메뉴 건너뛰기




Volumn 555, Issue 7697, 2018, Pages 487-492

Image reconstruction by domain-transform manifold learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA SET; IMAGE CLASSIFICATION; IMAGE PROCESSING; IMAGING METHOD; METHODOLOGY; RECONSTRUCTION; SENSOR;

EID: 85044273620     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature25988     Document Type: Article
Times cited : (1617)

References (67)
  • 2
    • 33747581732 scopus 로고
    • Image reconstruction from incomplete and noisy data
    • Gull, S. F. & Daniell, G. J. Image reconstruction from incomplete and noisy data. Nature 272, 686-690 (1978).
    • (1978) Nature , vol.272 , pp. 686-690
    • Gull, S.F.1    Daniell, G.J.2
  • 4
    • 79551517886 scopus 로고    scopus 로고
    • Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization
    • Yu, Z., Thibault, J.-B., Bouman, C. A., Sauer, K. D. & Hsieh, J. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans. Image Process. 20, 161-175 (2011).
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 161-175
    • Yu, Z.1    Thibault, J.-B.2    Bouman, C.A.3    Sauer, K.D.4    Hsieh, J.5
  • 5
    • 0034794323 scopus 로고    scopus 로고
    • Advances in sensitivity encoding with arbitrary k-space trajectories
    • Pruessmann, K. P., Weiger, M., Börnert, P. & Boesiger, P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46, 638-651 (2001).
    • (2001) Magn. Reson. Med. , vol.46 , pp. 638-651
    • Pruessmann, K.P.1    Weiger, M.2    Börnert, P.3    Boesiger, P.4
  • 6
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29, 82-97 (2012).
    • (2012) IEEE Signal Process. Mag. , vol.29 , pp. 82-97
    • Hinton, G.1
  • 8
    • 0035855757 scopus 로고    scopus 로고
    • The neural basis of perceptual learning
    • Gilbert, C. D., Sigman, M. & Crist, R. E. The neural basis of perceptual learning. Neuron 31, 681-697 (2001).
    • (2001) Neuron , vol.31 , pp. 681-697
    • Gilbert, C.D.1    Sigman, M.2    Crist, R.E.3
  • 10
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In Proc. 25th Int. Conf. on 'Machine Learning' 1096-1103, http://www.cs.toronto.edu/- larocheh/publications/icml-2008-denoising-autoencoders.pdf (2008).
    • (2008) Proc. 25th Int. Conf. on 'Machine Learning' , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 12
    • 0033563923 scopus 로고    scopus 로고
    • Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data
    • Schiller, H. & Doerffer, R. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens. 20, 1735-1746 (1999).
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 1735-1746
    • Schiller, H.1    Doerffer, R.2
  • 13
    • 0027556687 scopus 로고
    • Artificial neural networks in the solution of inverse electromagnetic field problems
    • Hoole, S. R. H. Artificial neural networks in the solution of inverse electromagnetic field problems. IEEE Trans. Magn. 29, 1931-1934 (1993).
    • (1993) IEEE Trans. Magn. , vol.29 , pp. 1931-1934
    • Hoole, H.S.R.1
  • 14
    • 0026223233 scopus 로고
    • An artificial neural network for SPECT image reconstruction
    • Floyd, C. E. An artificial neural network for SPECT image reconstruction. IEEE Trans. Med. Imaging 10, 485-487 (1991).
    • (1991) IEEE Trans. Med. Imaging , vol.10 , pp. 485-487
    • Floyd, E.C.1
  • 15
    • 84886929881 scopus 로고    scopus 로고
    • Fast tomographic reconstruction from limited data using artificial neural networks
    • Pelt, D. M. & Batenburg, K. J. Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans. Image Process. 22, 5238-5251 (2013).
    • (2013) IEEE Trans. Image Process. , vol.22 , pp. 5238-5251
    • Pelt, D.M.1    Batenburg, K.J.2
  • 16
    • 85023170573 scopus 로고    scopus 로고
    • Deep convolutional neural network for inverse problems in imaging
    • Jin, K. H., McCann, M. T., Froustey, E. & Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26, 4509-4522 (2017).
    • (2017) IEEE Trans. Image Process. , vol.26 , pp. 4509-4522
    • Jin, K.H.1    McCann, M.T.2    Froustey, E.3    Unser, M.4
  • 17
    • 85043388139 scopus 로고    scopus 로고
    • Learning a variational network for reconstruction of accelerated MRI data
    • Hammernik, K. et al. Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055-3071 (2017).
    • (2017) Magn. Reson. Med. , vol.79 , pp. 3055-3071
    • Hammernik, K.1
  • 18
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • Lustig, M., Donoho, D. & Pauly, J. M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182-1195 (2007).
    • (2007) Magn. Reson. Med. , vol.58 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 19
    • 84949266633 scopus 로고    scopus 로고
    • MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI
    • Fan, Q. et al. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI. Neuroimage 124, 1108-1114 (2016).
    • (2016) Neuroimage , vol.124 , pp. 1108-1114
    • Fan, Q.1
  • 20
    • 85198028989 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Deng, J. et al. ImageNet: A large-scale hierarchical image database. In IEEE Conf. on 'Computer Vision and Pattern Recognition' 248-255, http://www. image-net.org/papers/imagenet-cvpr09.pdf (2009).
    • (2009) IEEE Conf. on 'Computer Vision and Pattern Recognition' , pp. 248-255
    • Deng, J.1
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359-366 (1989).
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 84896386728 scopus 로고    scopus 로고
    • Mean square optimal NUFFT approximation for efficient non-Cartesian MRI reconstruction
    • Yang, Z. & Jacob, M. Mean square optimal NUFFT approximation for efficient non-Cartesian MRI reconstruction. J. Magn. Reson. 242, 126-135 (2014).
    • (2014) J. Magn. Reson. , vol.242 , pp. 126-135
    • Yang, Z.1    Jacob, M.2
  • 26
    • 0033547445 scopus 로고    scopus 로고
    • Signal but not noise changes with perceptual learning
    • Gold, J., Bennett, P. J. & Sekuler, A. B. Signal but not noise changes with perceptual learning. Nature 402, 176-178 (1999).
    • (1999) Nature , vol.402 , pp. 176-178
    • Gold, J.1    Bennett, P.J.2    Sekuler, A.B.3
  • 27
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright, J. et al. Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 1031-1044 (2010).
    • (2010) Proc. IEEE , vol.98 , pp. 1031-1044
    • Wright, J.1
  • 29
    • 78349292967 scopus 로고    scopus 로고
    • (eds Fisher, M. M. & Getis, A.), (Springer)
    • Getis, A. in Handbook of Applied Spatial Analysis (eds Fisher, M. M. & Getis, A.) 255-278 (Springer, 2010).
    • (2010) Handbook of Applied Spatial Analysis , pp. 255-278
    • Getis, A.1
  • 30
    • 38849084698 scopus 로고    scopus 로고
    • Radiation dose reduction in chest CT: A review
    • Kubo, T. et al. Radiation dose reduction in chest CT: A review. Am. J. Roentgenol. 190, 335-343 (2008).
    • (2008) Am. J. Roentgenol. , vol.190 , pp. 335-343
    • Kubo, T.1
  • 32
    • 84940834505 scopus 로고    scopus 로고
    • Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging
    • Girard, J. N. et al. Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging. J. Instrum. 10, C08013 (2015).
    • (2015) J. Instrum. , vol.10 , pp. C08013
    • Girard, J.N.1
  • 33
    • 77957983974 scopus 로고    scopus 로고
    • Rapid volumetric OCT image acquisition using compressive sampling
    • Lebed, E., Sarunic, M. V., Beg, M. F. & Mackenzie, P. J. Rapid volumetric OCT image acquisition using compressive sampling. Opt. Exp. 18, 21003-21012 (2010).
    • (2010) Opt. Exp. , vol.18 , pp. 21003-21012
    • Lebed, E.1    Sarunic, M.V.2    Beg, M.F.3    Mackenzie, P.J.4
  • 34
    • 0037306521 scopus 로고    scopus 로고
    • Nonuniform fast Fourier transforms using min-max interpolation
    • Fessler, J. A. & Sutton, B. P. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 51, 560-574 (2003).
    • (2003) IEEE Trans. Signal Process. , vol.51 , pp. 560-574
    • Fessler, J.A.1    Sutton, B.P.2
  • 38
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • (ACM)
    • Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. 27th Int. Conf. on 'Machine Learning' 807-814 (ACM, 2010).
    • (2010) Proc. 27th Int. Conf. on 'Machine Learning' , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 40
    • 24144470505 scopus 로고    scopus 로고
    • Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: Application with cardiac imaging and a 32-channel cardiac coil
    • Reeder, S. B. et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: Application with cardiac imaging and a 32-channel cardiac coil. Magn. Reson. Med. 54, 748-754 (2005).
    • (2005) Magn. Reson. Med. , vol.54 , pp. 748-754
    • Reeder, S.B.1
  • 41
    • 0032059889 scopus 로고    scopus 로고
    • Simple correction method for k-space trajectory deviations in MRI
    • Duyn, J. H., Yang, Y., Frank, J. A. & van der Veen, J. W. Simple correction method for k-space trajectory deviations in MRI. J. Magn. Reson. 132, 150-153 (1998).
    • (1998) J. Magn. Reson. , vol.132 , pp. 150-153
    • Duyn, J.H.1    Yang, Y.2    Frank, J.A.3    Van Der Veen, J.W.4
  • 43
    • 0000048673 scopus 로고
    • GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
    • Saad, Y. & Schultz, M. H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856-869 (1986).
    • (1986) SIAM J. Sci. Statist. Comput. , vol.7 , pp. 856-869
    • Saad, Y.1    Schultz, M.H.2
  • 44
    • 23844516135 scopus 로고    scopus 로고
    • OSEM-3D Reconstruction Strategies for the ECAT HRRT
    • Comtat, C, et al. OSEM-3D Reconstruction Strategies for the ECAT HRRT. IEEE Symp. Conf. Record Nuclear Science 6, 3492-3496 (2004).
    • (2004) IEEE Symp. Conf. Record Nuclear Science , vol.6 , pp. 3492-3496
    • Comtat, C.1
  • 45
    • 84910637140 scopus 로고    scopus 로고
    • An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: Application to simultaneous PET/MR brain imaging
    • Izquierdo-Garcia, D. et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: Application to simultaneous PET/MR brain imaging. J. Nucl. Med. 55, 1825-1830 (2014).
    • (2014) J. Nucl. Med. , vol.55 , pp. 1825-1830
    • Izquierdo-Garcia, D.1
  • 46
    • 77956510751 scopus 로고    scopus 로고
    • Improved local coordinate coding using local tangents
    • (ACM)
    • Yu, K. & Zhang, T. Improved local coordinate coding using local tangents. In Proc. 27th Int. Conf. on 'Machine Learning' 1215-1222 (ACM, 2010).
    • (2010) Proc. 27th Int. Conf. on 'Machine Learning' , pp. 1215-1222
    • Yu, K.1    Zhang, T.2
  • 48
    • 84879865087 scopus 로고    scopus 로고
    • Bayesian estimation of regularization and atlas building in diffeomorphic image registration
    • (Springer)
    • Zhang, M., Singh, N. & Fletcher, P. T. Bayesian estimation of regularization and atlas building in diffeomorphic image registration. Int. Conf. Inf. Process. Med. Imaging 37-48 (Springer, 2013).
    • (2013) Int. Conf. Inf. Process. Med. Imaging , pp. 37-48
    • Zhang, M.1    Singh, N.2    Fletcher, P.T.3
  • 49
    • 84884939408 scopus 로고    scopus 로고
    • Geodesic image regression with a sparse parameterization of diffeomorphisms
    • (eds Nielsen, F. & Barbaresco, F.)
    • Fishbaugh, J., Prastawa, M., Gerig, G. & Durrleman, S. Geodesic image regression with a sparse parameterization of diffeomorphisms. In 1st Int. Conf. on 'Geometric Science of Information' GSI 2013 (eds Nielsen, F. & Barbaresco, F.) Vol. 8085, 95-102, https://link.springer.com/ chapter/10.1007/978-3-642-40020-9-9 (2013).
    • (2013) 1st Int. Conf. on 'Geometric Science of Information' GSI 2013 , vol.8085 , pp. 95-102
    • Fishbaugh, J.1    Prastawa, M.2    Gerig, G.3    Durrleman, S.4
  • 51
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251-257 (1991).
    • (1991) Neural Netw. , vol.4 , pp. 251-257
    • Hornik, K.1
  • 53
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Contr. Signals Syst. 2, 303-314 (1989).
    • (1989) Math. Contr. Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 54
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • Barron, A. R. Approximation and estimation bounds for artificial neural networks. Mach. Learn. 14, 115-133 (1994).
    • (1994) Mach. Learn. , vol.14 , pp. 115-133
    • Barron, R.A.1
  • 56
    • 84862244703 scopus 로고    scopus 로고
    • Simple method for MR gradient system characterization and k-space trajectory estimation
    • Addy, N. O., Wu, H. H. & Nishimura, D. G. Simple method for MR gradient system characterization and k-space trajectory estimation. Magn. Reson. Med. 68, 120-129 (2012).
    • (2012) Magn. Reson. Med. , vol.68 , pp. 120-129
    • Addy, N.O.1    Wu, H.H.2    Nishimura, D.G.3
  • 59
    • 85041172356 scopus 로고    scopus 로고
    • TArgeted Motion Estimation and Reduction (TAMER): Data consistency based motion mitigation for MRI using a reduced model joint optimization
    • Haskell, M., Cauley, S. F. & Wald, L. L. TArgeted Motion Estimation and Reduction (TAMER): Data consistency based motion mitigation for MRI using a reduced model joint optimization. IEEE Trans. Med. Imaging PP, 99, http://doi. org/10.1109/TMI.2018.2791482 (2018).
    • (2018) IEEE Trans. Med. Imaging , pp. 99
    • Haskell, M.1    Cauley, S.F.2    Wald, L.L.3
  • 60
    • 27644554060 scopus 로고    scopus 로고
    • Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field inhomogeneity
    • Fessler, J. A., Lee, S., Olafsson, V. T., Shi, H. R. & Noll, D. C. Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field inhomogeneity. IEEE Trans. Signal Process. 53, 3393-3402 (2005).
    • (2005) IEEE Trans. Signal Process. , vol.53 , pp. 3393-3402
    • Fessler, J.A.1    Lee, S.2    Olafsson, V.T.3    Shi, H.R.4    Noll, D.C.5
  • 61
    • 84923122093 scopus 로고    scopus 로고
    • Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver
    • Cauley, S. F. et al. Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver. Magn. Reson. Med. 73, 1034-1040 (2015).
    • (2015) Magn. Reson. Med. , vol.73 , pp. 1034-1040
    • Cauley, S.F.1
  • 62
    • 84897528667 scopus 로고    scopus 로고
    • Superfast and stable structured solvers for Toeplitz least squares via randomized sampling
    • Xi, Y., Xia, J., Cauley, S. & Balakrishnan, V. Superfast and stable structured solvers for Toeplitz least squares via randomized sampling. SIAM J. Matrix Anal. Appl. 35, 44-72 (2014).
    • (2014) SIAM J. Matrix Anal. Appl. , vol.35 , pp. 44-72
    • Xi, Y.1    Xia, J.2    Cauley, S.3    Balakrishnan, V.4
  • 64
    • 84894076345 scopus 로고    scopus 로고
    • Augmented Lagrangian with variable splitting for faster non-Cartesian L1-SPIRiT MR image reconstruction
    • Weller, D. S., Ramani, S. & Fessler, J. A. Augmented Lagrangian with variable splitting for faster non-Cartesian L1-SPIRiT MR image reconstruction. IEEE Trans. Med. Imaging 33, 351-361 (2014).
    • (2014) IEEE Trans. Med. Imaging , vol.33 , pp. 351-361
    • Weller, D.S.1    Ramani, S.2    Fessler, J.A.3
  • 65
    • 84986206701 scopus 로고    scopus 로고
    • Maximum likelihood reconstruction for magnetic resonance fingerprinting
    • Zhao, B., Setsompop, K., Ye, H., Cauley, S. F. & Wald, L. L. Maximum likelihood reconstruction for magnetic resonance fingerprinting. IEEE Trans. Med. Imaging 35, 1812-1823 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1812-1823
    • Zhao, B.1    Setsompop, K.2    Ye, H.3    Cauley, S.F.4    Wald, L.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.