메뉴 건너뛰기




Volumn 14, Issue 9, 2018, Pages

Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data

Author keywords

[No Author keywords available]

Indexed keywords

DIAGNOSIS; FORECASTING; LEARNING SYSTEMS; MAGNETIC RESONANCE; NEUROIMAGING;

EID: 85054563739     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1006376     Document Type: Article
Times cited : (112)

References (49)
  • 1
    • 85046467790 scopus 로고    scopus 로고
    • Alzheimer’s Disease Facts and Figures
    • Alzheimer’s Association. 2017 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2017;
    • (2017) Alzheimers Dement. , vol.2017
  • 4
    • 69149094447 scopus 로고    scopus 로고
    • Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort
    • pmid:19689234
    • Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC, et al. Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res. 2009;6: 347–361. doi: 10.2174/156720509788929273 pmid: 19689234
    • (2009) Curr Alzheimer Res , vol.6 , pp. 347-361
    • Risacher, S.L.1    Saykin, A.J.2    West, J.D.3    Shen, L.4    Firpi, H.A.5    McDonald, B.C.6
  • 5
    • 84862598129 scopus 로고    scopus 로고
    • Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data
    • pmid:22731740
    • Ye J, Farnum M, Yang E, Verbeeck R, Lobanov V, Raghavan N, et al. Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurol. 2012;12: 46. doi: 10.1186/1471-2377-12-46 pmid: 22731740
    • (2012) BMC Neurol , vol.12 , pp. 46
    • Ye, J.1    Farnum, M.2    Yang, E.3    Verbeeck, R.4    Lobanov, V.5    Raghavan, N.6
  • 6
    • 84863351725 scopus 로고    scopus 로고
    • Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
    • pmid:22457741
    • Zhang D, Shen D, Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One. 2012;7. doi: 10.1371/journal.pone.0033182 pmid: 22457741
    • (2012) PLoS One , vol.7
    • Zhang, D.1    Shen, D.2
  • 7
    • 84916608467 scopus 로고    scopus 로고
    • Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression
    • pmid:25260851
    • Eskildsen SF, Coupe P, Fonov VS, Pruessner JC, Collins DL, Alzheimer’s Disease Neuroimaging IStructural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiol Aging. 2015; doi: 10.1016/j.neurobiolaging.2014.04.034 pmid: 25260851
    • (2015) Neurobiol Aging
    • Eskildsen, S.F.1    Coupe, P.2    Fonov, V.S.3    Pruessner, J.C.4    Collins, D.L.5
  • 8
    • 84925058025 scopus 로고    scopus 로고
    • Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
    • pmid:25312773
    • Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J, Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104: 398–412. doi: 10.1016/j.neuroimage.2014.10.002 pmid: 25312773
    • (2015) Neuroimage , vol.104 , pp. 398-412
    • Moradi, E.1    Pepe, A.2    Gaser, C.3    Huttunen, H.4    Tohka, J.5
  • 9
    • 84961180997 scopus 로고    scopus 로고
    • Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification
    • pmid:26901338
    • Korolev IO, Symonds LL, Bozoki AC, Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PLoS One. 2016;11. doi: 10.1371/journal.pone.0138866 pmid: 26901338
    • (2016) PLoS One , vol.11
    • Korolev, I.O.1    Symonds, L.L.2    Bozoki, A.C.3
  • 10
    • 85009350821 scopus 로고    scopus 로고
    • Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease
    • Huang M, Yang W, Feng Q, Chen W, Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease. Sci Rep. The Author(s); 2017;7: 39880.
    • (2017) Sci Rep. The Author(s) , vol.7 , pp. 39880
    • Huang, M.1    Yang, W.2    Feng, Q.3    Chen, W.4
  • 11
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI
    • pmid:19027862
    • Misra C, Fan Y, Davatzikos C, Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI. Neuroimage. 2009;44: 1415–1422. doi: 10.1016/j.neuroimage.2008.10.031 pmid: 19027862
    • (2009) Neuroimage , vol.44 , pp. 1415-1422
    • Misra, C.1    Fan, Y.2    Davatzikos, C.3
  • 12
    • 67651020812 scopus 로고    scopus 로고
    • Relating one-year cognitive change in mild cognitive impairment to baseline MRI features
    • pmid:19371783
    • Duchesne S, Caroli A, Geroldi C, Collins DL, Frisoni GB, Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage. 2009; doi: 10.1016/j.neuroimage.2009.04.023 pmid: 19371783
    • (2009) Neuroimage
    • Duchesne, S.1    Caroli, A.2    Geroldi, C.3    Collins, D.L.4    Frisoni, G.B.5
  • 13
    • 84982735820 scopus 로고    scopus 로고
    • Longitudinal clinical score prediction in Alzheimer’s disease with soft-split sparse regression based random forest
    • pmid:27500865
    • Huang L, Jin Y, Gao Y, Thung K-H, Shen D, Alzheimer’s Disease Neuroimaging InitiativeLongitudinal clinical score prediction in Alzheimer’s disease with soft-split sparse regression based random forest. Neurobiol Aging. 2016;46: 180–191. doi: 10.1016/j.neurobiolaging.2016.07.005 pmid: 27500865
    • (2016) Neurobiol Aging , vol.46 , pp. 180-191
    • Huang, L.1    Jin, Y.2    Gao, Y.3    Thung, K.-H.4    Shen, D.5
  • 14
    • 34948851363 scopus 로고    scopus 로고
    • Longitudinal trajectories of cognitive change in preclinical Alzheimer’s disease: A growth mixture modeling analysis
    • pmid:17941341
    • Small BJ, Bäckman L, Longitudinal trajectories of cognitive change in preclinical Alzheimer’s disease: A growth mixture modeling analysis. Cortex. 2007;43: 826–834. pmid: 17941341
    • (2007) Cortex , vol.43 , pp. 826-834
    • Small, B.J.1    Bäckman, L.2
  • 16
    • 80051553765 scopus 로고    scopus 로고
    • The Dynamics of Cortical and Hippocampal Atrophy in Alzheimer Disease
    • pmid:21825241
    • Sabuncu MR, Desikan RS, Sepulcre J, Yeo BTT, Liu H, Schmansky NJ, et al. The Dynamics of Cortical and Hippocampal Atrophy in Alzheimer Disease. Arch Neurol. 2011;68: 1040–1048. doi: 10.1001/archneurol.2011.167 pmid: 21825241
    • (2011) Arch Neurol , vol.68 , pp. 1040-1048
    • Sabuncu, M.R.1    Desikan, R.S.2    Sepulcre, J.3    Yeo, B.T.T.4    Liu, H.5    Schmansky, N.J.6
  • 17
    • 84872102350 scopus 로고    scopus 로고
    • Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome
    • pmid:23302773
    • Lam B, Masellis M, Freedman M, Stuss DT, Black SE, Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther. 2013;5: 1. doi: 10.1186/alzrt155 pmid: 23302773
    • (2013) Alzheimers Res Ther , vol.5 , pp. 1
    • Lam, B.1    Masellis, M.2    Freedman, M.3    Stuss, D.T.4    Black, S.E.5
  • 18
    • 85006038127 scopus 로고    scopus 로고
    • Defining imaging biomarker cut points for brain aging and Alzheimer’s disease
    • pmid:27697430
    • Jack CR, JrWiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13: 205–216. doi: 10.1016/j.jalz.2016.08.005 pmid: 27697430
    • (2017) Alzheimers Dement , vol.13 , pp. 205-216
    • Jack, C.R.1    Wiste, H.J.2    Weigand, S.D.3    Therneau, T.M.4    Lowe, V.J.5    Knopman, D.S.6
  • 19
    • 84872379077 scopus 로고    scopus 로고
    • Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers
    • pmid:23332364
    • Jack CR, JrKnopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12: 207–216. doi: 10.1016/S1474-4422(12)70291-0 pmid: 23332364
    • (2013) Lancet Neurol , vol.12 , pp. 207-216
    • Jack, C.R.1    Knopman, D.S.2    Jagust, W.J.3    Petersen, R.C.4    Weiner, M.W.5    Aisen, P.S.6
  • 20
    • 76849095847 scopus 로고    scopus 로고
    • The clinical use of structural MRI in Alzheimer disease
    • pmid:20139996
    • Frisoni GB, Fox NC, Jack CR, JrScheltens P, Thompson PM, The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6: 67–77. doi: 10.1038/nrneurol.2009.215 pmid: 20139996
    • (2010) Nat Rev Neurol , vol.6 , pp. 67-77
    • Frisoni, G.B.1    Fox, N.C.2    Jack, C.R.3    Scheltens, P.4    Thompson, P.M.5
  • 21
    • 67749118071 scopus 로고    scopus 로고
    • Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve
    • pmid:19439419
    • Querbes O, Aubry F, Pariente J, Lotterie J-A, Démonet J-F, Duret V, et al. Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain. 2009;132: 2036–2047. doi: 10.1093/brain/awp105 pmid: 19439419
    • (2009) Brain , vol.132 , pp. 2036-2047
    • Querbes, O.1    Aubry, F.2    Pariente, J.3    Lotterie, J.-A.4    Démonet, J.-F.5    Duret, V.6
  • 22
    • 84870061135 scopus 로고    scopus 로고
    • Neuroimaging insights into network-based neurodegeneration
    • pmid:23108250
    • Greicius MD, Kimmel DL, Neuroimaging insights into network-based neurodegeneration. Curr Opin Neurol. 2012; doi: 10.1097/WCO.0b013e32835a26b3 pmid: 23108250
    • (2012) Curr Opin Neurol
    • Greicius, M.D.1    Kimmel, D.L.2
  • 23
    • 84874878881 scopus 로고    scopus 로고
    • Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease
    • pmid:23358601
    • Lehmann M, Ghosh PM, Madison C, Laforce R, Corbetta-Rastelli C, Weiner MW, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain. 2013; doi: 10.1093/brain/aws327 pmid: 23358601
    • (2013) Brain
    • Lehmann, M.1    Ghosh, P.M.2    Madison, C.3    Laforce, R.4    Corbetta-Rastelli, C.5    Weiner, M.W.6
  • 24
    • 85058204636 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features
    • Li Y, Wang Y, Wu G, Shi F, Zhou L, Lin W, et al. Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiol Aging. 2011;
    • (2011) Neurobiol Aging
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6
  • 25
    • 34249722030 scopus 로고    scopus 로고
    • Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia
    • pmid:17353226
    • Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain. 2007; doi: 10.1093/brain/awm016 pmid: 17353226
    • (2007) Brain
    • Du, A.T.1    Schuff, N.2    Kramer, J.H.3    Rosen, H.J.4    Gorno-Tempini, M.L.5    Rankin, K.6
  • 26
    • 84867603343 scopus 로고    scopus 로고
    • Cognitive reserve in ageing and Alzheimer’s disease
    • pmid:23079557
    • Stern Y, Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11: 1006–1012. doi: 10.1016/S1474-4422(12)70191-6 pmid: 23079557
    • (2012) Lancet Neurol , vol.11 , pp. 1006-1012
    • Stern, Y.1
  • 27
    • 80051663321 scopus 로고    scopus 로고
    • Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study
    • pmid:21802369
    • Murray ME, Graff-Radford NR, Ross O a., Petersen RC, Duara R, Dickson DW, Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. Lancet Neurol. 2011;10: 785–796. doi: 10.1016/S1474-4422(11)70156-9 pmid: 21802369
    • (2011) Lancet Neurol , vol.10 , pp. 785-796
    • Murray, M.E.1    Graff-Radford, N.R.2    Ross, O.A.3    Petersen, R.C.4    Duara, R.5    Dickson, D.W.6
  • 28
    • 84961288120 scopus 로고    scopus 로고
    • Anatomical heterogeneity of Alzheimer disease
    • pmid:25344382
    • Noh Y, Jeon S, Lee JM, Seo SW, Kim GH, Cho H, et al. Anatomical heterogeneity of Alzheimer disease. Neurology. 2014; doi: 10.1212/WNL.0000000000001003 pmid: 25344382
    • (2014) Neurology
    • Noh, Y.1    Jeon, S.2    Lee, J.M.3    Seo, S.W.4    Kim, G.H.5    Cho, H.6
  • 29
    • 84977098169 scopus 로고    scopus 로고
    • HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework
    • pmid:26923371
    • Varol E, Sotiras A, Davatzikos C, Alzheimer’s Disease Neuroimaging InitiativeHYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. Neuroimage. 2017;145: 346–364. doi: 10.1016/j.neuroimage.2016.02.041 pmid: 26923371
    • (2017) Neuroimage , vol.145 , pp. 346-364
    • Varol, E.1    Sotiras, A.2    Davatzikos, C.3
  • 30
  • 31
    • 85015319546 scopus 로고    scopus 로고
    • Your algorithm might think the hippocampus grows in Alzheimer’s disease: Caveats of longitudinal automated hippocampal volumetry
    • pmid:28295799
    • Sankar T, Park MTM, Jawa T, Patel R, Bhagwat N, Voineskos AN, et al. Your algorithm might think the hippocampus grows in Alzheimer’s disease: Caveats of longitudinal automated hippocampal volumetry. Hum Brain Mapp. 2017;38: 2875–2896. doi: 10.1002/hbm.23559 pmid: 28295799
    • (2017) Hum Brain Mapp , vol.38 , pp. 2875-2896
    • Sankar, T.1    Park, M.T.M.2    Jawa, T.3    Patel, R.4    Bhagwat, N.5    Voineskos, A.N.6
  • 32
    • 85006038127 scopus 로고    scopus 로고
    • Defining imaging biomarker cut points for brain aging and Alzheimer’s disease
    • pmid:27697430
    • Jack CR, JrWiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13: 205–216. doi: 10.1016/j.jalz.2016.08.005 pmid: 27697430
    • (2017) Alzheimers Dement , vol.13 , pp. 205-216
    • Jack, C.R.1    Wiste, H.J.2    Weigand, S.D.3    Therneau, T.M.4    Lowe, V.J.5    Knopman, D.S.6
  • 33
    • 84857419176 scopus 로고    scopus 로고
    • MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults
    • pmid:22189451
    • Dickerson BC, Wolk DA, Alzheimer’s Disease Neuroimaging InitiativeMRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology. 2012;78: 84–90. doi: 10.1212/WNL.0b013e31823efc6c pmid: 22189451
    • (2012) Neurology , vol.78 , pp. 84-90
    • Dickerson, B.C.1    Wolk, D.A.2
  • 34
    • 36148973896 scopus 로고    scopus 로고
    • Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls
    • Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, et al. Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiol Aging. Elsevier; 2008;29: 23–30.
    • (2008) Neurobiol Aging. Elsevier , vol.29 , pp. 23-30
    • Lerch, J.P.1    Pruessner, J.2    Zijdenbos, A.P.3    Collins, D.L.4    Teipel, S.J.5    Hampel, H.6
  • 36
    • 84855429082 scopus 로고    scopus 로고
    • BEaST: brain extraction based on nonlocal segmentation technique
    • pmid:21945694
    • Eskildsen SF, Coupé P, Fonov V, Manjón JV, Leung KK, Guizard N, et al. BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage. 2012;59: 2362–2373. doi: 10.1016/j.neuroimage.2011.09.012 pmid: 21945694
    • (2012) Neuroimage , vol.59 , pp. 2362-2373
    • Eskildsen, S.F.1    Coupé, P.2    Fonov, V.3    Manjón, J.V.4    Leung, K.K.5    Guizard, N.6
  • 37
    • 0028287162 scopus 로고
    • Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
    • pmid:8126267
    • Collins DL, Neelin P, Peters TM, Evans AC, Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18: 192–205. pmid: 8126267
    • (1994) J Comput Assist Tomogr , vol.18 , pp. 192-205
    • Collins, D.L.1    Neelin, P.2    Peters, T.M.3    Evans, A.C.4
  • 38
    • 10044226234 scopus 로고    scopus 로고
    • Cortical thickness analysis examined through power analysis and a population simulation
    • pmid:15588607
    • Lerch JP, Evans AC, Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage. 2005;24: 163–173. doi: 10.1016/j.neuroimage.2004.07.045 pmid: 15588607
    • (2005) Neuroimage , vol.24 , pp. 163-173
    • Lerch, J.P.1    Evans, A.C.2
  • 39
    • 22044448620 scopus 로고    scopus 로고
    • Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification
    • pmid:15896981
    • Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage. 2005;27: 210–221. doi: 10.1016/j.neuroimage.2005.03.036 pmid: 15896981
    • (2005) Neuroimage , vol.27 , pp. 210-221
    • Kim, J.S.1    Singh, V.2    Lee, J.K.3    Lerch, J.4    Ad-Dab’bagh, Y.5    MacDonald, D.6
  • 40
    • 0033823615 scopus 로고    scopus 로고
    • Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
    • pmid:10944416
    • MacDonald D, Kabani N, Avis D, Evans AC, Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage. 2000;12: 340–356. doi: 10.1006/nimg.1999.0534 pmid: 10944416
    • (2000) Neuroimage , vol.12 , pp. 340-356
    • MacDonald, D.1    Kabani, N.2    Avis, D.3    Evans, A.C.4
  • 41
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • pmid:11771995
    • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15: 273–289. doi: 10.1006/nimg.2001.0978 pmid: 11771995
    • (2002) Neuroimage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6
  • 42
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database
    • Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage. Elsevier Inc.; 2011;56: 766–781.
    • (2011) Neuroimage. Elsevier Inc. , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.O.6
  • 44
    • 85054582264 scopus 로고    scopus 로고
    • Siamese neural networks for one-shot image recognition
    • Koch G, Zemel—ICML Deep Learning … R, 2015
    • Koch G, Zemel—ICML Deep Learning … R, 2015. Siamese neural networks for one-shot image recognition. pdfs.semanticscholar.org. 2015; https://pdfs.semanticscholar.org/e669/55e4a24b611c54f9e7f6b178e7cbaddd0fbb.pdf
    • (2015) pdfs.semanticscholar.org
  • 46
    • 84901443680 scopus 로고    scopus 로고
    • Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing
    • pmid:24885474
    • Barnett JH, Lewis L, Blackwell AD, Taylor M, Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing. BMC Neurol. 2014;14: 101. doi: 10.1186/1471-2377-14-101 pmid: 24885474
    • (2014) BMC Neurol , vol.14 , pp. 101
    • Barnett, J.H.1    Lewis, L.2    Blackwell, A.D.3    Taylor, M.4
  • 47
    • 84895729886 scopus 로고    scopus 로고
    • Clinical trials and late‐stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014
    • Schneider LS, Mangialasche F, Clinical trials and late‐stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med. Wiley Online Library; 2014; http://onlinelibrary.wiley.com/doi/10.1111/joim.12191/full
    • (2014) J Intern Med. Wiley Online Library
    • Schneider, L.S.1    Mangialasche, F.2
  • 48
    • 77954032616 scopus 로고    scopus 로고
    • Boosting power for clinical trials using classifiers based on multiple biomarkers
    • pmid:20541286
    • Kohannim O, Hua X, Hibar DP, Lee S, Chou Y-Y, Toga AW, et al. Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiol Aging. 2010;31: 1429–1442. doi: 10.1016/j.neurobiolaging.2010.04.022 pmid: 20541286
    • (2010) Neurobiol Aging , vol.31 , pp. 1429-1442
    • Kohannim, O.1    Hua, X.2    Hibar, D.P.3    Lee, S.4    Chou, Y.-Y.5    Toga, A.W.6
  • 49
    • 85009350821 scopus 로고    scopus 로고
    • Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease
    • pmid:28079104
    • Huang M, Yang W, Feng Q, Chen W, Alzheimer’s Disease Neuroimaging InitiativeLongitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease. Sci Rep. 2017;7: 39880. doi: 10.1038/srep39880 pmid: 28079104
    • (2017) Sci Rep , vol.7 , pp. 39880
    • Huang, M.1    Yang, W.2    Feng, Q.3    Chen, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.