메뉴 건너뛰기




Volumn 36, Issue 9, 2018, Pages 820-832

Deep learning is combined with massive-scale citizen science to improve large-scale image classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER GAMES; FLUORESCENCE MICROSCOPY; HUMAN COMPUTER INTERACTION; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; INTERACTIVE COMPUTER GRAPHICS; PROTEINS;

EID: 85053076602     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.4225     Document Type: Article
Times cited : (149)

References (39)
  • 1
    • 84881498580 scopus 로고    scopus 로고
    • Petabyte data management and automated data workflow in neuroscience: Delivering data from the instruments to the researcher’s fingertips
    • Bouwer, J. et al. Petabyte data management and automated data workflow in neuroscience: delivering data from the instruments to the researcher’s fingertips. Microsc. Microanal. 17, 276–277 (2011).
    • (2011) Microsc. Microanal. , vol.17 , pp. 276-277
    • Bouwer, J.1
  • 2
    • 79953685181 scopus 로고    scopus 로고
    • Building Watson: An overview of the DeepQA project
    • Ferrucci, D. et al. Building Watson: an overview of the DeepQA project. AI Magazine 31, 59–79 (2010).
    • (2010) AI Magazine , vol.31 , pp. 59-79
    • Ferrucci, D.1
  • 3
    • 33748849648 scopus 로고    scopus 로고
    • Machine learning in bioinformatics
    • Larrañaga, P. et al. Machine learning in bioinformatics. Brief. Bioinform. 7, 86–112 (2006).
    • (2006) Brief. Bioinform. , vol.7 , pp. 86-112
    • Larrañaga, P.1
  • 4
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 5
    • 85026529300 scopus 로고    scopus 로고
    • A survey on deep learning in medical image analysis
    • Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).
    • (2017) Med. Image Anal. , vol.42 , pp. 60-88
    • Litjens, G.1
  • 6
    • 41649089302 scopus 로고    scopus 로고
    • Citizen science: Can volunteers do real research?
    • Cohn, J.P. Citizen science: can volunteers do real research? Bioscience 58, 192–197 (2008).
    • (2008) Bioscience , vol.58 , pp. 192-197
    • Cohn, J.P.1
  • 7
    • 78650034777 scopus 로고    scopus 로고
    • Towards a knowledge-based Human Protein Atlas
    • Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).
    • (2010) Nat. Biotechnol. , vol.28 , pp. 1248-1250
    • Uhlen, M.1
  • 8
    • 85019201137 scopus 로고    scopus 로고
    • A subcellular map of the human proteome
    • Thul, P.J. et al. A subcellular map of the human proteome. Science 356, eaai3321 (2017).
    • (2017) Science , vol.356
    • Thul, P.J.1
  • 9
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland, M.V. & Murphy, R.F. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17, 1213–1223 (2001).
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 10
    • 13344280993 scopus 로고    scopus 로고
    • Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
    • Huang, K. & Murphy, R.F. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics 5, 78 (2004).
    • (2004) BMC Bioinformatics , vol.5 , pp. 78
    • Huang, K.1    Murphy, R.F.2
  • 11
    • 70449361696 scopus 로고    scopus 로고
    • Automated analysis of Human Protein Atlas immunofluorescence images
    • 5193229
    • Newberg, J.Y. et al. Automated analysis of Human Protein Atlas immunofluorescence images. Proc. IEEE Int. Symp. Biomed. Imaging 5193229, 1023–1026 (2009).
    • (2009) Proc. IEEE Int. Symp. Biomed. Imaging , pp. 1023-1026
    • Newberg, J.Y.1
  • 12
    • 84870595917 scopus 로고    scopus 로고
    • Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas
    • Li, J., Newberg, J.Y., Uhlén, M., Lundberg, E. & Murphy, R.F. Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas. PLoS One 7, e50514 (2012).
    • (2012) Plos One , vol.7
    • Li, J.1    Newberg, J.Y.2    Uhlén, M.3    Lundberg, E.4    Murphy, R.F.5
  • 13
    • 84863505983 scopus 로고    scopus 로고
    • Protein subcellular location pattern classification in cellular images using latent discriminative models
    • Li, J., Xiong, L., Schneider, J. & Murphy, R.F. Protein subcellular location pattern classification in cellular images using latent discriminative models. Bioinformatics 28, i32–i39 (2012).
    • (2012) Bioinformatics , vol.28 , pp. i32-i39
    • Li, J.1    Xiong, L.2    Schneider, J.3    Murphy, R.F.4
  • 14
    • 84883467254 scopus 로고    scopus 로고
    • Determining the subcellular location of new proteins from microscope images using local features
    • Coelho, L.P. et al. Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics 29, 2343–2349 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 2343-2349
    • Coelho, L.P.1
  • 15
    • 34547650901 scopus 로고    scopus 로고
    • A multiresolution approach to automated classification of protein subcellular location images
    • Chebira, A. et al. A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics 8, 210 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 210
    • Chebira, A.1
  • 17
    • 85019234865 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning
    • Pärnamaa, T. & Parts, L. Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3 (Bethesda) 7, 1385–1392 (2017).
    • (2017) G3 (Bethesda) , vol.7 , pp. 1385-1392
    • Pärnamaa, T.1    Parts, L.2
  • 18
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus, O.Z., Ba, J.L. & Frey, B.J. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52–i59 (2016).
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1    Ba, J.L.2    Frey, B.J.3
  • 19
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Nathalie Japkowicz, S.S. The class imbalance problem: A systematic study. Intell. Data Anal. 6, 429–449 (2002).
    • (2002) Intell. Data Anal. , vol.6 , pp. 429-449
    • Nathalie Japkowicz, S.S.1
  • 20
    • 77954179297 scopus 로고    scopus 로고
    • Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing
    • Coelho, L.P., Peng, T. & Murphy, R.F. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics 26, i7–i12 (2010).
    • (2010) Bioinformatics , vol.26 , pp. i7-i12
    • Coelho, L.P.1    Peng, T.2    Murphy, R.F.3
  • 21
    • 26444451080 scopus 로고    scopus 로고
    • Object type recognition for automated analysis of protein subcellular location
    • Zhao, T., Velliste, M., Boland, M.V. & Murphy, R.F. Object type recognition for automated analysis of protein subcellular location. IEEE Trans. Image Process. 14, 1351–1359 (2005).
    • (2005) IEEE Trans. Image Process. , vol.14 , pp. 1351-1359
    • Zhao, T.1    Velliste, M.2    Boland, M.V.3    Murphy, R.F.4
  • 22
    • 85019605650 scopus 로고    scopus 로고
    • Bioimage-based protein subcellular location prediction: A comprehensive review
    • Shen, Y.-Y.X.L.-X.Y.H.-B. Bioimage-based protein subcellular location prediction: a comprehensive review. Front. Comput. Sci. 12, 26–39 (2018).
    • (2018) Front. Comput. Sci. , vol.12 , pp. 26-39
    • Shen, Y.-Y.X.L.-X.Y.H.-B.1
  • 23
    • 82755186510 scopus 로고    scopus 로고
    • Algorithm discovery by protein folding game players
    • Khatib, F. et al. Algorithm discovery by protein folding game players. Proc. Natl. Acad. Sci. USA 108, 18949–18953 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 18949-18953
    • Khatib, F.1
  • 24
    • 80455154956 scopus 로고    scopus 로고
    • Crystal structure of a monomeric retroviral protease solved by protein folding game players
    • Khatib, F. et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat. Struct. Mol. Biol. 18, 1175–1177 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1175-1177
    • Khatib, F.1
  • 25
    • 70349661785 scopus 로고    scopus 로고
    • Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo?
    • Chris, J. et al. Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? Mon. Not. R. Astron. Soc. 399, 129–140 (2009).
    • (2009) Mon. Not. R. Astron. Soc. , vol.399 , pp. 129-140
    • Chris, J.1
  • 26
    • 79960092674 scopus 로고    scopus 로고
    • Galaxy evolution. Galaxy zoo volunteers share pain and glory of research
    • Clery, D. Galaxy evolution. Galaxy zoo volunteers share pain and glory of research. Science 333, 173–175 (2011).
    • (2011) Science , vol.333 , pp. 173-175
    • Clery, D.1
  • 27
    • 79951751500 scopus 로고    scopus 로고
    • Galaxy Zoo: Exploring the motivations of citizen science volunteers
    • Raddick, M.J. et al. Galaxy Zoo: exploring the motivations of citizen science volunteers. Astron. Educ. Rev. 9, 18 (2010).
    • (2010) Astron. Educ. Rev. , vol.9 , pp. 18
    • Raddick, M.J.1
  • 28
    • 84893831061 scopus 로고    scopus 로고
    • RNA design rules from a massive open laboratory
    • Lee, J. et al. RNA design rules from a massive open laboratory. Proc. Natl. Acad. Sci. USA 111, 2122–2127 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 2122-2127
    • Lee, J.1
  • 29
    • 84964319443 scopus 로고    scopus 로고
    • Exploring the quantum speed limit with computer games
    • Sørensen, J.J. et al. Exploring the quantum speed limit with computer games. Nature 532, 210–213 (2016).
    • (2016) Nature , vol.532 , pp. 210-213
    • Sørensen, J.J.1
  • 30
  • 31
    • 84885135505 scopus 로고    scopus 로고
    • Using mechanical turk to study clinical populations
    • Danielle, N., Shapiro, J.C. & Mueller, P.A. Using mechanical turk to study clinical populations. Clin. Pyschol. Sci. 1, 213–220 (2013).
    • (2013) Clin. Pyschol. Sci. , vol.1 , pp. 213-220
    • Danielle, N.1    Shapiro, J.C.2    Mueller, P.A.3
  • 32
    • 84934297712 scopus 로고    scopus 로고
    • How is success defined and measured in online citizen science? A case study of Zooniverse projects
    • Cox, J. et al. How is success defined and measured in online citizen science? A case study of Zooniverse projects. Comput. Sci. Eng. 17, 28–41 (2015).
    • (2015) Comput. Sci. Eng. , vol.17 , pp. 28-41
    • Cox, J.1
  • 34
    • 1942438249 scopus 로고    scopus 로고
    • Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation
    • Warfield, S.K., Zou, K.H. & Wells, W.M. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23, 903–921 (2004).
    • (2004) IEEE Trans. Med. Imaging , vol.23 , pp. 903-921
    • Warfield, S.K.1    Zou, K.H.2    Wells, W.M.3
  • 36
    • 84904381853 scopus 로고    scopus 로고
    • Glutamine deprivation initiates reversible assembly of mammalian rods and rings
    • Calise, S.J. et al. Glutamine deprivation initiates reversible assembly of mammalian rods and rings. Cell. Mol. Life Sci. 71, 2963–2973 (2014).
    • (2014) Cell. Mol. Life Sci. , vol.71 , pp. 2963-2973
    • Calise, S.J.1
  • 37
    • 84855263748 scopus 로고    scopus 로고
    • Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells
    • Carcamo, W.C. et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 6, e29690 (2011).
    • (2011) Plos One , vol.6
    • Carcamo, W.C.1
  • 38
    • 84879542641 scopus 로고    scopus 로고
    • Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins
    • Handfield, L.F., Chong, Y.T., Simmons, J., Andrews, B.J. & Moses, A.M. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLOS Comput. Biol. 9, e1003085 (2013).
    • (2013) PLOS Comput. Biol. , vol.9
    • Handfield, L.F.1    Chong, Y.T.2    Simmons, J.3    Andrews, B.J.4    Moses, A.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.