Computer Vision And Pattern Recognition (CVPR); Honolulu, HI; July 21–26, 2017. 3462–71.
    • (2017)
    • Wang, X.1    Peng, Y.2    Lu, L.3    Lu, Z.4    Bagheri, M.5    Summers, R.M.6
  • 7
    • 85042494529 scopus 로고    scopus 로고
    • CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning
    • (Accessed 20 August 2018)
    • Rajpurkar, P, Irvin, J, Zhu, K, et al. CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. https://arxiv.org/abs/1711.05225, 2017. (Accessed 20 August 2018)
    • (2017)
    • Rajpurkar, P.1    Irvin, J.2    Zhu, K.3
  • 8
    • 84992650028 scopus 로고    scopus 로고
    • Classification of CT brain images based on deep learning networks
    • Gao, XW, Hui, R, Tian, Z, Classification of CT brain images based on deep learning networks. Comput Methods Programs Biomed 138 (2017), 49–56.
    • (2017) Comput Methods Programs Biomed , vol.138 , pp. 49-56
    • Gao, X.W.1    Hui, R.2    Tian, Z.3
  • 9
    • 85046582158 scopus 로고    scopus 로고
    • RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans
    • (Accessed 20 August 2018)
    • Grewal, M, Srivastava, MM, Kumar, P, Varadarajan, S, RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans. https://arxiv.org/abs/1710.04934, 2017. (Accessed 20 August 2018)
    • (2017)
    • Grewal, M.1    Srivastava, M.M.2    Kumar, P.3    Varadarajan, S.4
  • 10
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V, Peng, L, Coram, M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 11
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A, Kuprel, B, Novoa, RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 12
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • Anthimopoulos, M, Christodoulidis, S, Ebner, L, Christe, A, Mougiakakou, S, Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35 (2016), 1207–1216.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, L.3    Christe, A.4    Mougiakakou, S.5
  • 13
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
    • Cheng, J-Z, Ni, D, Chou, Y-H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep, 6, 2016, 24454.
    • (2016) Sci Rep , vol.6 , pp. 24454
    • Cheng, J.-Z.1    Ni, D.2    Chou, Y.-H.3
  • 15
    • 84897576138 scopus 로고    scopus 로고
    • Representation learning: a unified deep learning framework for automatic prostate MR segmentation
    • Liao, S, Gao, Y, Oto, A, Shen, D, Representation learning: a unified deep learning framework for automatic prostate MR segmentation. Med Image Comput Comput Assist Interv 16 (2013), 254–261.
    • (2013) Med Image Comput Comput Assist Interv , vol.16 , pp. 254-261
    • Liao, S.1    Gao, Y.2    Oto, A.3    Shen, D.4
  • 16
    • 85050678482 scopus 로고    scopus 로고
    • 2D-3D fully convolutional neural networks for cardiac MR segmentation
    • (Accessed 20 August 2018)
    • Patravali, J, Jain, S, Chilamkurthy, S, 2D-3D fully convolutional neural networks for cardiac MR segmentation. https://arxiv.org/abs/1707.09813, 2017. (Accessed 20 August 2018)
    • (2017)
    • Patravali, J.1    Jain, S.2    Chilamkurthy, S.3
  • 17
    • 85026529300 scopus 로고    scopus 로고
    • A survey on deep learning in medical image analysis
    • Litjens, G, Kooi, T, Bejnordi, BE, et al. A survey on deep learning in medical image analysis. Med Image Anal 42 (2017), 60–88.
    • (2017) Med Image Anal , vol.42 , pp. 60-88
    • Litjens, G.1    Kooi, T.2    Bejnordi, B.E.3
  • 19
    • 67349257802 scopus 로고    scopus 로고
    • Estimating age by assessing the ossification degree of cranial sutures with the aid of flat-panel-CT
    • Harth, S, Obert, M, Ramsthaler, F, Reuss, C, Traupe, H, Verhoff, MA, Estimating age by assessing the ossification degree of cranial sutures with the aid of flat-panel-CT. Leg Med (Tokyo) 11 (2009), S186–S189.
    • (2009) Leg Med (Tokyo) , vol.11 , pp. S186-S189
    • Harth, S.1    Obert, M.2    Ramsthaler, F.3    Reuss, C.4    Traupe, H.5    Verhoff, M.A.6
  • 20
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, JA, McNeil, BJ, The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982), 29–36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 21
    • 0001072895 scopus 로고
    • The use of confidence or fiducial limits illustrated in the case of the binomial
    • Clopper, CJ, Pearson, ES, The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26 (1934), 404–413.
    • (1934) Biometrika , vol.26 , pp. 404-413
    • Clopper, C.J.1    Pearson, E.S.2
  • 22
    • 18544372466 scopus 로고    scopus 로고
    • Understanding interobserver agreement: the kappa statistic
    • Viera, AJ, Garrett, JM, Understanding interobserver agreement: the kappa statistic. Fam Med 37 (2005), 360–363.
    • (2005) Fam Med , vol.37 , pp. 360-363
    • Viera, A.J.1    Garrett, J.M.2
  • 23
    • 3343019470 scopus 로고
    • Measuring nominal scale agreement among many raters
    • Fleiss, JL, Measuring nominal scale agreement among many raters. Psychol Bull, 76, 1971, 378.
    • (1971) Psychol Bull , vol.76 , pp. 378
    • Fleiss, J.L.1
  • 24
    • 0003877646 scopus 로고    scopus 로고
    • Statistical methods for rates and proportions
    • John Wiley & Sons Hoboken, NJ, USA
    • Fleiss, JL, Levin, B, Paik, MC, Statistical methods for rates and proportions. 2013, John Wiley & Sons, Hoboken, NJ, USA.
    • (2013)
    • Fleiss, J.L.1    Levin, B.2    Paik, M.C.3
  • 25
    • 79551672468 scopus 로고    scopus 로고
    • The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (LDRI): a completed reference database of lung nodules on CT scans
    • Armato, SG, McLennan, G, Bidaut, L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (LDRI): a completed reference database of lung nodules on CT scans. Med Phys 38 (2011), 915–931.
    • (2011) Med Phys , vol.38 , pp. 915-931
    • Armato, S.G.1    McLennan, G.2    Bidaut, L.3
  • 26
    • 76549092265 scopus 로고    scopus 로고
    • A new approach of skull fracture detection in CT brain images
    • H Badioze Zaman P Robinson M Petrou P Olivier H Schröder TK Shih Springer Berlin
    • Zaki, WMDW, Fauzi, MFA, Besar, R, A new approach of skull fracture detection in CT brain images. Badioze Zaman, H, Robinson, P, Petrou, M, Olivier, P, Schröder, H, Shih, TK, (eds.) Visual informatics: bridging research and practice, 2009, Springer, Berlin, 156–167.
    • (2009) Visual informatics: bridging research and practice , pp. 156-167
    • Zaki, W.M.D.W.1    Fauzi, M.F.A.2    Besar, R.3
  • 27
    • 85009067468 scopus 로고    scopus 로고
    • Preliminary study on the automated skull fracture detection in CT images using black-hat transform. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Orlando, FL; Aug 17–20 6437–40.
    • Yamada A, Teramoto A, Otsuka T, Kudo K, Anno H, Fujita H. Preliminary study on the automated skull fracture detection in CT images using black-hat transform. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Orlando, FL; Aug 17–20, 2016. 6437–40.
    • (2016)
    • Yamada, A.1    Teramoto, A.2    Otsuka, T.3    Kudo, K.4    Anno, H.5    Fujita, H.6
  • 28
    • 84891436639 scopus 로고    scopus 로고
    • Automated midline shift and intracranial pressure estimation based on brain CT images
    • Chen, W, Belle, A, Cockrell, C, Ward, KR, Najarian, K, Automated midline shift and intracranial pressure estimation based on brain CT images. J Vis Exp, 74, 2013, 3871.
    • (2013) J Vis Exp , vol.74 , pp. 3871
    • Chen, W.1    Belle, A.2    Cockrell, C.3    Ward, K.R.4    Najarian, K.5
  • 29
    • 85059309892 scopus 로고    scopus 로고
    • A simple, fast and fully automated approach for midline shift measurement on brain computed tomography
    • (Accessed 20 August 2018)
    • Wang, H-C, Ho, S-H, Xiao, F, Chou, J-H, A simple, fast and fully automated approach for midline shift measurement on brain computed tomography. https://arxiv.org/abs/1703.00797, 2017. (Accessed 20 August 2018)
    • (2017)
    • Wang, H.-C.1    Ho, S.-H.2    Xiao, F.3    Chou, J.-H.4
  • 31
    • 85034811319 scopus 로고    scopus 로고
    • Automated critical test findings identification and online notification system using artificial intelligence in imaging
    • Prevedello, LM, Erdal, BS, Ryu, JL, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285 (2017), 923–931.
    • (2017) Radiology , vol.285 , pp. 923-931
    • Prevedello, L.M.1    Erdal, B.S.2    Ryu, J.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.