메뉴 건너뛰기




Volumn 76, Issue , 2017, Pages 59-68

Predicting age by mining electronic medical records with deep learning characterizes differences between chronological and physiological age

Author keywords

Age prediction; Aging; Deep learning; Machine learning; Medical records

Indexed keywords

AGING OF MATERIALS; BLOOD PRESSURE; E-LEARNING; FORECASTING; GENES; LEARNING SYSTEMS; MEDICAL COMPUTING;

EID: 85033378916     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2017.11.003     Document Type: Article
Times cited : (30)

References (48)
  • 1
    • 0023693342 scopus 로고
    • Biomarkers of aging
    • Baker Iii, G.T., Sprott, R.L., Biomarkers of aging. Exp. Gerontol. 23:4–5 (1988), 223–239.
    • (1988) Exp. Gerontol. , vol.23 , Issue.4-5 , pp. 223-239
    • Baker Iii, G.T.1    Sprott, R.L.2
  • 2
    • 71849118185 scopus 로고    scopus 로고
    • Biomarkers of aging and disease: introduction and definitions
    • Sprott, R.L., Biomarkers of aging and disease: introduction and definitions. Exp. Gerontol. 45:1 (2010), 2–4.
    • (2010) Exp. Gerontol. , vol.45 , Issue.1 , pp. 2-4
    • Sprott, R.L.1
  • 5
    • 77952743745 scopus 로고    scopus 로고
    • Validating pathophysiological models of aging using clinical electronic medical records
    • Chen, D.P., Morgan, A.A., Butte, A.J., Validating pathophysiological models of aging using clinical electronic medical records. J. Biomed. Inform. 43:3 (2010), 358–364.
    • (2010) J. Biomed. Inform. , vol.43 , Issue.3 , pp. 358-364
    • Chen, D.P.1    Morgan, A.A.2    Butte, A.J.3
  • 7
    • 33845193013 scopus 로고    scopus 로고
    • Recent results: biomarkers of aging
    • Johnson, T.E., Recent results: biomarkers of aging. Exp. Gerontol. 41:12 (2006), 1243–1246.
    • (2006) Exp. Gerontol. , vol.41 , Issue.12 , pp. 1243-1246
    • Johnson, T.E.1
  • 8
    • 84946482555 scopus 로고    scopus 로고
    • Comprehensive analysis of large sets of age-related physiological indicators reveals rapid aging around the age of 55 years
    • Lixie, E., Edgeworth, J., Shamir, L., Comprehensive analysis of large sets of age-related physiological indicators reveals rapid aging around the age of 55 years. Gerontology 61:6 (2015), 526–533.
    • (2015) Gerontology , vol.61 , Issue.6 , pp. 526-533
    • Lixie, E.1    Edgeworth, J.2    Shamir, L.3
  • 13
    • 84945219231 scopus 로고    scopus 로고
    • Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases
    • Yang, J., Huang, T., Petralia, F., Long, Q., Zhang, B., Argmann, C., Zhao, Y., Mobbs, C.V., Schadt, E.E., Zhu, J., et al. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci. Rep., 5, 2015, 15145.
    • (2015) Sci. Rep. , vol.5 , pp. 15145
    • Yang, J.1    Huang, T.2    Petralia, F.3    Long, Q.4    Zhang, B.5    Argmann, C.6    Zhao, Y.7    Mobbs, C.V.8    Schadt, E.E.9    Zhu, J.10
  • 15
    • 84886111619 scopus 로고    scopus 로고
    • DNA methylation age of human tissues and cell types
    • Horvath, S., DNA methylation age of human tissues and cell types. Genome Biol., 14(10), 2013, 3156.
    • (2013) Genome Biol. , vol.14 , Issue.10 , pp. 3156
    • Horvath, S.1
  • 16
    • 84871854103 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • Hripcsak, G., Albers, D.J., Next-generation phenotyping of electronic health records. J. Am. Med. Inf. Assoc. 20:1 (2013), 117–121.
    • (2013) J. Am. Med. Inf. Assoc. , vol.20 , Issue.1 , pp. 117-121
    • Hripcsak, G.1    Albers, D.J.2
  • 21
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
    • Miotto, R., Li, L., Kidd, B.A., Dudley, J.T., Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep., 6, 2016, 26094.
    • (2016) Sci. Rep. , vol.6 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 22
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Aistats,.
    • X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Aistats, 2010, pp. 249–256.
    • (2010) , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 23
    • 85033391624 scopus 로고    scopus 로고
    • Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980.
    • D. Kingma, J. Ba, Adam: a method for stochastic optimization, 2014. arXiv preprint arXiv:14126980.
    • (2014)
    • Kingma, D.1    Ba, J.2
  • 24
    • 85033383703 scopus 로고    scopus 로고
    • Keras. URL
    • F. Chollet, Keras, 2015. URL .
    • (2015)
    • Chollet, F.1
  • 26
    • 85033363611 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing, J.R. Stat. Soc. 57
    • Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J.R. Stat. Soc. 57 (1995).
    • (1995)
    • Benjamini, Y.1    Hochberg, Y.2
  • 27
    • 84856478855 scopus 로고    scopus 로고
    • A linear complexity phasing method for thousands of genomes
    • Delaneau, O., Marchini, J., Zagury, J.-F., A linear complexity phasing method for thousands of genomes. Nat. Meth. 9:2 (2012), 179–181.
    • (2012) Nat. Meth. , vol.9 , Issue.2 , pp. 179-181
    • Delaneau, O.1    Marchini, J.2    Zagury, J.-F.3
  • 28
    • 67651222400 scopus 로고    scopus 로고
    • A flexible and accurate genotype imputation method for the next generation of genome-wide association studies
    • Howie, B.N., Donnelly, P., Marchini, J., A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLOS Genet., 5(6), 2009, e1000529.
    • (2009) PLOS Genet. , vol.5 , Issue.6 , pp. e1000529
    • Howie, B.N.1    Donnelly, P.2    Marchini, J.3
  • 31
    • 84997096270 scopus 로고    scopus 로고
    • Population structure of UK Biobank and ancient eurasians reveals adaptation at genes influencing blood pressure
    • Galinsky Kevin, J., Loh, P.-R., Mallick, S., Patterson Nick, J., Price Alkes, L., Population structure of UK Biobank and ancient eurasians reveals adaptation at genes influencing blood pressure. Am. J. Hum. Genet. 99:5 (2016), 1130–1139.
    • (2016) Am. J. Hum. Genet. , vol.99 , Issue.5 , pp. 1130-1139
    • Galinsky Kevin, J.1    Loh, P.-R.2    Mallick, S.3    Patterson Nick, J.4    Price Alkes, L.5
  • 32
    • 84901835522 scopus 로고    scopus 로고
    • VariantAnnotation: a bioconductor package for exploration and annotation of genetic variants
    • Obenchain, V., Lawrence, M., Carey, V., Gogarten, S., Shannon, P., Morgan, M., VariantAnnotation: a bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30:14 (2014), 2076–2078.
    • (2014) Bioinformatics , vol.30 , Issue.14 , pp. 2076-2078
    • Obenchain, V.1    Lawrence, M.2    Carey, V.3    Gogarten, S.4    Shannon, P.5    Morgan, M.6
  • 34
    • 84876100615 scopus 로고    scopus 로고
    • Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
    • Chen, E., Tan, C., Kou, Y., Duan, Q., Wang, Z., Meirelles, G., Clark, N., Ma'ayan, A., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf., 14(1), 2013, 128.
    • (2013) BMC Bioinf. , vol.14 , Issue.1 , pp. 128
    • Chen, E.1    Tan, C.2    Kou, Y.3    Duan, Q.4    Wang, Z.5    Meirelles, G.6    Clark, N.7    Ma'ayan, A.8
  • 36
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W.S., Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74:368 (1979), 829–836.
    • (1979) J. Am. Stat. Assoc. , vol.74 , Issue.368 , pp. 829-836
    • Cleveland, W.S.1
  • 38
    • 77955739991 scopus 로고    scopus 로고
    • Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives
    • Blagosklonny, M.V., Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging 2:5 (2010), 265–273.
    • (2010) Aging , vol.2 , Issue.5 , pp. 265-273
    • Blagosklonny, M.V.1
  • 40
    • 85018672892 scopus 로고    scopus 로고
    • A longitudinal study of smokeless tobacco use and mortality in the United States
    • Timberlake, D.S., Nikitin, D., Johnson, N.J., Altekruse, S.F., A longitudinal study of smokeless tobacco use and mortality in the United States. Int. J. Cancer 141:2 (2017), 264–270.
    • (2017) Int. J. Cancer , vol.141 , Issue.2 , pp. 264-270
    • Timberlake, D.S.1    Nikitin, D.2    Johnson, N.J.3    Altekruse, S.F.4
  • 42
    • 0030046840 scopus 로고    scopus 로고
    • Molecular cloning and characterization of the human interleukin-11 receptor α-chain gene, IL11RA, located on chromosome 9p13
    • Van Leuven, F., Stas, L., Hilliker, C., Miyake, Y., Bilinski, P., Gossler, A., Molecular cloning and characterization of the human interleukin-11 receptor α-chain gene, IL11RA, located on chromosome 9p13. Genomics 31:1 (1996), 65–70.
    • (1996) Genomics , vol.31 , Issue.1 , pp. 65-70
    • Van Leuven, F.1    Stas, L.2    Hilliker, C.3    Miyake, Y.4    Bilinski, P.5    Gossler, A.6
  • 44
    • 85000981942 scopus 로고    scopus 로고
    • Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat
    • Kotoh, J., Sasaki, D., Matsumoto, K., Maeda, A., Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat. J. Vet. Med. Sci., 78(11), 2016, 1683.
    • (2016) J. Vet. Med. Sci. , vol.78 , Issue.11 , pp. 1683
    • Kotoh, J.1    Sasaki, D.2    Matsumoto, K.3    Maeda, A.4
  • 47
    • 65249161758 scopus 로고    scopus 로고
    • Oxysterol binding protein–related protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function
    • Ngo, M., Ridgway, N.D., Oxysterol binding protein–related protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol. Biol. Cell 20:5 (2009), 1388–1399.
    • (2009) Mol. Biol. Cell , vol.20 , Issue.5 , pp. 1388-1399
    • Ngo, M.1    Ridgway, N.D.2
  • 48
    • 85033379573 scopus 로고    scopus 로고
    • Network dissection: quantifying interpretability of deep visual representations. arXiv preprint arXiv:170405796.
    • D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network dissection: quantifying interpretability of deep visual representations, 2017. arXiv preprint arXiv:170405796.
    • (2017)
    • Bau, D.1    Zhou, B.2    Khosla, A.3    Oliva, A.4    Torralba, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.