메뉴 건너뛰기




Volumn 173, Issue 7, 2018, Pages 1581-1592

Next-Generation Machine Learning for Biological Networks

Author keywords

deep learning; Machine leaning; network biology; neural networks; synthetic biology; systems biology

Indexed keywords

BIOLOGICAL NETWORK; DRUG DEVELOPMENT; GENE INTERACTION; HUMAN; INFORMATION PROCESSING; LEARNING ALGORITHM; MACHINE LEARNING; MICROBIAL COMMUNITY; MICROBIAL METABOLISM; MICROBIOME; MOLECULAR BIOLOGY; NERVE CELL NETWORK; NEXT GENERATION MACHINE LEARNING; NONHUMAN; PRIORITY JOURNAL; PROTEIN PROTEIN INTERACTION; REVIEW; SYNTHETIC BIOLOGY; ADVERSE DRUG REACTION; ALGORITHM; ARTIFICIAL NEURAL NETWORK; BIOLOGY; FACTUAL DATABASE; MICROFLORA; PROCEDURES;

EID: 85047752833     PISSN: 00928674     EISSN: 10974172     Source Type: Journal    
DOI: 10.1016/j.cell.2018.05.015     Document Type: Review
Times cited : (669)

References (100)
  • 3
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33 (2015), 831–838.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 4
    • 85024504091 scopus 로고    scopus 로고
    • Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression
    • Ammad-Ud-Din, M., Khan, S.A., Wennerberg, K., Aittokallio, T., Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics 33 (2017), i359–i368.
    • (2017) Bioinformatics , vol.33 , pp. i359-i368
    • Ammad-Ud-Din, M.1    Khan, S.A.2    Wennerberg, K.3    Aittokallio, T.4
  • 5
    • 0008814957 scopus 로고
    • SMILES: a line notation and computerized interpreter for chemical structures
    • U.S. Environmental Protection Agency, Environmental Research Laboratory
    • Anderson, E., Veith, G.D., Weininger, D., SMILES: a line notation and computerized interpreter for chemical structures. 1987, U.S. Environmental Protection Agency, Environmental Research Laboratory.
    • (1987)
    • Anderson, E.1    Veith, G.D.2    Weininger, D.3
  • 7
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester, P.J., Mitchell, J.B., A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26 (2010), 1169–1175.
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.2
  • 9
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabási, A.-L., Oltvai, Z.N., Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5 (2004), 101–113.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 101-113
    • Barabási, A.-L.1    Oltvai, Z.N.2
  • 12
    • 84958206046 scopus 로고    scopus 로고
    • Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression
    • Bisikirska, B., Bansal, M., Shen, Y., Teruya-Feldstein, J., Chaganti, R., Califano, A., Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression. Cancer Res. 76 (2016), 664–674.
    • (2016) Cancer Res. , vol.76 , pp. 664-674
    • Bisikirska, B.1    Bansal, M.2    Shen, Y.3    Teruya-Feldstein, J.4    Chaganti, R.5    Califano, A.6
  • 13
    • 84855929956 scopus 로고    scopus 로고
    • Using the reconstructed genome-scale human metabolic network to study physiology and pathology
    • Bordbar, A., Palsson, B.O., Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271 (2012), 131–141.
    • (2012) J. Intern. Med. , vol.271 , pp. 131-141
    • Bordbar, A.1    Palsson, B.O.2
  • 14
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte, A.J., Kohane, I.S., Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput., 2000, 418–429.
    • (2000) Pac. Symp. Biocomput. , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 16
    • 85006265645 scopus 로고    scopus 로고
    • The recurrent architecture of tumour initiation, progression and drug sensitivity
    • Califano, A., Alvarez, M.J., The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat. Rev. Cancer 17 (2017), 116–130.
    • (2017) Nat. Rev. Cancer , vol.17 , pp. 116-130
    • Califano, A.1    Alvarez, M.J.2
  • 17
    • 84864402194 scopus 로고    scopus 로고
    • Leveraging models of cell regulation and GWAS data in integrative network-based association studies
    • Califano, A., Butte, A.J., Friend, S., Ideker, T., Schadt, E., Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat. Genet. 44 (2012), 841–847.
    • (2012) Nat. Genet. , vol.44 , pp. 841-847
    • Califano, A.1    Butte, A.J.2    Friend, S.3    Ideker, T.4    Schadt, E.5
  • 20
    • 1942470793 scopus 로고    scopus 로고
    • Multitask Learning
    • Springer
    • Caruana, R., Multitask Learning. Learning to Learn, 1998, Springer, 95–133.
    • (1998) Learning to Learn , pp. 95-133
    • Caruana, R.1
  • 21
    • 84894903349 scopus 로고    scopus 로고
    • A survey on feature selection methods
    • Chandrashekar, G., Sahin, F., A survey on feature selection methods. Comput. Electr. Eng. 40 (2014), 16–28.
    • (2014) Comput. Electr. Eng. , vol.40 , pp. 16-28
    • Chandrashekar, G.1    Sahin, F.2
  • 23
    • 84958987044 scopus 로고    scopus 로고
    • Leveraging big data to transform target selection and drug discovery
    • Chen, B., Butte, A.J., Leveraging big data to transform target selection and drug discovery. Clin. Pharmacol. Ther. 99 (2016), 285–297.
    • (2016) Clin. Pharmacol. Ther. , vol.99 , pp. 285-297
    • Chen, B.1    Butte, A.J.2
  • 26
    • 84876684810 scopus 로고    scopus 로고
    • Seeking the wisdom of crowds through challenge-based competitions in biomedical research
    • Costello, J.C., Stolovitzky, G., Seeking the wisdom of crowds through challenge-based competitions in biomedical research. Clin. Pharmacol. Ther. 93 (2013), 396–398.
    • (2013) Clin. Pharmacol. Ther. , vol.93 , pp. 396-398
    • Costello, J.C.1    Stolovitzky, G.2
  • 28
    • 77953913791 scopus 로고    scopus 로고
    • From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases
    • de la Fuente, A., From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases. Trends Genet. 26 (2010), 326–333.
    • (2010) Trends Genet. , vol.26 , pp. 326-333
    • de la Fuente, A.1
  • 29
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet, R., Marchal, K., Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 8 (2010), 717–729.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 31
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning. G. Goos, J. Hartmanis, and J.P. van Leeuwen, eds. International Workshop on Multiple Classifier Systems
    • Dietterich, T.G. (2000). Ensemble methods in machine learning. G. Goos, J. Hartmanis, and J.P. van Leeuwen, eds. International Workshop on Multiple Classifier Systems, 1–15.
    • (2000) , pp. 1-15
    • Dietterich, T.G.1
  • 33
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos, P., A few useful things to know about machine learning. Commun. ACM 55 (2012), 78–87.
    • (2012) Commun. ACM , vol.55 , pp. 78-87
    • Domingos, P.1
  • 34
    • 0034688173 scopus 로고    scopus 로고
    • A synthetic oscillatory network of transcriptional regulators
    • Elowitz, M.B., Leibler, S., A synthetic oscillatory network of transcriptional regulators. Nature 403 (2000), 335–338.
    • (2000) Nature , vol.403 , pp. 335-338
    • Elowitz, M.B.1    Leibler, S.2
  • 36
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N., Inferring cellular networks using probabilistic graphical models. Science 303 (2004), 799–805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 37
    • 0034688174 scopus 로고    scopus 로고
    • Construction of a genetic toggle switch in Escherichia coli
    • Gardner, T.S., Cantor, C.R., Collins, J.J., Construction of a genetic toggle switch in Escherichia coli. Nature 403 (2000), 339–342.
    • (2000) Nature , vol.403 , pp. 339-342
    • Gardner, T.S.1    Cantor, C.R.2    Collins, J.J.3
  • 39
  • 41
    • 84954548507 scopus 로고    scopus 로고
    • Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics
    • Goodspeed, A., Heiser, L.M., Gray, J.W., Costello, J.C., Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics. Mol. Cancer Res. 14 (2016), 3–13.
    • (2016) Mol. Cancer Res. , vol.14 , pp. 3-13
    • Goodspeed, A.1    Heiser, L.M.2    Gray, J.W.3    Costello, J.C.4
  • 43
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elisseeff, A., An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003), 1157–1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 44
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • Springer Series in Statistics
    • Hastie, T., Tibshirani, R., Friedman, J.H., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2009, Springer Series in Statistics.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.H.3
  • 46
    • 79959347463 scopus 로고    scopus 로고
    • Transforming Auto-encoders. In Proceedings of the 21th International Conference on Artificial Neural Networks - Volume Part I. (Berlin, Heidelberg: Springer-Verlag)
    • Hinton, G.E., Krizhevsky, A., and Wang, S.D. (2011). Transforming Auto-encoders. In Proceedings of the 21th International Conference on Artificial Neural Networks - Volume Part I. (Berlin, Heidelberg: Springer-Verlag), pp. 44–51.
    • (2011) , pp. 44-51
    • Hinton, G.E.1    Krizhevsky, A.2    Wang, S.D.3
  • 47
    • 84907686349 scopus 로고    scopus 로고
    • The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease
    • Human Microbiome Project Consortium. The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host Microbe 16 (2014), 276–289.
    • (2014) Cell Host Microbe , vol.16 , pp. 276-289
  • 48
    • 84893874008 scopus 로고    scopus 로고
    • An introduction to statistical learning : with applications in R
    • Springer New York
    • James, G., Witten, D., Hastie, T., Tibshirani, R., An introduction to statistical learning : with applications in R. 2013, Springer, New York.
    • (2013)
    • James, G.1    Witten, D.2    Hastie, T.3    Tibshirani, R.4
  • 50
  • 51
    • 77951107086 scopus 로고    scopus 로고
    • Synthetic biology: applications come of age
    • Khalil, A.S., Collins, J.J., Synthetic biology: applications come of age. Nat. Rev. Genet. 11 (2010), 367–379.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 367-379
    • Khalil, A.S.1    Collins, J.J.2
  • 53
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet Classification with Deep Convolutional Neural Networks
    • C.J.C. Burges L. Bottou K.Q. Weinberger Curran Associates, Inc. Pereira
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet Classification with Deep Convolutional Neural Networks. Burges, C.J.C., Bottou, L., Weinberger, K.Q., (eds.) Advances in Neural Information Processing Systems 25, F, 2012, Curran Associates, Inc., Pereira, 1097–1105.
    • (2012) Advances in Neural Information Processing Systems 25, F , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 54
    • 84984941684 scopus 로고    scopus 로고
    • Interpretable Decision Sets: A Joint Framework for Description and Prediction
    • Lakkaraju, H., Bach, S.H., Leskovec, J., Interpretable Decision Sets: A Joint Framework for Description and Prediction. KDD 2016 (2016), 1675–1684.
    • (2016) KDD , vol.2016 , pp. 1675-1684
    • Lakkaraju, H.1    Bach, S.H.2    Leskovec, J.3
  • 57
    • 84946593219 scopus 로고    scopus 로고
    • Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
    • Letham, B., Rudin, C., McCormick, T.H., Madigan, D., Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. Ann. Appl. Stat. 9 (2015), 1350–1371.
    • (2015) Ann. Appl. Stat. , vol.9 , pp. 1350-1371
    • Letham, B.1    Rudin, C.2    McCormick, T.H.3    Madigan, D.4
  • 58
    • 84949818508 scopus 로고    scopus 로고
    • Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets
    • Leung, M.K.K., Delong, A., Alipanahi, B., Frey, B.J., Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets. Proceedings of the IEEE 104 (2016), 176–197.
    • (2016) Proceedings of the IEEE , vol.104 , pp. 176-197
    • Leung, M.K.K.1    Delong, A.2    Alipanahi, B.3    Frey, B.J.4
  • 59
    • 85048629667 scopus 로고    scopus 로고
    • The Mythos of Model Interpretability. arXiv, arXiv:1606.03490
    • Lipton, Z.C. (2016). The Mythos of Model Interpretability. arXiv, arXiv:1606.03490, http://arxiv.org/abs/1606.03490.
    • (2016)
    • Lipton, Z.C.1
  • 60
    • 85101444608 scopus 로고
    • Statistical analysis with missing data
    • Wiley New York
    • Little, R.J.A., Rubin, D.B., Statistical analysis with missing data. 1987, Wiley, New York.
    • (1987)
    • Little, R.J.A.1    Rubin, D.B.2
  • 63
    • 85014419816 scopus 로고    scopus 로고
    • Detection of statistically significant network changes in complex biological networks
    • Mall, R., Cerulo, L., Bensmail, H., Iavarone, A., Ceccarelli, M., Detection of statistically significant network changes in complex biological networks. BMC Syst. Biol., 11, 2017, 32.
    • (2017) BMC Syst. Biol. , vol.11 , pp. 32
    • Mall, R.1    Cerulo, L.2    Bensmail, H.3    Iavarone, A.4    Ceccarelli, M.5
  • 67
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W.S., Pitts, W., A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943), 115–133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 68
    • 85031896131 scopus 로고    scopus 로고
    • Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases
    • Mezlini, A.M., Goldenberg, A., Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases. PLoS Comput. Biol., 13, 2017, e1005580.
    • (2017) PLoS Comput. Biol. , vol.13 , pp. e1005580
    • Mezlini, A.M.1    Goldenberg, A.2
  • 69
    • 84898956512 scopus 로고    scopus 로고
    • Distributed Representations of Words and Phrases and their Compositionality
    • Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J., Distributed Representations of Words and Phrases and their Compositionality. Adv. Neur. Inf. Proc. Sys. 26 (2013), 3111–3119.
    • (2013) Adv. Neur. Inf. Proc. Sys. , vol.26 , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.4    Dean, J.5
  • 70
    • 85083951332 scopus 로고    scopus 로고
    • Efficient Estimation of Word Representations in Vector Space. arXiv, arXiv:1301.3781
    • Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013b). Efficient Estimation of Word Representations in Vector Space. arXiv, arXiv:1301.3781, http://arxiv.org/abs/1301.3781.
    • (2013)
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 71
    • 0004255908 scopus 로고    scopus 로고
    • Machine Learning
    • McGraw-Hill Education New York
    • Mitchell, T.M., Machine Learning. 1997, McGraw-Hill Education, New York.
    • (1997)
    • Mitchell, T.M.1
  • 72
    • 70450223309 scopus 로고    scopus 로고
    • Synthetic biology: understanding biological design from synthetic circuits
    • Mukherji, S., van Oudenaarden, A., Synthetic biology: understanding biological design from synthetic circuits. Nat. Rev. Genet. 10 (2009), 859–871.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 859-871
    • Mukherji, S.1    van Oudenaarden, A.2
  • 75
    • 0012336733 scopus 로고
    • Learning-Logic: Casting the Cortex of the Human Brain in Silicon
    • MIT Press
    • Parker, D.B., Learning-Logic: Casting the Cortex of the Human Brain in Silicon. Technical Report Tr-47, 1985, MIT Press.
    • (1985) Technical Report Tr-47
    • Parker, D.B.1
  • 76
    • 79952635505 scopus 로고    scopus 로고
    • Principles and strategies for developing network models in cancer
    • Pe'er, D., Hacohen, N., Principles and strategies for developing network models in cancer. Cell 144 (2011), 864–873.
    • (2011) Cell , vol.144 , pp. 864-873
    • Pe'er, D.1    Hacohen, N.2
  • 77
    • 66249088017 scopus 로고    scopus 로고
    • The second wave of synthetic biology: from modules to systems
    • Purnick, P.E.M., Weiss, R., The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10 (2009), 410–422.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 410-422
    • Purnick, P.E.M.1    Weiss, R.2
  • 79
    • 0004252391 scopus 로고    scopus 로고
    • Methods of multivariate analysis
    • J. Wiley New York
    • Rencher, A.C., Methods of multivariate analysis. 2002, J. Wiley, New York.
    • (2002)
    • Rencher, A.C.1
  • 80
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach, L., Ensemble-based classifiers. Artif. Intell. Rev. 33 (2010), 1–39.
    • (2010) Artif. Intell. Rev. , vol.33 , pp. 1-39
    • Rokach, L.1
  • 81
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature, 323, 1986, 533.
    • (1986) Nature , vol.323 , pp. 533
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 82
    • 85044237836 scopus 로고    scopus 로고
    • Dynamic Routing Between Capsules. In Proceedings of the 31st Conference on Neural Information Processing Systems
    • Sabour, S., Frosst, N., and Hinton, G.E. (2017). Dynamic Routing Between Capsules. In Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 3859–3869.
    • (2017) , pp. 3859-3869
    • Sabour, S.1    Frosst, N.2    Hinton, G.E.3
  • 83
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 2507–2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 85
    • 33845569346 scopus 로고    scopus 로고
    • Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes
    • Schadt, E.E., Lum, P.Y., Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J. Lipid Res. 47 (2006), 2601–2613.
    • (2006) J. Lipid Res. , vol.47 , pp. 2601-2613
    • Schadt, E.E.1    Lum, P.Y.2
  • 87
    • 85048613678 scopus 로고    scopus 로고
    • A Tutorial on Principal Component Analysis. arXiv, arXiv:1404.1100
    • Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv, arXiv:1404.1100, http://arxiv.org/abs/1404.1100.
    • (2014)
    • Shlens, J.1
  • 88
    • 33749011163 scopus 로고    scopus 로고
    • The NCI60 human tumour cell line anticancer drug screen
    • Shoemaker, R.H., The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6 (2006), 813–823.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 813-823
    • Shoemaker, R.H.1
  • 90
    • 84948442908 scopus 로고    scopus 로고
    • ZINC 15–Ligand Discovery for Everyone
    • Sterling, T., Irwin, J.J., ZINC 15–Ligand Discovery for Everyone. J. Chem. Inf. Model. 55 (2015), 2324–2337.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 2324-2337
    • Sterling, T.1    Irwin, J.J.2
  • 91
    • 84992126922 scopus 로고    scopus 로고
    • Prediction of anti-cancer drug response by kernelized multi-task learning
    • Tan, M., Prediction of anti-cancer drug response by kernelized multi-task learning. Artif. Intell. Med. 73 (2016), 70–77.
    • (2016) Artif. Intell. Med. , vol.73 , pp. 70-77
    • Tan, M.1
  • 93
    • 0003529238 scopus 로고
    • Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
    • Harvard University
    • Werbos, P., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. 1974, Harvard University.
    • (1974)
    • Werbos, P.1
  • 99
    • 84883746688 scopus 로고    scopus 로고
    • Machine learning and genome annotation: a match meant to be?
    • Yip, K.Y., Cheng, C., Gerstein, M., Machine learning and genome annotation: a match meant to be?. Genome Biol., 14, 2013, 205.
    • (2013) Genome Biol. , vol.14 , pp. 205
    • Yip, K.Y.1    Cheng, C.2    Gerstein, M.3
  • 100
    • 85028803040 scopus 로고    scopus 로고
    • From machine learning to deep learning: progress in machine intelligence for rational drug discovery
    • Zhang, L., Tan, J., Han, D., Zhu, H., From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov. Today 22 (2017), 1680–1685.
    • (2017) Drug Discov. Today , vol.22 , pp. 1680-1685
    • Zhang, L.1    Tan, J.2    Han, D.3    Zhu, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.