-
1
-
-
41449086790
-
Cardiac plasticity
-
Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370-1380. doi: 10.1056/NEJMra072139
-
(2008)
N Engl J Med
, vol.358
, pp. 1370-1380
-
-
Hill, J.A.1
Olson, E.N.2
-
2
-
-
84894486283
-
Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease
-
Ishizu T, Seo Y, Kameda Y, Kawamura R, Kimura T, Shimojo N, Xu D, Murakoshi N, Aonuma K. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension. 2014;63:500-506. doi: 10.1161/HYPERTENSIONAHA.113.02149
-
(2014)
Hypertension
, vol.63
, pp. 500-506
-
-
Ishizu, T.1
Seo, Y.2
Kameda, Y.3
Kawamura, R.4
Kimura, T.5
Shimojo, N.6
Xu, D.7
Murakoshi, N.8
Aonuma, K.9
-
3
-
-
84906880540
-
Focus cardiac ultrasound: The European Association of Cardiovascular Imaging viewpoint
-
European Association of Cardiovascular Imaging Document Reviewers
-
Neskovic AN, Edvardsen T, Galderisi M, Garbi M, Gullace G, Jurcut R, Dalen H, Hagendorff A, Lancellotti P, Popescu BA, Sicari R, Stefanidis A; European Association of Cardiovascular Imaging Document Reviewers:. Focus cardiac ultrasound: The European Association of Cardiovascular Imaging viewpoint. Eur Heart J Cardiovasc Imaging. 2014;15:956-960. doi: 10.1093/ehjci/jeu081
-
(2014)
Eur Heart J Cardiovasc Imaging
, vol.15
, pp. 956-960
-
-
Neskovic, A.N.1
Edvardsen, T.2
Galderisi, M.3
Garbi, M.4
Gullace, G.5
Jurcut, R.6
Dalen, H.7
Hagendorff, A.8
Lancellotti, P.9
Popescu, B.A.10
Sicari, R.11
Stefanidis, A.12
-
4
-
-
84860800960
-
Medicare services provided by cardiologists in the United States: 1999-2008
-
Andrus BW, Welch HG. Medicare services provided by cardiologists in the United States: 1999-2008. Circ Cardiovasc Qual Outcomes. 2012;5:31-36. doi: 10.1161/CIRCOUTCOMES.111.961813
-
(2012)
Circ Cardiovasc Qual Outcomes
, vol.5
, pp. 31-36
-
-
Andrus, B.W.1
Welch, H.G.2
-
7
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402-2410. doi: 10.1001/jama.2016.17216
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
Venugopalan, S.7
Widner, K.8
Madams, T.9
Cuadros, J.10
Kim, R.11
Raman, R.12
Nelson, P.C.13
Mega, J.L.14
Webster, D.R.15
-
8
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115-118. doi: 10.1038/nature21056
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
Ko, J.4
Swetter, S.M.5
Blau, H.M.6
Thrun, S.7
-
9
-
-
83055174616
-
2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons
-
American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines
-
Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212-e260. doi: 10.1016/j.jacc.2011.06.011
-
(2011)
J Am Coll Cardiol
, vol.58
, pp. e212-e260
-
-
Gersh, B.J.1
Maron, B.J.2
Bonow, R.O.3
Dearani, J.A.4
Fifer, M.A.5
Link, M.S.6
Naidu, S.S.7
Nishimura, R.A.8
Ommen, S.R.9
Rakowski, H.10
Seidman, C.E.11
Towbin, J.A.12
Udelson, J.E.13
Yancy, C.W.14
-
10
-
-
84930630277
-
Deep learning
-
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. doi: 10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
11
-
-
57249084011
-
Visualizing data using t-SNE
-
Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-2605.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2579-2605
-
-
Maaten, L.1
Hinton, G.2
-
12
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825-2830.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, É.16
-
13
-
-
84925515752
-
Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
-
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1.e14-39.e14. doi: 10.1016/j.echo.2014.10.003
-
(2015)
J Am Soc Echocardiogr
, vol.28
, pp. 1e14-39e14
-
-
Lang, R.M.1
Badano, L.P.2
Mor-Avi, V.3
Afilalo, J.4
Armstrong, A.5
Ernande, L.6
Flachskampf, F.A.7
Foster, E.8
Goldstein, S.A.9
Kuznetsova, T.10
Lancellotti, P.11
Muraru, D.12
Picard, M.H.13
Rietzschel, E.R.14
Rudski, L.15
Spencer, K.T.16
Tsang, W.17
Voigt, J.U.18
-
14
-
-
84908219488
-
Statistical methods for assessing agreement between two methods of clinical measurement
-
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307-310.
-
(1986)
Lancet
, vol.1
, pp. 307-310
-
-
Bland, J.M.1
Altman, D.G.2
-
15
-
-
70350304134
-
Blood pressure levels, left ventricular mass and function are correlated with left atrial volume in mild to moderate hypertensive patients
-
Milan A, Caserta MA, Dematteis A, Naso D, Pertusio A, Magnino C, Puglisi E, Rabbia F, Pandian NG, Mulatero P, Veglio F. Blood pressure levels, left ventricular mass and function are correlated with left atrial volume in mild to moderate hypertensive patients. J Hum Hypertens. 2009;23:743-750. doi: 10.1038/jhh.2009.15
-
(2009)
J Hum Hypertens
, vol.23
, pp. 743-750
-
-
Milan, A.1
Caserta, M.A.2
Dematteis, A.3
Naso, D.4
Pertusio, A.5
Magnino, C.6
Puglisi, E.7
Rabbia, F.8
Pandian, N.G.9
Mulatero, P.10
Veglio, F.11
-
16
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics. 1988;44:837-845.
-
(1988)
Biometrics
, vol.44
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
17
-
-
84958264664
-
Tensorflow: Large-scale machine learning on heterogeneous distributed systems
-
Abadi M, Agarwal A, Barham P, Chen J, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. OSDI. 2016;16:265-283.
-
(2016)
OSDI
, vol.16
, pp. 265-283
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Chen, J.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
Kudlur, M.11
Levenberg, J.12
Monga, R.13
Moore, S.14
Murray, D.G.15
Steiner, B.16
Tucker, P.17
Vasudevan, V.18
Warden, P.19
Wicke, M.20
Yu, Y.21
Zheng, X.22
more..
-
18
-
-
84903840343
-
Scikit-image: Image processing in Python
-
scikit-image contributors
-
van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T; scikit-image contributors. scikit-image: Image processing in Python. PeerJ. 2014;2:e453. doi: 10.7717/peerj.453
-
(2014)
PeerJ
, vol.2
, pp. e453
-
-
Van Der Walt, S.1
Schönberger, J.L.2
Nunez-Iglesias, J.3
Boulogne, F.4
Warner, J.D.5
Yager, N.6
Gouillart, E.7
Yu, T.8
-
19
-
-
84994035399
-
Automatic apical view classification of echocardiograms using a discriminative learning dictionary
-
Khamis H, Zurakhov G, Azar V, Raz A, Friedman Z, Adam D. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Med Image Anal. 2017;36:15-21. doi: 10.1016/j. media.2016.10.007
-
(2017)
Med Image Anal
, vol.36
, pp. 15-21
-
-
Khamis, H.1
Zurakhov, G.2
Azar, V.3
Raz, A.4
Friedman, Z.5
Adam, D.6
-
20
-
-
84995804182
-
A fused deep learning architecture for viewpoint classification of echocardiography
-
Gao X, Li W, Loomes M, Lianyi W. A fused deep learning architecture for viewpoint classification of echocardiography. Inf Fusion. 2017;36:103-113.
-
(2017)
Inf Fusion
, vol.36
, pp. 103-113
-
-
Gao, X.1
Li, W.2
Loomes, M.3
Lianyi, W.4
-
21
-
-
85086330988
-
Fast and accurate view classification of echocardiograms using deep learning
-
Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018; 6:1-8.
-
(2018)
NPJ Digit Med
, vol.6
, pp. 1-8
-
-
Madani, A.1
Arnaout, R.2
Mofrad, M.3
Arnaout, R.4
-
22
-
-
85013497977
-
Detailed echocardiographic phenotyping in breast cancer patients: Associations with ejection fraction decline, recovery, and heart failure symptoms over 3 years of follow-up
-
Narayan HK, Finkelman B, French B, Plappert T, Hyman D, Smith AM, Margulies KB, Ky B. Detailed echocardiographic phenotyping in breast cancer patients: Associations with ejection fraction decline, recovery, and heart failure symptoms over 3 years of follow-up. Circulation. 2017;135:1397-1412. doi: 10.1161/CIRCULATIONAHA.116.023463
-
(2017)
Circulation
, vol.135
, pp. 1397-1412
-
-
Narayan, H.K.1
Finkelman, B.2
French, B.3
Plappert, T.4
Hyman, D.5
Smith, A.M.6
Margulies, K.B.7
Ky, B.8
-
23
-
-
80052286754
-
Cardiac amyloidosis: A treatable disease, often overlooked
-
Falk RH. Cardiac amyloidosis: A treatable disease, often overlooked. Circulation. 2011;124:1079-1085. doi: 10.1161/CIRCULATIONAHA.110.010447
-
(2011)
Circulation
, vol.124
, pp. 1079-1085
-
-
Falk, R.H.1
-
24
-
-
0036879771
-
Automatic segmentation of echocardiographic sequences by active appearance motion models
-
Bosch JG, Mitchell SC, Lelieveldt BP, Nijland F, Kamp O, Sonka M, Reiber JH. Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging. 2002;21:1374-1383. doi: 10.1109/TMI.2002.806427
-
(2002)
IEEE Trans Med Imaging
, vol.21
, pp. 1374-1383
-
-
Bosch, J.G.1
Mitchell, S.C.2
Lelieveldt, B.P.3
Nijland, F.4
Kamp, O.5
Sonka, M.6
Reiber, J.H.7
-
26
-
-
84997207719
-
Improving health and health care in the United States: Toward a state of complete well-being
-
Koh HK. Improving health and health care in the United States: Toward a state of complete well-being. JAMA. 2016;316:1679-1681. doi: 10.1001/ jama.2016.12414
-
(2016)
JAMA
, vol.316
, pp. 1679-1681
-
-
Koh, H.K.1
-
27
-
-
84925581948
-
The war against heart failure: The Lancet lecture
-
Braunwald E. The war against heart failure: The Lancet lecture. Lancet. 2015;385:812-824. doi: 10.1016/S0140-6736(14)61889-4
-
(2015)
Lancet
, vol.385
, pp. 812-824
-
-
Braunwald, E.1
|