메뉴 건너뛰기




Volumn 318, Issue 22, 2017, Pages 2199-2210

Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer

(69)  Bejnordi, Babak Ehteshami a   Veta, Mitko b   Van Diest, Paul Johannes c   Van Ginneken, Bram a   Karssemeijer, Nico a   Litjens, Geert a   Van Der Laak, Jeroen A W M a   Hermsen, Meyke c,e   Manson, Quirine F a   Balkenhol, Maschenka e   Geessink, Oscar c,e,f   Stathonikos, Nikolaos a   Van Dijk, Marcory C R F g   Bult, Peter e   Beca, Francisco h   Beck, Andrew H h,i   Wang, Dayong h,i   Khosla, Aditya i,j   Gargeya, Rishab k   Irshad, Humayun h   more..


Author keywords

[No Author keywords available]

Indexed keywords

EOSIN; HEMATOXYLIN;

EID: 85038431889     PISSN: 00987484     EISSN: 15383598     Source Type: Journal    
DOI: 10.1001/jama.2017.14585     Document Type: Article
Times cited : (2613)

References (34)
  • 1
    • 85016116498 scopus 로고    scopus 로고
    • Digital pathology in clinical use: Where are we now and whatisholding usback?
    • Griffin J, Treanor D. Digital pathology in clinical use: where are we now and whatisholding usback? Histopathology. 2017; 70(1):134-145.
    • (2017) Histopathology , vol.70 , Issue.1 , pp. 134-145
    • Griffin, J.1    Treanor, D.2
  • 2
    • 84979586877 scopus 로고    scopus 로고
    • Image analysis and Machine learning in digital pathology: Challenges and opportunities
    • Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal. 2016; 33:170-175.
    • (2016) Med Image Anal. , vol.33 , pp. 170-175
    • Madabhushi, A.1    Lee, G.2
  • 3
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316(22):2402-2410.
    • (2016) JAMA , vol.316 , Issue.22 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 4
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542 (7639):115-118.
    • (2017) Nature , vol.542 , Issue.7639 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 5
    • 84867120388 scopus 로고    scopus 로고
    • Relevant impact of central pathology review on nodal classification in individual Breast cancer patients
    • Vestjens JHMJ, Pepels MJ, de Boer M, et al. Relevant impact of central pathology review on nodal classification in individual breast cancer patients. Ann Oncol. 2012; 23(10):2561-2566.
    • (2012) Ann Oncol. , vol.23 , Issue.10 , pp. 2561-2566
    • Vestjens, J.H.M.J.1    Pepels, M.J.2    De Boer, M.3
  • 6
    • 84970028091 scopus 로고    scopus 로고
    • Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
    • Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016; 6:26286.
    • (2016) Sci Rep. , vol.6 , pp. 26286
    • Litjens, G.1    Sánchez, C.I.2    Timofeeva, N.3
  • 7
    • 60149096826 scopus 로고    scopus 로고
    • Prognostic implications of isolated tumor cells and micrometastases in sentinel nodes of patients with invasive breast cancer: 10-year analysis of patients enrolled in the prospective East Carolina university/Anne arundel medical center sentinel node multicenter study
    • Reed J, Rosman M, Verbanac KM, Mannie A, Cheng Z, Tafra L. Prognostic implications of isolated tumor cells and micrometastases in sentinel nodes of patients with invasive breast cancer: 10-year analysis of patients enrolled in the Prospective East Carolina University/Anne Arundel Medical Center Sentinel Node Multicenter Study. J Am Coll Surg. 2009; 208(3):333-340.
    • (2009) J Am Coll Surg. , vol.208 , Issue.3 , pp. 333-340
    • Reed, J.1    Rosman, M.2    Verbanac, K.M.3    Mannie, A.4    Cheng, Z.5    Tafra, L.6
  • 8
    • 20144386689 scopus 로고    scopus 로고
    • Clinical outcome ofpatients with lymph node-negative Breast carcinoma who have sentinel lymph node micrometastases detectedbyimmunohistochemistry
    • Chagpar A, Middleton LP, Sahin AA, et al. Clinical outcome ofpatients with lymph node-negative breast carcinoma who have sentinel lymph node micrometastases detectedbyimmunohistochemistry. Cancer. 2005; 103(8):1581-1586.
    • (2005) Cancer , vol.103 , Issue.8 , pp. 1581-1586
    • Chagpar, A.1    Middleton, L.P.2    Sahin, A.A.3
  • 9
    • 0033043382 scopus 로고    scopus 로고
    • Sentinel node biopsy and cytokeratin staining for the accurate staging of 478 Breast cancer patients
    • Pendas S, Dauway E, Cox CE, et al. Sentinel node biopsy and cytokeratin staining for the accurate staging of 478 breast cancer patients. Am Surg. 1999; 65(6):500-505.
    • (1999) Am Surg. , vol.65 , Issue.6 , pp. 500-505
    • Pendas, S.1    Dauway, E.2    Cox, C.E.3
  • 10
    • 79960839977 scopus 로고    scopus 로고
    • Recent developments in imaging system assessment methodology, FROC analysis and the search model
    • Chakraborty DP. Recent developments in imaging system assessment methodology, FROC analysis and the search model. Nucl Instrum Methods Phys Res A. 2011; 648 supplement 1: S297-S301.
    • (2011) Nucl Instrum Methods Phys Res A , vol.648 , pp. S297-S301
    • Chakraborty, D.P.1
  • 11
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979; 7(1):1-26.
    • (1979) Ann Stat. , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 12
    • 84858786052 scopus 로고    scopus 로고
    • Evaluating imaging and computer-aided detection and diagnosis devices at the FDA
    • Gallas BD, Chan H-P, D'Orsi CJ, et al. Evaluating imaging and computer-aided detection and diagnosis devices at the FDA. Acad Radiol. 2012; 19 (4):463-477.
    • (2012) Acad Radiol. , vol.19 , Issue.4 , pp. 463-477
    • Gallas, B.D.1    Chan, H.-P.2    D'Orsi, C.J.3
  • 13
    • 4544318699 scopus 로고    scopus 로고
    • Multireader, multicase receiver operating characteristic analysis: An empirical comparison of five methods
    • Obuchowski NA, Beiden SV, Berbaum KS, et al. Multireader, multicase receiver operating characteristic analysis: an empirical comparison of five methods. Acad Radiol. 2004; 11(9):980-995.
    • (2004) Acad Radiol. , vol.11 , Issue.9 , pp. 980-995
    • Obuchowski, N.A.1    Beiden, S.V.2    Berbaum, K.S.3
  • 14
    • 78651069060 scopus 로고    scopus 로고
    • Power estimation for multireader ROC methods
    • Hillis SL, Obuchowski NA, Berbaum KS. Power estimation for multireader ROC methods. Acad Radiol. 2011; 18(2):129-142. doi:10.1016/j.acra.2010.09.007
    • (2011) Acad Radiol. , vol.18 , Issue.2 , pp. 129-142
    • Hillis, S.L.1    Obuchowski, N.A.2    Berbaum, K.S.3
  • 16
    • 0036630603 scopus 로고    scopus 로고
    • Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation
    • Mason SJ, Graham NE. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation. Q J R Meteorol Soc. 2002; 128(584):2145-2166. doi:10.1256/003590002320603584
    • (2002) Q J R Meteorol Soc. , vol.128 , Issue.584 , pp. 2145-2166
    • Mason, S.J.1    Graham, N.E.2
  • 17
    • 85038441983 scopus 로고    scopus 로고
    • Accessed November 14, 2017
    • GitHub. DIDSR/iMRMC. https://github.com/DIDSR/iMRMC. Accessed November 14, 2017.
    • DIDSR/iMRMC
  • 18
    • 85038427029 scopus 로고    scopus 로고
    • Accessed November 14, 2017
    • GitHub. CAMELYON16. https://github.com/computationalpathologygroup/CAMELYON16. Accessed November 14, 2017.
    • CAMELYON16
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Accessed November 13, 2017
    • Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004; 60(2):91-110. https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf. Accessed November 13, 2017.
    • (2004) Int J Comput Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 20
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002; 24(7): 971-987. doi:10.1109/TPAMI.2002.1017623
    • (2002) IEEE Trans Pattern Anal Mach Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 21
    • 0015680481 scopus 로고
    • Textural features for image classification
    • Accessed November 13, 2017
    • Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973; SMC-3(6):610-621. http://haralick.org/journals/TexturalFeatures.pdf. Accessed November 13, 2017.
    • (1973) IEEE Trans Syst Man Cybern. , vol.SMC-3 , Issue.6 , pp. 610-621
    • Haralick, R.M.1    Shanmugam, K.2    Dinstein, I.3
  • 22
    • 34249753618 scopus 로고
    • Support-vector networks
    • Accessed November 13, 2017
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20(3):273-297. http://image.diku.dk/imagecanon/material/cortes-vapnik95.pdf. Accessed November 13, 2017.
    • (1995) Mach Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Accessed November 13, 2017
    • Breiman L. Random forests. Mach Learn. 2001; 45(1):5-32. http://www.math.univ-toulouse.fr/~agarivie/Telecom/apprentissage/articles/randomforest2001.pdf. Accessed November 13, 2017.
    • (2001) Mach Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 25
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • June 27-30 Las Vegas, NV Accessed November 13, 2017
    • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; June 27-30, 2016; Las Vegas, NV. https://www.cv-foundation.org/openaccess/content-cvpr-2016/papers/He-Deep-Residual-Learning-CVPR-2016-paper.pdf. Accessed November 13, 2017.
    • (2016) Paper Presented At: Ieee Conference on Computer Vision and Pattern Recognition
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • December 3-8 Lake Tahoe, NV Accessed November 13, 2017
    • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Paper presented at: Advances in Neural Information Processing Systems 25; December 3-8, 2012; Lake Tahoe, NV. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. Accessed November 13, 2017.
    • (2012) Paper Presented At: Advances in Neural Information Processing Systems 25
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 31
    • 84898979550 scopus 로고    scopus 로고
    • Fast and robust classification using asymmetric adaboost and a detector cascade
    • December 9-14 Vancouver, British Columbia, Canada Accessed November 13, 2017
    • Viola P, Jones M. Fast and robust classification using asymmetric adaboost and a detector cascade. Paper presented at: Advances in Neural Information Processing Systems 15; December 9-14, 2002; Vancouver, British Columbia, Canada. https://pdfs.semanticscholar.org/90f6/e2c454909f819f20d9eb6c731ba709bbe8b6.pdf. Accessed November 13, 2017.
    • (2002) Paper Presented At: Advances in Neural Information Processing Systems 15
    • Viola, P.1    Jones, M.2
  • 33
    • 0026664983 scopus 로고
    • Receiver operating characteristic rating analysis: Generalization to the population of readers and patients with the jackknife method
    • Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis: generalization to the population of readers and patients with the jackknife method. Invest Radiol. 1992; 27(9):723-731.
    • (1992) Invest Radiol. , vol.27 , Issue.9 , pp. 723-731
    • Dorfman, D.D.1    Berbaum, K.S.2    Metz, C.E.3
  • 34
    • 84959363938 scopus 로고    scopus 로고
    • Stain specific standardization of whole-slide histopathological images
    • Bejnordi BE, Litjens G, Timofeeva N, et al. Stain specific standardization of whole-slide histopathological images. IEEE Trans Med Imaging. 2016; 35(2):404-415.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.2 , pp. 404-415
    • Bejnordi, B.E.1    Litjens, G.2    Timofeeva, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.