메뉴 건너뛰기




Volumn 173, Issue 3, 2018, Pages 792-803.e19

In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images

Author keywords

cancer; computer vision; deep learning; machine learning; microscopy; neuroscience; stem cells

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; CELL DEATH; CELL LABELING; CELL NUCLEUS; CELL VIABILITY; CELLS BY BODY ANATOMY; CHEMICAL LABELING; COMPUTER MODEL; FACTUAL DATABASE; FLUORESCENCE ANALYSIS; FLUORESCENCE MICROSCOPY; IN SILICO LABELING; PREDICTION; PREDICTIVE VALUE; PRIORITY JOURNAL; TRANSFER OF LEARNING; WORKFLOW; ANIMAL; BRAIN CORTEX; CELL SURVIVAL; CHEMISTRY; CYTOLOGY; HUMAN; IMAGE PROCESSING; INDUCED PLURIPOTENT STEM CELL; MACHINE LEARNING; MOTONEURON; NEUROSCIENCE; PROCEDURES; RAT; SOFTWARE; STEM CELL; TUMOR CELL LINE;

EID: 85043779029     PISSN: 00928674     EISSN: 10974172     Source Type: Journal    
DOI: 10.1016/j.cell.2018.03.040     Document Type: Article
Times cited : (499)

References (43)
  • 1
    • 85045774063 scopus 로고    scopus 로고
    • TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv, arXiv:1603.04467v2
    • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv, arXiv:1603.04467v2, https://arxiv.org/abs/1603.04467.
    • (2015)
    • Abadi, M.1    Agarwal, A.2    Barham, P.3    Brevdo, E.4    Chen, Z.5    Citro, C.6    Corrado, G.7    Davis, A.8    Dean, J.9    Devin, M.10
  • 2
    • 7244236320 scopus 로고    scopus 로고
    • Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death
    • Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R., Finkbeiner, S., Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431 (2004), 805–810.
    • (2004) Nature , vol.431 , pp. 805-810
    • Arrasate, M.1    Mitra, S.2    Schweitzer, E.S.3    Segal, M.R.4    Finkbeiner, S.5
  • 6
    • 84921737539 scopus 로고    scopus 로고
    • Deep learning based automatic immune cell detection for immunohistochemistry images
    • G. Wu D. Zhang L. Zhou Springer International Publishing
    • Chen, T., Chefd'hotel, C., Deep learning based automatic immune cell detection for immunohistochemistry images. Wu, G., Zhang, D., Zhou, L., (eds.) Machine Learning in Medical Imaging, 2014, Springer International Publishing, 17–24.
    • (2014) Machine Learning in Medical Imaging , pp. 17-24
    • Chen, T.1    Chefd'hotel, C.2
  • 7
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062v4
    • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A.L. (2015). Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062v4, https://arxiv.org/abs/1412.7062.
    • (2015)
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 8
    • 70449356941 scopus 로고    scopus 로고
    • Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. Proc. IEEE Int. Symp. Biomed. Imaging
    • Coelho, L.P., Shariff, A., and Murphy, R.F. (2009). Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. Proc. IEEE Int. Symp. Biomed. Imaging 5193098, 518–521.
    • (2009) , vol.5193098 , pp. 518-521
    • Coelho, L.P.1    Shariff, A.2    Murphy, R.F.3
  • 9
    • 85119638636 scopus 로고    scopus 로고
    • Deep learning for automatic cell detection in wide-field microscopy zebrafish images. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 772–776.
    • Dong, B., Shao, L., Costa, M.D., Bandmann, O., and Frangi, A.F. (2015). Deep learning for automatic cell detection in wide-field microscopy zebrafish images. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 772–776.
    • (2015)
    • Dong, B.1    Shao, L.2    Costa, M.D.3    Bandmann, O.4    Frangi, A.F.5
  • 10
    • 84925813712 scopus 로고    scopus 로고
    • Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells
    • Du, Z.-W., Chen, H., Liu, H., Lu, J., Qian, K., Huang, C.-L., Zhong, X., Fan, F., Zhang, S.-C., Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun., 6, 2015, 6626.
    • (2015) Nat. Commun. , vol.6 , pp. 6626
    • Du, Z.-W.1    Chen, H.2    Liu, H.3    Lu, J.4    Qian, K.5    Huang, C.-L.6    Zhong, X.7    Fan, F.8    Zhang, S.-C.9
  • 11
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J., Hazan, E., Singer, Y., Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12 (2011), 2121–2159.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 12
    • 85045779885 scopus 로고    scopus 로고
    • A guide to convolution arithmetic for deep learning. arXiv:1603.07285v2
    • Dumoulin, V., and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv:1603.07285v2, https://arxiv.org/abs/1603.07285.
    • (2016)
    • Dumoulin, V.1    Visin, F.2
  • 14
    • 84930324062 scopus 로고    scopus 로고
    • Cell-based screening: extracting meaning from complex data
    • Finkbeiner, S., Frumkin, M., Kassner, P.D., Cell-based screening: extracting meaning from complex data. Neuron 86 (2015), 160–174.
    • (2015) Neuron , vol.86 , pp. 160-174
    • Finkbeiner, S.1    Frumkin, M.2    Kassner, P.D.3
  • 15
    • 85029112253 scopus 로고    scopus 로고
    • Google Vizier: a service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM)
    • Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017). Google Vizier: a service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM), pp. 1487–1495.
    • (2017) , pp. 1487-1495
    • Golovin, D.1    Solnik, B.2    Moitra, S.3    Kochanski, G.4    Karro, J.5    Sculley, D.6
  • 18
    • 85045772545 scopus 로고    scopus 로고
    • Identity mappings in deep residual networks. arXiv:1603.05027v3
    • He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual networks. arXiv:1603.05027v3, https://arxiv.org/abs/1603.05027.
    • (2016)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 85045774294 scopus 로고    scopus 로고
    • SciPy: open source scientific tools for Python.
    • Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: open source scientific tools for Python.
    • (2001)
    • Jones, E.1    Oliphant, T.2    Peterson, P.3
  • 21
    • 85045775087 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization. arXiv:1412.6980v9
    • Kingma, D., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980v9, https://arxiv.org/abs/1412.6980.
    • (2014)
    • Kingma, D.1    Ba, J.2
  • 22
    • 77649185866 scopus 로고    scopus 로고
    • Multiclass detection of cells in multicontrast composite images
    • Long, X., Cleveland, W.L., Yao, Y.L., Multiclass detection of cells in multicontrast composite images. Comput. Biol. Med. 40 (2010), 168–178.
    • (2010) Comput. Biol. Med. , vol.40 , pp. 168-178
    • Long, X.1    Cleveland, W.L.2    Yao, Y.L.3
  • 23
    • 84944315641 scopus 로고    scopus 로고
    • Iteratively training classifiers for circulating tumor cell detection. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (IEEE)
    • Mao, Y., Yin, Z., and Schober, J.M. (2015). Iteratively training classifiers for circulating tumor cell detection. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (IEEE), pp. 190–194.
    • (2015) , pp. 190-194
    • Mao, Y.1    Yin, Z.2    Schober, J.M.3
  • 25
    • 85045772107 scopus 로고    scopus 로고
    • Massively multitask networks for drug discovery. arXiv:1502.02072v1
    • Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., and Pande, V. (2015). Massively multitask networks for drug discovery. arXiv:1502.02072v1, https://arxiv.org/abs/1502.02072.
    • (2015)
    • Ramsundar, B.1    Kearnes, S.2    Riley, P.3    Webster, D.4    Konerding, D.5    Pande, V.6
  • 28
    • 85027498089 scopus 로고    scopus 로고
    • Automated training of deep convolutional neural networks for cell segmentation
    • Sadanandan, S.K., Ranefall, P., Le Guyader, S., Wählby, C., Automated training of deep convolutional neural networks for cell segmentation. Sci. Rep., 7, 2017, 7860.
    • (2017) Sci. Rep. , vol.7 , pp. 7860
    • Sadanandan, S.K.1    Ranefall, P.2    Le Guyader, S.3    Wählby, C.4
  • 29
    • 85045776329 scopus 로고    scopus 로고
    • Facenet: A unified embedding for face recognition and clustering.arXiv:1503.03832v3
    • Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering.arXiv:1503.03832v3, https://arxiv.org/abs/1503.03832.
    • (2015)
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 33
    • 85045777019 scopus 로고    scopus 로고
    • Rethinking the inception architecture for computer vision. arXiv:1512.00567v3
    • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015b). Rethinking the inception architecture for computer vision. arXiv:1512.00567v3, https://arxiv.org/abs/1512.00567.
    • (2015)
    • Szegedy, C.1    Vanhoucke, V.2    Ioffe, S.3    Shlens, J.4    Wojna, Z.5
  • 34
    • 85045777308 scopus 로고    scopus 로고
    • Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261v2
    • Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261v2, https://arxiv.org/abs/1602.07261.
    • (2016)
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3
  • 35
    • 85045777113 scopus 로고    scopus 로고
    • Pixel recurrent neural networks. arXiv:1601.06759v3
    • van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv:1601.06759v3, https://arxiv.org/abs/1601.06759.
    • (2016)
    • van den Oord, A.1    Kalchbrenner, N.2    Kavukcuoglu, K.3
  • 36
    • 79952595565 scopus 로고    scopus 로고
    • The NumPy array: a structure for efficient numerical computation
    • van der Walt, S., Colbert, S.C., Varoquaux, G., The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13 (2011), 22–30.
    • (2011) Comput. Sci. Eng. , vol.13 , pp. 22-30
    • van der Walt, S.1    Colbert, S.C.2    Varoquaux, G.3
  • 39
    • 85045774950 scopus 로고    scopus 로고
    • Softmax function.
    • Wikipedia (2017a). Softmax function. https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=829752166.
    • (2017)
  • 40
    • 85045776802 scopus 로고    scopus 로고
    • Unbiased estimation of standard deviation.
    • Wikipedia (2017b). Unbiased estimation of standard deviation. https://en.wikipedia.org/w/index.php?title=Unbiased_estimation_of_standard_deviation&oldid=823365997.
    • (2017)
  • 41
    • 85045779175 scopus 로고    scopus 로고
    • I.-Chao Chang, E. (2016). Gland instance segmentation by deep multichannel side supervision. arXiv:1607.03222v2
    • Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., and I.-Chao Chang, E. (2016). Gland instance segmentation by deep multichannel side supervision. arXiv:1607.03222v2, https://arxiv.org/abs/1607.03222.
    • Xu, Y.1    Li, Y.2    Liu, M.3    Wang, Y.4    Lai, M.5
  • 42
    • 77956001004 scopus 로고    scopus 로고
    • Deconvolutional networks. In Computer Vision and Pattern Recognition (CVPR) IEEE Conference on (IEEE), 2010
    • Zeiler, M.D., Krishnan, D., Taylor, G.W., and Fergus, R. (2010). Deconvolutional networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (IEEE), pp. 2528–2535.
    • (2010) , pp. 2528-2535
    • Zeiler, M.D.1    Krishnan, D.2    Taylor, G.W.3    Fergus, R.4
  • 43
    • 84863203974 scopus 로고    scopus 로고
    • Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
    • Zhong, Q., Busetto, A.G., Fededa, J.P., Buhmann, J.M., Gerlich, D.W., Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat. Methods 9 (2012), 711–713.
    • (2012) Nat. Methods , vol.9 , pp. 711-713
    • Zhong, Q.1    Busetto, A.G.2    Fededa, J.P.3    Buhmann, J.M.4    Gerlich, D.W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.