-
1
-
-
85016116498
-
Digital pathology in clinical use: Where are we now and whatisholding usback?
-
Griffin J, Treanor D. Digital pathology in clinical use: where are we now and whatisholding usback? Histopathology. 2017; 70(1):134-145.
-
(2017)
Histopathology
, vol.70
, Issue.1
, pp. 134-145
-
-
Griffin, J.1
Treanor, D.2
-
2
-
-
84979586877
-
Image analysis and Machine learning in digital pathology: Challenges and opportunities
-
Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal. 2016; 33:170-175.
-
(2016)
Med Image Anal.
, vol.33
, pp. 170-175
-
-
Madabhushi, A.1
Lee, G.2
-
3
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316(22):2402-2410.
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
4
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542 (7639):115-118.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
5
-
-
84867120388
-
Relevant impact of central pathology review on nodal classification in individual Breast cancer patients
-
Vestjens JHMJ, Pepels MJ, de Boer M, et al. Relevant impact of central pathology review on nodal classification in individual breast cancer patients. Ann Oncol. 2012; 23(10):2561-2566.
-
(2012)
Ann Oncol.
, vol.23
, Issue.10
, pp. 2561-2566
-
-
Vestjens, J.H.M.J.1
Pepels, M.J.2
De Boer, M.3
-
6
-
-
84970028091
-
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
-
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016; 6:26286.
-
(2016)
Sci Rep.
, vol.6
, pp. 26286
-
-
Litjens, G.1
Sánchez, C.I.2
Timofeeva, N.3
-
7
-
-
60149096826
-
Prognostic implications of isolated tumor cells and micrometastases in sentinel nodes of patients with invasive breast cancer: 10-year analysis of patients enrolled in the prospective East Carolina university/Anne arundel medical center sentinel node multicenter study
-
Reed J, Rosman M, Verbanac KM, Mannie A, Cheng Z, Tafra L. Prognostic implications of isolated tumor cells and micrometastases in sentinel nodes of patients with invasive breast cancer: 10-year analysis of patients enrolled in the Prospective East Carolina University/Anne Arundel Medical Center Sentinel Node Multicenter Study. J Am Coll Surg. 2009; 208(3):333-340.
-
(2009)
J Am Coll Surg.
, vol.208
, Issue.3
, pp. 333-340
-
-
Reed, J.1
Rosman, M.2
Verbanac, K.M.3
Mannie, A.4
Cheng, Z.5
Tafra, L.6
-
8
-
-
20144386689
-
Clinical outcome ofpatients with lymph node-negative Breast carcinoma who have sentinel lymph node micrometastases detectedbyimmunohistochemistry
-
Chagpar A, Middleton LP, Sahin AA, et al. Clinical outcome ofpatients with lymph node-negative breast carcinoma who have sentinel lymph node micrometastases detectedbyimmunohistochemistry. Cancer. 2005; 103(8):1581-1586.
-
(2005)
Cancer
, vol.103
, Issue.8
, pp. 1581-1586
-
-
Chagpar, A.1
Middleton, L.P.2
Sahin, A.A.3
-
9
-
-
0033043382
-
Sentinel node biopsy and cytokeratin staining for the accurate staging of 478 Breast cancer patients
-
Pendas S, Dauway E, Cox CE, et al. Sentinel node biopsy and cytokeratin staining for the accurate staging of 478 breast cancer patients. Am Surg. 1999; 65(6):500-505.
-
(1999)
Am Surg.
, vol.65
, Issue.6
, pp. 500-505
-
-
Pendas, S.1
Dauway, E.2
Cox, C.E.3
-
10
-
-
79960839977
-
Recent developments in imaging system assessment methodology, FROC analysis and the search model
-
Chakraborty DP. Recent developments in imaging system assessment methodology, FROC analysis and the search model. Nucl Instrum Methods Phys Res A. 2011; 648 supplement 1: S297-S301.
-
(2011)
Nucl Instrum Methods Phys Res A
, vol.648
, pp. S297-S301
-
-
Chakraborty, D.P.1
-
11
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. 1979; 7(1):1-26.
-
(1979)
Ann Stat.
, vol.7
, Issue.1
, pp. 1-26
-
-
Efron, B.1
-
12
-
-
84858786052
-
Evaluating imaging and computer-aided detection and diagnosis devices at the FDA
-
Gallas BD, Chan H-P, D'Orsi CJ, et al. Evaluating imaging and computer-aided detection and diagnosis devices at the FDA. Acad Radiol. 2012; 19 (4):463-477.
-
(2012)
Acad Radiol.
, vol.19
, Issue.4
, pp. 463-477
-
-
Gallas, B.D.1
Chan, H.-P.2
D'Orsi, C.J.3
-
13
-
-
4544318699
-
Multireader, multicase receiver operating characteristic analysis: An empirical comparison of five methods
-
Obuchowski NA, Beiden SV, Berbaum KS, et al. Multireader, multicase receiver operating characteristic analysis: an empirical comparison of five methods. Acad Radiol. 2004; 11(9):980-995.
-
(2004)
Acad Radiol.
, vol.11
, Issue.9
, pp. 980-995
-
-
Obuchowski, N.A.1
Beiden, S.V.2
Berbaum, K.S.3
-
14
-
-
78651069060
-
Power estimation for multireader ROC methods
-
Hillis SL, Obuchowski NA, Berbaum KS. Power estimation for multireader ROC methods. Acad Radiol. 2011; 18(2):129-142. doi:10.1016/j.acra.2010.09.007
-
(2011)
Acad Radiol.
, vol.18
, Issue.2
, pp. 129-142
-
-
Hillis, S.L.1
Obuchowski, N.A.2
Berbaum, K.S.3
-
16
-
-
0036630603
-
Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation
-
Mason SJ, Graham NE. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation. Q J R Meteorol Soc. 2002; 128(584):2145-2166. doi:10.1256/003590002320603584
-
(2002)
Q J R Meteorol Soc.
, vol.128
, Issue.584
, pp. 2145-2166
-
-
Mason, S.J.1
Graham, N.E.2
-
17
-
-
85038441983
-
-
Accessed November 14, 2017
-
GitHub. DIDSR/iMRMC. https://github.com/DIDSR/iMRMC. Accessed November 14, 2017.
-
DIDSR/iMRMC
-
-
-
18
-
-
85038427029
-
-
Accessed November 14, 2017
-
GitHub. CAMELYON16. https://github.com/computationalpathologygroup/CAMELYON16. Accessed November 14, 2017.
-
CAMELYON16
-
-
-
19
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
Accessed November 13, 2017
-
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004; 60(2):91-110. https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf. Accessed November 13, 2017.
-
(2004)
Int J Comput Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
20
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002; 24(7): 971-987. doi:10.1109/TPAMI.2002.1017623
-
(2002)
IEEE Trans Pattern Anal Mach Intell.
, vol.24
, Issue.7
, pp. 971-987
-
-
Ojala, T.1
Pietikainen, M.2
Maenpaa, T.3
-
21
-
-
0015680481
-
Textural features for image classification
-
Accessed November 13, 2017
-
Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973; SMC-3(6):610-621. http://haralick.org/journals/TexturalFeatures.pdf. Accessed November 13, 2017.
-
(1973)
IEEE Trans Syst Man Cybern.
, vol.SMC-3
, Issue.6
, pp. 610-621
-
-
Haralick, R.M.1
Shanmugam, K.2
Dinstein, I.3
-
22
-
-
34249753618
-
Support-vector networks
-
Accessed November 13, 2017
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20(3):273-297. http://image.diku.dk/imagecanon/material/cortes-vapnik95.pdf. Accessed November 13, 2017.
-
(1995)
Mach Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
23
-
-
0035478854
-
Random forests
-
Accessed November 13, 2017
-
Breiman L. Random forests. Mach Learn. 2001; 45(1):5-32. http://www.math.univ-toulouse.fr/~agarivie/Telecom/apprentissage/articles/randomforest2001.pdf. Accessed November 13, 2017.
-
(2001)
Mach Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
24
-
-
84937522268
-
Going deeper with convolutions
-
June 7-12 Boston, MA Accessed November 13, 2017
-
Szegedy C, Wei L, Yangqing J, et al. Going deeper with convolutions. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; June 7-12, 2015; Boston, MA. http://ieeexplore.ieee.org/document/7298594/. Accessed November 13, 2017.
-
(2015)
Paper Presented At: Ieee Conference on Computer Vision and Pattern Recognition
-
-
Szegedy, C.1
Wei, L.2
Yangqing, J.3
-
25
-
-
84986274465
-
Deep residual learning for image recognition
-
June 27-30 Las Vegas, NV Accessed November 13, 2017
-
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; June 27-30, 2016; Las Vegas, NV. https://www.cv-foundation.org/openaccess/content-cvpr-2016/papers/He-Deep-Residual-Learning-CVPR-2016-paper.pdf. Accessed November 13, 2017.
-
(2016)
Paper Presented At: Ieee Conference on Computer Vision and Pattern Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
28
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
December 3-8 Lake Tahoe, NV Accessed November 13, 2017
-
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Paper presented at: Advances in Neural Information Processing Systems 25; December 3-8, 2012; Lake Tahoe, NV. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. Accessed November 13, 2017.
-
(2012)
Paper Presented At: Advances in Neural Information Processing Systems 25
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
29
-
-
85011287288
-
U-net: Convolutional networks for biomedical image segmentation
-
October 5-9 Munich, Germany Accessed November 13, 2017
-
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Paper presented at: International Conference on Medical Image Computing and Computer-Assisted Intervention; October 5-9, 2015; Munich, Germany. https://pdfs.semanticscholar.org/0704/5f87709d0b7b998794e9fa912c0aba912281.pdf. Accessed November 13, 2017.
-
(2015)
Paper Presented At: International Conference on Medical Image Computing and Computer-Assisted Intervention
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
30
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
June 7-12 Boston, MA Accessed November 13, 2017
-
Zheng S, Jayasumana S, Romera-Paredes B, et al. Conditional random fields as recurrent neural networks. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; June 7-12, 2015; Boston, MA. http://www.robots.ox.ac.uk/~szheng/papers/CRFasRNN.pdf. Accessed November 13, 2017.
-
(2015)
Paper Presented At: Ieee Conference on Computer Vision and Pattern Recognition
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
-
31
-
-
84898979550
-
Fast and robust classification using asymmetric adaboost and a detector cascade
-
December 9-14 Vancouver, British Columbia, Canada Accessed November 13, 2017
-
Viola P, Jones M. Fast and robust classification using asymmetric adaboost and a detector cascade. Paper presented at: Advances in Neural Information Processing Systems 15; December 9-14, 2002; Vancouver, British Columbia, Canada. https://pdfs.semanticscholar.org/90f6/e2c454909f819f20d9eb6c731ba709bbe8b6.pdf. Accessed November 13, 2017.
-
(2002)
Paper Presented At: Advances in Neural Information Processing Systems 15
-
-
Viola, P.1
Jones, M.2
-
32
-
-
84969939903
-
AggNet: Deep learning from crowds for mitosis detection in Breast cancer histology images
-
Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging. 2016; 35 (5):1313-1321.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1313-1321
-
-
Albarqouni, S.1
Baur, C.2
Achilles, F.3
Belagiannis, V.4
Demirci, S.5
Navab, N.6
-
33
-
-
0026664983
-
Receiver operating characteristic rating analysis: Generalization to the population of readers and patients with the jackknife method
-
Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis: generalization to the population of readers and patients with the jackknife method. Invest Radiol. 1992; 27(9):723-731.
-
(1992)
Invest Radiol.
, vol.27
, Issue.9
, pp. 723-731
-
-
Dorfman, D.D.1
Berbaum, K.S.2
Metz, C.E.3
-
34
-
-
84959363938
-
Stain specific standardization of whole-slide histopathological images
-
Bejnordi BE, Litjens G, Timofeeva N, et al. Stain specific standardization of whole-slide histopathological images. IEEE Trans Med Imaging. 2016; 35(2):404-415.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.2
, pp. 404-415
-
-
Bejnordi, B.E.1
Litjens, G.2
Timofeeva, N.3
|