-
1
-
-
84881498580
-
Petabyte data management and automated data workflow in neuroscience: Delivering data from the instruments to the researcher’s fingertips
-
Bouwer, J. et al. Petabyte data management and automated data workflow in neuroscience: delivering data from the instruments to the researcher’s fingertips. Microsc. Microanal. 17, 276–277 (2011).
-
(2011)
Microsc. Microanal.
, vol.17
, pp. 276-277
-
-
Bouwer, J.1
-
2
-
-
79953685181
-
Building Watson: An overview of the DeepQA project
-
Ferrucci, D. et al. Building Watson: an overview of the DeepQA project. AI Magazine 31, 59–79 (2010).
-
(2010)
AI Magazine
, vol.31
, pp. 59-79
-
-
Ferrucci, D.1
-
3
-
-
33748849648
-
Machine learning in bioinformatics
-
Larrañaga, P. et al. Machine learning in bioinformatics. Brief. Bioinform. 7, 86–112 (2006).
-
(2006)
Brief. Bioinform.
, vol.7
, pp. 86-112
-
-
Larrañaga, P.1
-
4
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
-
5
-
-
85026529300
-
A survey on deep learning in medical image analysis
-
Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).
-
(2017)
Med. Image Anal.
, vol.42
, pp. 60-88
-
-
Litjens, G.1
-
6
-
-
41649089302
-
Citizen science: Can volunteers do real research?
-
Cohn, J.P. Citizen science: can volunteers do real research? Bioscience 58, 192–197 (2008).
-
(2008)
Bioscience
, vol.58
, pp. 192-197
-
-
Cohn, J.P.1
-
7
-
-
78650034777
-
Towards a knowledge-based Human Protein Atlas
-
Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 1248-1250
-
-
Uhlen, M.1
-
8
-
-
85019201137
-
A subcellular map of the human proteome
-
Thul, P.J. et al. A subcellular map of the human proteome. Science 356, eaai3321 (2017).
-
(2017)
Science
, vol.356
-
-
Thul, P.J.1
-
9
-
-
0036139314
-
A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
-
Boland, M.V. & Murphy, R.F. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17, 1213–1223 (2001).
-
(2001)
Bioinformatics
, vol.17
, pp. 1213-1223
-
-
Boland, M.V.1
Murphy, R.F.2
-
10
-
-
13344280993
-
Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
-
Huang, K. & Murphy, R.F. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics 5, 78 (2004).
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 78
-
-
Huang, K.1
Murphy, R.F.2
-
11
-
-
70449361696
-
Automated analysis of Human Protein Atlas immunofluorescence images
-
5193229
-
Newberg, J.Y. et al. Automated analysis of Human Protein Atlas immunofluorescence images. Proc. IEEE Int. Symp. Biomed. Imaging 5193229, 1023–1026 (2009).
-
(2009)
Proc. IEEE Int. Symp. Biomed. Imaging
, pp. 1023-1026
-
-
Newberg, J.Y.1
-
12
-
-
84870595917
-
Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas
-
Li, J., Newberg, J.Y., Uhlén, M., Lundberg, E. & Murphy, R.F. Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas. PLoS One 7, e50514 (2012).
-
(2012)
Plos One
, vol.7
-
-
Li, J.1
Newberg, J.Y.2
Uhlén, M.3
Lundberg, E.4
Murphy, R.F.5
-
13
-
-
84863505983
-
Protein subcellular location pattern classification in cellular images using latent discriminative models
-
Li, J., Xiong, L., Schneider, J. & Murphy, R.F. Protein subcellular location pattern classification in cellular images using latent discriminative models. Bioinformatics 28, i32–i39 (2012).
-
(2012)
Bioinformatics
, vol.28
, pp. i32-i39
-
-
Li, J.1
Xiong, L.2
Schneider, J.3
Murphy, R.F.4
-
14
-
-
84883467254
-
Determining the subcellular location of new proteins from microscope images using local features
-
Coelho, L.P. et al. Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics 29, 2343–2349 (2013).
-
(2013)
Bioinformatics
, vol.29
, pp. 2343-2349
-
-
Coelho, L.P.1
-
15
-
-
34547650901
-
A multiresolution approach to automated classification of protein subcellular location images
-
Chebira, A. et al. A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics 8, 210 (2007).
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 210
-
-
Chebira, A.1
-
16
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
17
-
-
85019234865
-
Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning
-
Pärnamaa, T. & Parts, L. Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3 (Bethesda) 7, 1385–1392 (2017).
-
(2017)
G3 (Bethesda)
, vol.7
, pp. 1385-1392
-
-
Pärnamaa, T.1
Parts, L.2
-
18
-
-
84976510674
-
Classifying and segmenting microscopy images with deep multiple instance learning
-
Kraus, O.Z., Ba, J.L. & Frey, B.J. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52–i59 (2016).
-
(2016)
Bioinformatics
, vol.32
, pp. i52-i59
-
-
Kraus, O.Z.1
Ba, J.L.2
Frey, B.J.3
-
19
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Nathalie Japkowicz, S.S. The class imbalance problem: A systematic study. Intell. Data Anal. 6, 429–449 (2002).
-
(2002)
Intell. Data Anal.
, vol.6
, pp. 429-449
-
-
Nathalie Japkowicz, S.S.1
-
20
-
-
77954179297
-
Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing
-
Coelho, L.P., Peng, T. & Murphy, R.F. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics 26, i7–i12 (2010).
-
(2010)
Bioinformatics
, vol.26
, pp. i7-i12
-
-
Coelho, L.P.1
Peng, T.2
Murphy, R.F.3
-
21
-
-
26444451080
-
Object type recognition for automated analysis of protein subcellular location
-
Zhao, T., Velliste, M., Boland, M.V. & Murphy, R.F. Object type recognition for automated analysis of protein subcellular location. IEEE Trans. Image Process. 14, 1351–1359 (2005).
-
(2005)
IEEE Trans. Image Process.
, vol.14
, pp. 1351-1359
-
-
Zhao, T.1
Velliste, M.2
Boland, M.V.3
Murphy, R.F.4
-
22
-
-
85019605650
-
Bioimage-based protein subcellular location prediction: A comprehensive review
-
Shen, Y.-Y.X.L.-X.Y.H.-B. Bioimage-based protein subcellular location prediction: a comprehensive review. Front. Comput. Sci. 12, 26–39 (2018).
-
(2018)
Front. Comput. Sci.
, vol.12
, pp. 26-39
-
-
Shen, Y.-Y.X.L.-X.Y.H.-B.1
-
23
-
-
82755186510
-
Algorithm discovery by protein folding game players
-
Khatib, F. et al. Algorithm discovery by protein folding game players. Proc. Natl. Acad. Sci. USA 108, 18949–18953 (2011).
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 18949-18953
-
-
Khatib, F.1
-
24
-
-
80455154956
-
Crystal structure of a monomeric retroviral protease solved by protein folding game players
-
Khatib, F. et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat. Struct. Mol. Biol. 18, 1175–1177 (2011).
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1175-1177
-
-
Khatib, F.1
-
25
-
-
70349661785
-
Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo?
-
Chris, J. et al. Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? Mon. Not. R. Astron. Soc. 399, 129–140 (2009).
-
(2009)
Mon. Not. R. Astron. Soc.
, vol.399
, pp. 129-140
-
-
Chris, J.1
-
26
-
-
79960092674
-
Galaxy evolution. Galaxy zoo volunteers share pain and glory of research
-
Clery, D. Galaxy evolution. Galaxy zoo volunteers share pain and glory of research. Science 333, 173–175 (2011).
-
(2011)
Science
, vol.333
, pp. 173-175
-
-
Clery, D.1
-
27
-
-
79951751500
-
Galaxy Zoo: Exploring the motivations of citizen science volunteers
-
Raddick, M.J. et al. Galaxy Zoo: exploring the motivations of citizen science volunteers. Astron. Educ. Rev. 9, 18 (2010).
-
(2010)
Astron. Educ. Rev.
, vol.9
, pp. 18
-
-
Raddick, M.J.1
-
28
-
-
84893831061
-
RNA design rules from a massive open laboratory
-
Lee, J. et al. RNA design rules from a massive open laboratory. Proc. Natl. Acad. Sci. USA 111, 2122–2127 (2014).
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 2122-2127
-
-
Lee, J.1
-
29
-
-
84964319443
-
Exploring the quantum speed limit with computer games
-
Sørensen, J.J. et al. Exploring the quantum speed limit with computer games. Nature 532, 210–213 (2016).
-
(2016)
Nature
, vol.532
, pp. 210-213
-
-
Sørensen, J.J.1
-
30
-
-
85063023656
-
-
5 -clicks-per-hour. Preprint at https://www.biorxiv.org/content/early/2017/07/15/164087 (2017).
-
(2017)
5 -Clicks-Per-Hour
-
-
Hughes, A.1
-
31
-
-
84885135505
-
Using mechanical turk to study clinical populations
-
Danielle, N., Shapiro, J.C. & Mueller, P.A. Using mechanical turk to study clinical populations. Clin. Pyschol. Sci. 1, 213–220 (2013).
-
(2013)
Clin. Pyschol. Sci.
, vol.1
, pp. 213-220
-
-
Danielle, N.1
Shapiro, J.C.2
Mueller, P.A.3
-
32
-
-
84934297712
-
How is success defined and measured in online citizen science? A case study of Zooniverse projects
-
Cox, J. et al. How is success defined and measured in online citizen science? A case study of Zooniverse projects. Comput. Sci. Eng. 17, 28–41 (2015).
-
(2015)
Comput. Sci. Eng.
, vol.17
, pp. 28-41
-
-
Cox, J.1
-
34
-
-
1942438249
-
Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation
-
Warfield, S.K., Zou, K.H. & Wells, W.M. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23, 903–921 (2004).
-
(2004)
IEEE Trans. Med. Imaging
, vol.23
, pp. 903-921
-
-
Warfield, S.K.1
Zou, K.H.2
Wells, W.M.3
-
35
-
-
80053360508
-
Cheap and fast, but is it good? Evaluating non-expert annotations for natural language tasks
-
Snow, R., O’Connor, B., Jurafsky, D. & Ng, A. Cheap and fast, but is it good? Evaluating non-expert annotations for natural language tasks. Conference on Empirical Methods in Natural Language Processing 254–263 (2008).
-
(2008)
Conference on Empirical Methods in Natural Language Processing
, pp. 254-263
-
-
Snow, R.1
O’Connor, B.2
Jurafsky, D.3
Ng, A.4
-
36
-
-
84904381853
-
Glutamine deprivation initiates reversible assembly of mammalian rods and rings
-
Calise, S.J. et al. Glutamine deprivation initiates reversible assembly of mammalian rods and rings. Cell. Mol. Life Sci. 71, 2963–2973 (2014).
-
(2014)
Cell. Mol. Life Sci.
, vol.71
, pp. 2963-2973
-
-
Calise, S.J.1
-
37
-
-
84855263748
-
Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells
-
Carcamo, W.C. et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 6, e29690 (2011).
-
(2011)
Plos One
, vol.6
-
-
Carcamo, W.C.1
-
38
-
-
84879542641
-
Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins
-
Handfield, L.F., Chong, Y.T., Simmons, J., Andrews, B.J. & Moses, A.M. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLOS Comput. Biol. 9, e1003085 (2013).
-
(2013)
PLOS Comput. Biol.
, vol.9
-
-
Handfield, L.F.1
Chong, Y.T.2
Simmons, J.3
Andrews, B.J.4
Moses, A.M.5
-
39
-
-
85053073706
-
-
Hasanpour, S., Rouhani, M., Fayyaz, M. & Sabokrou, M. Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures. Preprint at https://arxiv.org/abs/1608.06037 (2016).
-
(2016)
Lets Keep It Simple, Using Simple Architectures to Outperform Deeper and More Complex Architectures
-
-
Hasanpour, S.1
Rouhani, M.2
Fayyaz, M.3
Sabokrou, M.4
|