-
1
-
-
85045774063
-
-
TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv, arXiv:1603.04467v2
-
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv, arXiv:1603.04467v2, https://arxiv.org/abs/1603.04467.
-
(2015)
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.7
Davis, A.8
Dean, J.9
Devin, M.10
-
2
-
-
7244236320
-
Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death
-
Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R., Finkbeiner, S., Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431 (2004), 805–810.
-
(2004)
Nature
, vol.431
, pp. 805-810
-
-
Arrasate, M.1
Mitra, S.2
Schweitzer, E.S.3
Segal, M.R.4
Finkbeiner, S.5
-
3
-
-
85013149570
-
Prospective identification of hematopoietic lineage choice by deep learning
-
Buggenthin, F., Buettner, F., Hoppe, P.S., Endele, M., Kroiss, M., Strasser, M., Schwarzfischer, M., Loeffler, D., Kokkaliaris, K.D., Hilsenbeck, O., et al. Prospective identification of hematopoietic lineage choice by deep learning. Nat. Methods 14 (2017), 403–406.
-
(2017)
Nat. Methods
, vol.14
, pp. 403-406
-
-
Buggenthin, F.1
Buettner, F.2
Hoppe, P.S.3
Endele, M.4
Kroiss, M.5
Strasser, M.6
Schwarzfischer, M.7
Loeffler, D.8
Kokkaliaris, K.D.9
Hilsenbeck, O.10
-
4
-
-
84882749423
-
A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells
-
Burkhardt, M.F., Martinez, F.J., Wright, S., Ramos, C., Volfson, D., Mason, M., Garnes, J., Dang, V., Lievers, J., Shoukat-Mumtaz, U., et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 56 (2013), 355–364.
-
(2013)
Mol. Cell. Neurosci.
, vol.56
, pp. 355-364
-
-
Burkhardt, M.F.1
Martinez, F.J.2
Wright, S.3
Ramos, C.4
Volfson, D.5
Mason, M.6
Garnes, J.7
Dang, V.8
Lievers, J.9
Shoukat-Mumtaz, U.10
-
5
-
-
33845792555
-
CellProfiler: image analysis software for identifying and quantifying cell phenotypes
-
Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, 2006, R100.
-
(2006)
Genome Biol.
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
Clarke, C.4
Kang, I.H.5
Friman, O.6
Guertin, D.A.7
Chang, J.H.8
Lindquist, R.A.9
Moffat, J.10
-
6
-
-
84921737539
-
Deep learning based automatic immune cell detection for immunohistochemistry images
-
G. Wu D. Zhang L. Zhou Springer International Publishing
-
Chen, T., Chefd'hotel, C., Deep learning based automatic immune cell detection for immunohistochemistry images. Wu, G., Zhang, D., Zhou, L., (eds.) Machine Learning in Medical Imaging, 2014, Springer International Publishing, 17–24.
-
(2014)
Machine Learning in Medical Imaging
, pp. 17-24
-
-
Chen, T.1
Chefd'hotel, C.2
-
7
-
-
85083954148
-
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062v4
-
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A.L. (2015). Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062v4, https://arxiv.org/abs/1412.7062.
-
(2015)
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
8
-
-
70449356941
-
-
Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. Proc. IEEE Int. Symp. Biomed. Imaging
-
Coelho, L.P., Shariff, A., and Murphy, R.F. (2009). Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. Proc. IEEE Int. Symp. Biomed. Imaging 5193098, 518–521.
-
(2009)
, vol.5193098
, pp. 518-521
-
-
Coelho, L.P.1
Shariff, A.2
Murphy, R.F.3
-
9
-
-
85119638636
-
-
Deep learning for automatic cell detection in wide-field microscopy zebrafish images. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 772–776.
-
Dong, B., Shao, L., Costa, M.D., Bandmann, O., and Frangi, A.F. (2015). Deep learning for automatic cell detection in wide-field microscopy zebrafish images. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 772–776.
-
(2015)
-
-
Dong, B.1
Shao, L.2
Costa, M.D.3
Bandmann, O.4
Frangi, A.F.5
-
10
-
-
84925813712
-
Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells
-
Du, Z.-W., Chen, H., Liu, H., Lu, J., Qian, K., Huang, C.-L., Zhong, X., Fan, F., Zhang, S.-C., Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun., 6, 2015, 6626.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6626
-
-
Du, Z.-W.1
Chen, H.2
Liu, H.3
Lu, J.4
Qian, K.5
Huang, C.-L.6
Zhong, X.7
Fan, F.8
Zhang, S.-C.9
-
11
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., Singer, Y., Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12 (2011), 2121–2159.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
12
-
-
85045779885
-
-
A guide to convolution arithmetic for deep learning. arXiv:1603.07285v2
-
Dumoulin, V., and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv:1603.07285v2, https://arxiv.org/abs/1603.07285.
-
(2016)
-
-
Dumoulin, V.1
Visin, F.2
-
13
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., Lecun, Y., Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 1915–1929.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
14
-
-
84930324062
-
Cell-based screening: extracting meaning from complex data
-
Finkbeiner, S., Frumkin, M., Kassner, P.D., Cell-based screening: extracting meaning from complex data. Neuron 86 (2015), 160–174.
-
(2015)
Neuron
, vol.86
, pp. 160-174
-
-
Finkbeiner, S.1
Frumkin, M.2
Kassner, P.D.3
-
15
-
-
85029112253
-
-
Google Vizier: a service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM)
-
Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017). Google Vizier: a service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM), pp. 1487–1495.
-
(2017)
, pp. 1487-1495
-
-
Golovin, D.1
Solnik, B.2
Moitra, S.3
Kochanski, G.4
Karro, J.5
Sculley, D.6
-
16
-
-
84937849144
-
-
Generative adversarial nets. arXiv:1406.2661v1
-
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. arXiv:1406.2661v1, https://arxiv.org/abs/1406.2661.
-
(2014)
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
17
-
-
84944735469
-
Deep Learning
-
MIT Press
-
Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 2016, MIT Press.
-
(2016)
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
18
-
-
85045772545
-
-
Identity mappings in deep residual networks. arXiv:1603.05027v3
-
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual networks. arXiv:1603.05027v3, https://arxiv.org/abs/1603.05027.
-
(2016)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
19
-
-
77956339402
-
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging
-
Held, M., Schmitz, M.H.A., Fischer, B., Walter, T., Neumann, B., Olma, M.H., Peter, M., Ellenberg, J., Gerlich, D.W., CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat. Methods 7 (2010), 747–754.
-
(2010)
Nat. Methods
, vol.7
, pp. 747-754
-
-
Held, M.1
Schmitz, M.H.A.2
Fischer, B.3
Walter, T.4
Neumann, B.5
Olma, M.H.6
Peter, M.7
Ellenberg, J.8
Gerlich, D.W.9
-
20
-
-
85045774294
-
-
SciPy: open source scientific tools for Python.
-
Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: open source scientific tools for Python.
-
(2001)
-
-
Jones, E.1
Oliphant, T.2
Peterson, P.3
-
21
-
-
85045775087
-
-
Adam: A method for stochastic optimization. arXiv:1412.6980v9
-
Kingma, D., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980v9, https://arxiv.org/abs/1412.6980.
-
(2014)
-
-
Kingma, D.1
Ba, J.2
-
22
-
-
77649185866
-
Multiclass detection of cells in multicontrast composite images
-
Long, X., Cleveland, W.L., Yao, Y.L., Multiclass detection of cells in multicontrast composite images. Comput. Biol. Med. 40 (2010), 168–178.
-
(2010)
Comput. Biol. Med.
, vol.40
, pp. 168-178
-
-
Long, X.1
Cleveland, W.L.2
Yao, Y.L.3
-
23
-
-
84944315641
-
-
Iteratively training classifiers for circulating tumor cell detection. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (IEEE)
-
Mao, Y., Yin, Z., and Schober, J.M. (2015). Iteratively training classifiers for circulating tumor cell detection. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (IEEE), pp. 190–194.
-
(2015)
, pp. 190-194
-
-
Mao, Y.1
Yin, Z.2
Schober, J.M.3
-
24
-
-
84910673362
-
Generation of functional human pancreatic β cells in vitro
-
Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D., Melton, D.A., Generation of functional human pancreatic β cells in vitro. Cell 159 (2014), 428–439.
-
(2014)
Cell
, vol.159
, pp. 428-439
-
-
Pagliuca, F.W.1
Millman, J.R.2
Gürtler, M.3
Segel, M.4
Van Dervort, A.5
Ryu, J.H.6
Peterson, Q.P.7
Greiner, D.8
Melton, D.A.9
-
25
-
-
85045772107
-
-
Massively multitask networks for drug discovery. arXiv:1502.02072v1
-
Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., and Pande, V. (2015). Massively multitask networks for drug discovery. arXiv:1502.02072v1, https://arxiv.org/abs/1502.02072.
-
(2015)
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
26
-
-
84975268086
-
Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system
-
Rigamonti, A., Repetti, G.G., Sun, C., Price, F.D., Reny, D.C., Rapino, F., Weisinger, K., Benkler, C., Peterson, Q.P., Davidow, L.S., et al. Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system. Stem Cell Reports 6 (2016), 993–1008.
-
(2016)
Stem Cell Reports
, vol.6
, pp. 993-1008
-
-
Rigamonti, A.1
Repetti, G.G.2
Sun, C.3
Price, F.D.4
Reny, D.C.5
Rapino, F.6
Weisinger, K.7
Benkler, C.8
Peterson, Q.P.9
Davidow, L.S.10
-
27
-
-
84951834022
-
U-net: convolutional networks for biomedical image segmentation
-
N. Navab J. Hornegger W.M. Wells A.F. Frangi Springer
-
Ronneberger, O., Fischer, P., Brox, T., U-net: convolutional networks for biomedical image segmentation. Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, Springer, 234–241.
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
28
-
-
85027498089
-
Automated training of deep convolutional neural networks for cell segmentation
-
Sadanandan, S.K., Ranefall, P., Le Guyader, S., Wählby, C., Automated training of deep convolutional neural networks for cell segmentation. Sci. Rep., 7, 2017, 7860.
-
(2017)
Sci. Rep.
, vol.7
, pp. 7860
-
-
Sadanandan, S.K.1
Ranefall, P.2
Le Guyader, S.3
Wählby, C.4
-
29
-
-
85045776329
-
-
Facenet: A unified embedding for face recognition and clustering.arXiv:1503.03832v3
-
Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering.arXiv:1503.03832v3, https://arxiv.org/abs/1503.03832.
-
(2015)
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
30
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the game of go with deep neural networks and tree search. Nature 529 (2016), 484–489.
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
van den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershelvam, V.9
Lanctot, M.10
-
31
-
-
84869201485
-
P
-
Pereira C.J.C. Burges L. Bottou K.Q. Weinberger Curran Associates
-
Snoek, J., Larochelle, H., Adams, R.P., P. Pereira, Burges, C.J.C., Bottou, L., Weinberger, K.Q., (eds.) Advances in Neural Information Processing Systems 25, 2012, Curran Associates, 2951–2959.
-
(2012)
Advances in Neural Information Processing Systems 25
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
32
-
-
85045773977
-
-
Going deeper with convolutions. arXiv:1409.4842v1
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015a). Going deeper with convolutions. arXiv:1409.4842v1, https://arxiv.org/abs/1409.4842.
-
(2015)
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
33
-
-
85045777019
-
-
Rethinking the inception architecture for computer vision. arXiv:1512.00567v3
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015b). Rethinking the inception architecture for computer vision. arXiv:1512.00567v3, https://arxiv.org/abs/1512.00567.
-
(2015)
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
34
-
-
85045777308
-
-
Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261v2
-
Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261v2, https://arxiv.org/abs/1602.07261.
-
(2016)
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
-
35
-
-
85045777113
-
-
Pixel recurrent neural networks. arXiv:1601.06759v3
-
van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv:1601.06759v3, https://arxiv.org/abs/1601.06759.
-
(2016)
-
-
van den Oord, A.1
Kalchbrenner, N.2
Kavukcuoglu, K.3
-
36
-
-
79952595565
-
The NumPy array: a structure for efficient numerical computation
-
van der Walt, S., Colbert, S.C., Varoquaux, G., The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13 (2011), 22–30.
-
(2011)
Comput. Sci. Eng.
, vol.13
, pp. 22-30
-
-
van der Walt, S.1
Colbert, S.C.2
Varoquaux, G.3
-
37
-
-
84999836246
-
Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
-
Van Valen, D.A., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., DeFelice, M.M., Maayan, I., Tanouchi, Y., Ashley, E.A., Covert, M.W., Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol., 12, 2016, e1005177.
-
(2016)
PLoS Comput. Biol.
, vol.12
, pp. e1005177
-
-
Van Valen, D.A.1
Kudo, T.2
Lane, K.M.3
Macklin, D.N.4
Quach, N.T.5
DeFelice, M.M.6
Maayan, I.7
Tanouchi, Y.8
Ashley, E.A.9
Covert, M.W.10
-
38
-
-
85045772755
-
-
seaborn: v0.7.0.
-
Waskom, M., Botvinnik, O., Drewokane, Hobson, P., Halchenko, Y., Lukauskas, S., Warmenhoven, J., Cole, J.B., Hoyer, S., Vanderplas, J., et al. (2016). seaborn: v0.7.0.
-
(2016)
-
-
Waskom, M.1
Botvinnik, O.2
Drewokane, Hobson, P.3
Halchenko, Y.4
Lukauskas, S.5
Warmenhoven, J.6
Cole, J.B.7
Hoyer, S.8
Vanderplas, J.9
-
39
-
-
85045774950
-
-
Softmax function.
-
Wikipedia (2017a). Softmax function. https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=829752166.
-
(2017)
-
-
-
40
-
-
85045776802
-
-
Unbiased estimation of standard deviation.
-
Wikipedia (2017b). Unbiased estimation of standard deviation. https://en.wikipedia.org/w/index.php?title=Unbiased_estimation_of_standard_deviation&oldid=823365997.
-
(2017)
-
-
-
41
-
-
85045779175
-
-
I.-Chao Chang, E. (2016). Gland instance segmentation by deep multichannel side supervision. arXiv:1607.03222v2
-
Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., and I.-Chao Chang, E. (2016). Gland instance segmentation by deep multichannel side supervision. arXiv:1607.03222v2, https://arxiv.org/abs/1607.03222.
-
-
-
Xu, Y.1
Li, Y.2
Liu, M.3
Wang, Y.4
Lai, M.5
-
42
-
-
77956001004
-
-
Deconvolutional networks. In Computer Vision and Pattern Recognition (CVPR) IEEE Conference on (IEEE), 2010
-
Zeiler, M.D., Krishnan, D., Taylor, G.W., and Fergus, R. (2010). Deconvolutional networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (IEEE), pp. 2528–2535.
-
(2010)
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
43
-
-
84863203974
-
Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
-
Zhong, Q., Busetto, A.G., Fededa, J.P., Buhmann, J.M., Gerlich, D.W., Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat. Methods 9 (2012), 711–713.
-
(2012)
Nat. Methods
, vol.9
, pp. 711-713
-
-
Zhong, Q.1
Busetto, A.G.2
Fededa, J.P.3
Buhmann, J.M.4
Gerlich, D.W.5
|