메뉴 건너뛰기




Volumn 9, Issue SEP, 2018, Pages

Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges

Author keywords

Binding affinity prediction; Machine learning; Molecular docking; Scoring function; Structure based drug design; Virtual screening

Indexed keywords

BINDING AFFINITY; DRUG DESIGN; ENTROPY; FILTRATION; LIBRARY; MOLECULAR DOCKING; PREDICTION; QUANTUM MECHANICS; REVIEW; SOLVENT EFFECT;

EID: 85055195275     PISSN: None     EISSN: 16639812     Source Type: Journal    
DOI: 10.3389/fphar.2018.01089     Document Type: Review
Times cited : (211)

References (239)
  • 1
    • 84986522918 scopus 로고
    • ICM: A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation
    • Abagyan, R., Totrov, M., and Kuznetsov, D. (1994). ICM: A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488-506. doi:10.1002/jcc.540150503.
    • (1994) J. Comput. Chem. , vol.15 , pp. 488-506
    • Abagyan, R.1    Totrov, M.2    Kuznetsov, D.3
  • 3
    • 85026455209 scopus 로고    scopus 로고
    • Implementing QM in docking calculations: Is it a waste of computational time?
    • Adeniyi, A. A., and Soliman, M. E. S. (2017). Implementing QM in docking calculations: Is it a waste of computational time? Drug Discov. Today 22, 1216-1223. doi:10.1016/j.drudis.2017.06.012.
    • (2017) Drug Discov. Today , vol.22 , pp. 1216-1223
    • Adeniyi, A.A.1    Soliman, M.E.S.2
  • 4
    • 84945475267 scopus 로고    scopus 로고
    • Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening: Machine-learning SFs to improve structure-based binding affinity prediction and virtual screening
    • Ain, Q. U., Aleksandrova, A., Roessler, F. D., and Ballester, P. J. (2015). Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening: Machine-learning SFs to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 405-424. doi:10.1002/wcms.1225.
    • (2015) Wiley Interdiscip. Rev. Comput. Mol. Sci. , vol.5 , pp. 405-424
    • Ain, Q.U.1    Aleksandrova, A.2    Roessler, F.D.3    Ballester, P.J.4
  • 6
    • 84948576900 scopus 로고    scopus 로고
    • Understanding the challenges of protein flexibility in drug design
    • Antunes, D. A., Devaurs, D., and Kavraki, L. E. (2015). Understanding the challenges of protein flexibility in drug design. Exp. Opin. Drug Discov. 10, 1301-1313. doi:10.1517/17460441.2015.1094458.
    • (2015) Exp. Opin. Drug Discov. , vol.10 , pp. 1301-1313
    • Antunes, D.A.1    Devaurs, D.2    Kavraki, L.E.3
  • 7
    • 42149142447 scopus 로고    scopus 로고
    • Distance dependent scoring function for describing protein-ligand intermolecular interactions
    • Artemenko, N. (2008). Distance dependent scoring function for describing protein-ligand intermolecular interactions. J. Chem. Inform. Model. 48, 569-574. doi:10.1021/ci700224e.
    • (2008) J. Chem. Inform. Model. , vol.48 , pp. 569-574
    • Artemenko, N.1
  • 8
    • 84864950736 scopus 로고    scopus 로고
    • A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction
    • Ashtawy, H. M., and Mahapatra, N. R. (2012). A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEEACM Trans. Comput. Biol. Bioinforma. IEEE ACM 9, 1301-1313. doi:10.1109/TCBB.2012.36.
    • (2012) IEEEACM Trans. Comput. Biol. Bioinforma. IEEE ACM , vol.9 , pp. 1301-1313
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 9
    • 84977574223 scopus 로고    scopus 로고
    • BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes
    • Ashtawy, H. M., and Mahapatra, N. R. (2015). BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. BMC Bioinformatics 16(Suppl. 4):S8. doi:10.1186/1471-2105-16-S4-S8.
    • (2015) BMC Bioinformatics , vol.16 , pp. S8
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 10
    • 85040924553 scopus 로고    scopus 로고
    • Task-specific scoring functions for predicting ligand binding poses and affinity and for screening enrichment
    • Ashtawy, H. M., and Mahapatra, N. R. (2018). Task-specific scoring functions for predicting ligand binding poses and affinity and for screening enrichment. J. Chem. Inform. Model. 58, 119-133. doi:10.1021/acs.jcim.7b00309.
    • (2018) J. Chem. Inform. Model. , vol.58 , pp. 119-133
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 12
    • 85020550984 scopus 로고    scopus 로고
    • GalaxyDock BP2 score: A hybrid scoring function for accurate protein-ligand docking
    • Baek, M., Shin, W.-H., Chung, H. W., and Seok, C. (2017). GalaxyDock BP2 score: A hybrid scoring function for accurate protein-ligand docking. J. Comput. Aided Mol. Des. 31, 653-666. doi:10.1007/s10822-017-0030-9.
    • (2017) J. Comput. Aided Mol. Des. , vol.31 , pp. 653-666
    • Baek, M.1    Shin, W.-H.2    Chung, H.W.3    Seok, C.4
  • 13
    • 0034604105 scopus 로고    scopus 로고
    • A surprising simplicity to protein folding
    • Baker, D. (2000). A surprising simplicity to protein folding. Nature 405, 39-42. doi:10.1038/35011000.
    • (2000) Nature , vol.405 , pp. 39-42
    • Baker, D.1
  • 14
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester, P. J., and Mitchell, J. B. O. (2010). A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26, 1169-1175. doi:10.1093/bioinformatics/btq112.
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 15
    • 80051984855 scopus 로고    scopus 로고
    • Comments on "leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets": Significance for the validation of scoring functions
    • Ballester, P. J., and Mitchell, J. B. O. (2011). Comments on "leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets": Significance for the validation of scoring functions. J. Chem. Inform. Model. 51, 1739-1741. doi:10.1021/ci200057e.
    • (2011) J. Chem. Inform. Model. , vol.51 , pp. 1739-1741
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 16
    • 85020478839 scopus 로고    scopus 로고
    • Best practices of computer-aided drug discovery: Lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action
    • Ban, F., Dalal, K., Li, H., LeBlanc, E., Rennie, P. S., and Cherkasov, A. (2017). Best practices of computer-aided drug discovery: Lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action. J. Chem. Inform. Model. 57, 1018-1028. doi:10.1021/acs.jcim.7b00137.
    • (2017) J. Chem. Inform. Model. , vol.57 , pp. 1018-1028
    • Ban, F.1    Dalal, K.2    Li, H.3    Le Blanc, E.4    Rennie, P.S.5    Cherkasov, A.6
  • 17
    • 65249141152 scopus 로고    scopus 로고
    • SeleX-CS: A new consensus scoring algorithm for hit discovery and lead optimization
    • Bar-Haim, S., Aharon, A., Ben-Moshe, T., Marantz, Y., and Senderowitz, H. (2009). SeleX-CS: A new consensus scoring algorithm for hit discovery and lead optimization. J. Chem. Inform. Model. 49, 623-633. doi:10.1021/ci800335j.
    • (2009) J. Chem. Inform. Model. , vol.49 , pp. 623-633
    • Bar-Haim, S.1    Aharon, A.2    Ben-Moshe, T.3    Marantz, Y.4    Senderowitz, H.5
  • 18
    • 85026890626 scopus 로고    scopus 로고
    • Computer-aided drug design: Time to play with novel chemical matter
    • Barril, X. (2017). Computer-aided drug design: Time to play with novel chemical matter. Expert Opin. Drug Discov. 12, 977-980. doi:10.1080/17460441.2017.1362386.
    • (2017) Expert Opin. Drug Discov. , vol.12 , pp. 977-980
    • Barril, X.1
  • 19
    • 84879583689 scopus 로고    scopus 로고
    • Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - A public library of challenging docking benchmark sets
    • Bauer, M. R., Ibrahim, T. M., Vogel, S. M., and Boeckler, F. M. (2013). Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - A public library of challenging docking benchmark sets. J. Chem. Inform. Model. 53, 1447-1462. doi:10.1021/ci400115b.
    • (2013) J. Chem. Inform. Model. , vol.53 , pp. 1447-1462
    • Bauer, M.R.1    Ibrahim, T.M.2    Vogel, S.M.3    Boeckler, F.M.4
  • 20
    • 77950022453 scopus 로고    scopus 로고
    • Non-additivity of functional group contributions in protein-ligand binding: A comprehensive study by crystallography and isothermal titration calorimetry
    • Baum, B., Muley, L., Smolinski, M., Heine, A., Hangauer, D., and Klebe, G. (2010). Non-additivity of functional group contributions in protein-ligand binding: A comprehensive study by crystallography and isothermal titration calorimetry. J. Mol. Biol. 397, 1042-1054. doi:10.1016/j.jmb.2010.02.007.
    • (2010) J. Mol. Biol. , vol.397 , pp. 1042-1054
    • Baum, B.1    Muley, L.2    Smolinski, M.3    Heine, A.4    Hangauer, D.5    Klebe, G.6
  • 21
    • 85033491221 scopus 로고    scopus 로고
    • Lessons learned in induced fit docking and metadynamics in the drug design data resource grand challenge 2
    • Baumgartner, M. P., and Evans, D. A. (2018). Lessons learned in induced fit docking and metadynamics in the drug design data resource grand challenge 2. J. Comput. Aided Mol. Des. 32, 45-58. doi:10.1007/s10822-017-0081-y.
    • (2018) J. Comput. Aided Mol. Des. , vol.32 , pp. 45-58
    • Baumgartner, M.P.1    Evans, D.A.2
  • 23
    • 33746867935 scopus 로고    scopus 로고
    • GFscore: A general nonlinear consensus scoring function for high-throughput docking
    • Betzi, S., Suhre, K., Chétrit, B., Guerlesquin, F., and Morelli, X. (2006). GFscore: A general nonlinear consensus scoring function for high-throughput docking. J. Chem. Inform. Model. 46, 1704-1712. doi:10.1021/ci0600758.
    • (2006) J. Chem. Inform. Model. , vol.46 , pp. 1704-1712
    • Betzi, S.1    Suhre, K.2    Chétrit, B.3    Guerlesquin, F.4    Morelli, X.5
  • 24
    • 84959230770 scopus 로고    scopus 로고
    • Covalent docking using autodock: Two-point attractor and flexible side chain methods
    • Bianco, G., Forli, S., Goodsell, D. S., and Olson, A. J. (2016). Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Sci. Publ. Protein Soc. 25, 295-301doi:10.1002/pro.2733.
    • (2016) Protein Sci. Publ. Protein Soc. , vol.25 , pp. 295-301
    • Bianco, G.1    Forli, S.2    Goodsell, D.S.3    Olson, A.J.4
  • 25
    • 84873690392 scopus 로고    scopus 로고
    • Sparse projected-gradient method as a linear-scaling low-memory alternative to diagonalization in self-consistent field electronic structure calculations
    • Birgin, E. G., Martiìnez, J. M., Martiìnez, L., and Rocha, G. B. (2013). Sparse projected-gradient method as a linear-scaling low-memory alternative to diagonalization in self-consistent field electronic structure calculations. J. Chem. Theory Comput. 9, 1043-1051. doi:10.1021/ct3009683.
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 1043-1051
    • Birgin, E.G.1    Martiìnez, J.M.2    Martiìnez, L.3    Rocha, G.B.4
  • 27
    • 0034649618 scopus 로고    scopus 로고
    • Protein-based virtual screening of chemical databases. 1, evaluation of different docking/scoring combinations
    • Bissantz, C., Folkers, G., and Rognan, D. (2000). Protein-based virtual screening of chemical databases. 1, evaluation of different docking/scoring combinations. J. Med. Chem. 43, 4759-4767.
    • (2000) J. Med. Chem. , vol.43 , pp. 4759-4767
    • Bissantz, C.1    Folkers, G.2    Rognan, D.3
  • 28
    • 0027485997 scopus 로고
    • Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala.fwdarw, ser and Val.fwdarw. Thr substitutions in T4 lysozyme
    • Mosc
    • Blaber, M., Lindstrom, J. D., Gassner, N., Xu, J., Heinz, D. W., and Matthews, B. W. (1993). Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala.fwdarw, ser and Val.fwdarw. Thr substitutions in T4 lysozyme. Biochemistry (Mosc.) 32, 11363-11373. doi:10.1021/bi00093a013.
    • (1993) Biochemistry , vol.32 , pp. 11363-11373
    • Blaber, M.1    Lindstrom, J.D.2    Gassner, N.3    Xu, J.4    Heinz, D.W.5    Matthews, B.W.6
  • 29
    • 84969931994 scopus 로고    scopus 로고
    • Water, water, everywhere It's time to stop and think
    • Bodnarchuk, M. S. (2016). Water, water, everywhere It's time to stop and think. Drug Discov. Today 21, 1139-1146. doi:10.1016/j.drudis.2016.05.009.
    • (2016) Drug Discov. Today , vol.21 , pp. 1139-1146
    • Bodnarchuk, M.S.1
  • 30
    • 0026813925 scopus 로고
    • The computer program LUDI: A new method for the de novo design of enzyme inhibitors
    • Böhm, H. J. (1992). The computer program LUDI: A new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 6, 61-78.
    • (1992) J. Comput. Aided Mol. Des. , vol.6 , pp. 61-78
    • Böhm, H.J.1
  • 31
    • 0028454828 scopus 로고
    • The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure
    • Böhm, H. J. (1994). The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput. Aided Mol. Des. 8, 243-256.
    • (1994) J. Comput. Aided Mol. Des. , vol.8 , pp. 243-256
    • Böhm, H.J.1
  • 32
    • 84884429366 scopus 로고    scopus 로고
    • Successful applications of in silico approaches for lead/drug discovery
    • ed. M. A. Miteva Emirate of Sharjah: Bentham Science Publishers
    • Bortolato, A., Perruccio, F., and Moro, S. (2012). "successful applications of in silico approaches for lead/drug discovery, " in In-Silico Lead Discovery, ed. M. A. Miteva (Emirate of Sharjah: Bentham Science Publishers), 163-175.
    • (2012) In-Silico Lead Discovery , pp. 163-175
    • Bortolato, A.1    Perruccio, F.2    Moro, S.3
  • 33
    • 79956201474 scopus 로고    scopus 로고
    • Systematic exploitation of multiple receptor conformations for virtual ligand screening
    • Bottegoni, G., Rocchia, W., Rueda, M., Abagyan, R., and Cavalli, A. (2011). Systematic exploitation of multiple receptor conformations for virtual ligand screening. PLoS One 6:e18845. doi:10.1371/journal.pone.0018845.
    • (2011) PLoS One , vol.6 , pp. e18845
    • Bottegoni, G.1    Rocchia, W.2    Rueda, M.3    Abagyan, R.4    Cavalli, A.5
  • 34
    • 85044409738 scopus 로고    scopus 로고
    • Shedding light on important waters for drug design: Simulations versus grid-based methods
    • Bucher, D., Stouten, P., and Triballeau, N. (2018). Shedding light on important waters for drug design: Simulations versus grid-based methods. J. Chem. Inform. Model. 58, 692-699. doi:10.1021/acs.jcim.7b00642.
    • (2018) J. Chem. Inform. Model. , vol.58 , pp. 692-699
    • Bucher, D.1    Stouten, P.2    Triballeau, N.3
  • 35
    • 84933519816 scopus 로고    scopus 로고
    • Protein flexibility in drug discovery: From theory to computation
    • Buonfiglio, R., Recanatini, M., and Masetti, M. (2015). Protein flexibility in drug discovery: From theory to computation. Chem Med Chem 10, 1141-1148. doi:10.1002/cmdc.201500086.
    • (2015) Chem Med Chem , vol.10 , pp. 1141-1148
    • Buonfiglio, R.1    Recanatini, M.2    Masetti, M.3
  • 36
    • 84902438255 scopus 로고    scopus 로고
    • Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model
    • Cao, Y., and Li, L. (2014). Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinform. Oxf. Engl. 30, 1674-1680. doi:10.1093/bioinformatics/btu104.
    • (2014) Bioinform. Oxf. Engl. , vol.30 , pp. 1674-1680
    • Cao, Y.1    Li, L.2
  • 37
    • 84883260321 scopus 로고    scopus 로고
    • Check your confidence: Size really does matter
    • Carlson, H. A. (2013). Check your confidence: Size really does matter. J. Chem. Inform. Model. 53, 1837-1841. doi:10.1021/ci4004249.
    • (2013) J. Chem. Inform. Model. , vol.53 , pp. 1837-1841
    • Carlson, H.A.1
  • 38
    • 84976501156 scopus 로고    scopus 로고
    • Lessons learned over four benchmark exercises from the community structure-activity resource
    • Carlson, H. A. (2016). Lessons learned over four benchmark exercises from the community structure-activity resource. J. Chem. Inform. Model. 56, 951-954. doi:10.1021/acs.jcim.6b00182.
    • (2016) J. Chem. Inform. Model. , vol.56 , pp. 951-954
    • Carlson, H.A.1
  • 39
    • 54749115273 scopus 로고    scopus 로고
    • Docking and high throughput docking: Successes and the challenge of protein flexibility
    • Cavasotto, C., and Singh, N. (2008). Docking and high throughput docking: Successes and the challenge of protein flexibility. Curr. Comput. Aided-Drug Des. 4, 221-234. doi:10.2174/157340908785747474.
    • (2008) Curr. Comput. Aided-Drug Des. , vol.4 , pp. 221-234
    • Cavasotto, C.1    Singh, N.2
  • 40
    • 85048220166 scopus 로고    scopus 로고
    • Quantum chemical approaches in structure-based virtual screening and lead optimization
    • Cavasotto, C. N., Adler, N. S., and Aucar, M. G. (2018). Quantum chemical approaches in structure-based virtual screening and lead optimization. Front. Chem. 6:188. doi:10.3389/fchem.2018.00188.
    • (2018) Front. Chem. , vol.6 , pp. 188
    • Cavasotto, C.N.1    Adler, N.S.2    Aucar, M.G.3
  • 41
    • 33846822002 scopus 로고    scopus 로고
    • Ligand configurational entropy and protein binding
    • Chang, C. A., Chen, W., and Gilson, M. K. (2007). Ligand configurational entropy and protein binding. Proc. Natl. Acad. Sci. U.S.A. 104, 1534-1539. doi:10.1073/pnas.0610494104.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 1534-1539
    • Chang, C.A.1    Chen, W.2    Gilson, M.K.3
  • 42
    • 84960494445 scopus 로고    scopus 로고
    • VSDC: A method to improve early recognition in virtual screening when limited experimental resources are available
    • Chaput, L., Martinez-Sanz, J., Quiniou, E., Rigolet, P., Saettel, N., and Mouawad, L. (2016a). vSDC: A method to improve early recognition in virtual screening when limited experimental resources are available. J. Cheminformatics 8:1. doi:10.1186/s13321-016-0112-z.
    • (2016) J. Cheminformatics , vol.8 , pp. 1
    • Chaput, L.1    Martinez-Sanz, J.2    Quiniou, E.3    Rigolet, P.4    Saettel, N.5    Mouawad, L.6
  • 43
    • 84995505949 scopus 로고    scopus 로고
    • Benchmark of four popular virtual screening programs: Construction of the active/decoy dataset remains a major determinant of measured performance
    • Chaput, L., Martinez-Sanz, J., Saettel, N., and Mouawad, L. (2016b). Benchmark of four popular virtual screening programs: Construction of the active/decoy dataset remains a major determinant of measured performance. J. Cheminformatics 8:56. doi:10.1186/s13321-016-0167-x.
    • (2016) J. Cheminformatics , vol.8 , pp. 56
    • Chaput, L.1    Martinez-Sanz, J.2    Saettel, N.3    Mouawad, L.4
  • 44
    • 85020469917 scopus 로고    scopus 로고
    • Efficient conformational sampling and weak scoring in docking programs? Strategy of the wisdom of crowds
    • Chaput, L., and Mouawad, L. (2017). Efficient conformational sampling and weak scoring in docking programs? Strategy of the wisdom of crowds. J. Cheminformatics 9:37. doi:10.1186/s13321-017-0227-x.
    • (2017) J. Cheminformatics , vol.9 , pp. 37
    • Chaput, L.1    Mouawad, L.2
  • 45
    • 0033576680 scopus 로고    scopus 로고
    • Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins
    • Charifson, P. S., Corkery, J. J., Murcko, M. A., and Walters, W. P. (1999). Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42, 5100-5109. doi:10.1021/jm990352k.
    • (1999) J. Med. Chem , vol.42 , pp. 5100-5109
    • Charifson, P.S.1    Corkery, J.J.2    Murcko, M.A.3    Walters, W.P.4
  • 46
    • 85014022040 scopus 로고    scopus 로고
    • On-the-fly QM/MM docking with attracting cavities
    • Chaskar, P., Zoete, V., and Röhrig, U. F. (2017). On-the-fly QM/MM docking with attracting cavities. J. Chem. Inform. Model. 57, 73-84. doi:10.1021/acs.jcim.6b00406.
    • (2017) J. Chem. Inform. Model. , vol.57 , pp. 73-84
    • Chaskar, P.1    Zoete, V.2    Röhrig, U.F.3
  • 47
    • 66149103553 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on a diverse test set
    • Cheng, T., Li, X., Li, Y., Liu, Z., and Wang, R. (2009). Comparative assessment of scoring functions on a diverse test set. J. Chem. Inform. Model. 49, 1079-1093. doi:10.1021/ci9000053.
    • (2009) J. Chem. Inform. Model. , vol.49 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 48
    • 84969622308 scopus 로고    scopus 로고
    • Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications
    • Christensen, A. S., Kubaø, T., Cui, Q., and Elstner, M. (2016). Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116, 5301-5337. doi:10.1021/acs.chemrev.5b00584.
    • (2016) Chem. Rev. , vol.116 , pp. 5301-5337
    • Christensen, A.S.1    Kuba, T.2    Cui, Q.3    Elstner, M.4
  • 49
    • 85019543800 scopus 로고    scopus 로고
    • The basis for target-based virtual screening: Protein structures
    • ed. C. Sotriffer Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA
    • Cole, J. C., Korb, O., Olsson, T. S. G., and Liebeschuetz, J. (2011). "The basis for target-based virtual screening: Protein structures, " in Methods and Principles in Medicinal Chemistry, ed. C. Sotriffer (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 87-114. doi:10.1002/9783527633326.ch4.
    • (2011) Methods and Principles in Medicinal Chemistry , pp. 87-114
    • Cole, J.C.1    Korb, O.2    Olsson, T.S.G.3    Liebeschuetz, J.4
  • 50
    • 84865271039 scopus 로고    scopus 로고
    • Variability in docking success rates due to dataset preparation
    • Corbeil, C. R., Williams, C. I., and Labute, P. (2012). Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des. 26, 775-786. doi:10.1007/s10822-012-9570-1.
    • (2012) J. Comput. Aided Mol. Des. , vol.26 , pp. 775-786
    • Corbeil, C.R.1    Williams, C.I.2    Labute, P.3
  • 51
    • 85023759573 scopus 로고    scopus 로고
    • Paying the Price of desolvation in solvent-exposed protein pockets: Impact of distal solubilizing groups on affinity and binding thermodynamics in a series of thermolysin inhibitors
    • Cramer, J., Krimmer, S. G., Heine, A., and Klebe, G. (2017). Paying the Price of desolvation in solvent-exposed protein pockets: Impact of distal solubilizing groups on affinity and binding thermodynamics in a series of thermolysin inhibitors. J. Med. Chem. 60, 5791-5799. doi:10.1021/acs.jmedchem.7b00490.
    • (2017) J. Med. Chem. , vol.60 , pp. 5791-5799
    • Cramer, J.1    Krimmer, S.G.2    Heine, A.3    Klebe, G.4
  • 52
    • 85028956021 scopus 로고    scopus 로고
    • Quantum-mechanics methodologies in drug discovery: Applications of docking and scoring in lead optimization
    • Crespo, A., Rodriguez-Granillo, A., and Lim, V. T. (2017). Quantum-mechanics methodologies in drug discovery: Applications of docking and scoring in lead optimization. Curr. Top. Med. Chem. 17, 2663-2680. doi:10.2174/1568026617666170707120609.
    • (2017) Curr. Top. Med. Chem. , vol.17 , pp. 2663-2680
    • Crespo, A.1    Rodriguez-Granillo, A.2    Lim, V.T.3
  • 53
    • 84883209345 scopus 로고    scopus 로고
    • CSAR benchmark exercise 2011-2012: Evaluation of results from docking and relative ranking of blinded congeneric series
    • Damm-Ganamet, K. L., Smith, R. D., Dunbar, J. B., Stuckey, J. A., and Carlson, H. A. (2013). CSAR benchmark exercise 2011-2012: Evaluation of results from docking and relative ranking of blinded congeneric series. J. Chem. Inform. Model. 53, 1853-1870. doi:10.1021/ci400025f.
    • (2013) J. Chem. Inform. Model. , vol.53 , pp. 1853-1870
    • Damm-Ganamet, K.L.1    Smith, R.D.2    Dunbar, J.B.3    Stuckey, J.A.4    Carlson, H.A.5
  • 54
    • 84927746174 scopus 로고    scopus 로고
    • Structure based virtual screening to discover putative drug candidates: Necessary considerations and successful case studies
    • Danishuddin, M., and Khan, A. U. (2015). Structure based virtual screening to discover putative drug candidates: Necessary considerations and successful case studies. Methods 71, 135-145. doi:10.1016/j.ymeth.2014.10.019.
    • (2015) Methods , vol.71 , pp. 135-145
    • Danishuddin, M.1    Khan, A.U.2
  • 56
    • 84948614446 scopus 로고    scopus 로고
    • A dynamic niching genetic algorithm strategy for docking highly flexible ligands
    • de Magalhães, C. S., Almeida, D. M., Barbosa, H. J. C., and Dardenne, L. E. (2014). A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inform. Sci. 289, 206-224. doi:10.1016/j.ins.2014.08.002.
    • (2014) Inform. Sci. , vol.289 , pp. 206-224
    • De Magalhães, C.S.1    Almeida, D.M.2    Barbosa, H.J.C.3    Dardenne, L.E.4
  • 57
    • 85025107228 scopus 로고    scopus 로고
    • A hybrid knowledge-based and empirical scoring function for protein-ligand interaction: SMoG2016
    • Debroise, T., Shakhnovich, E. I., and Chéron, N. (2017). A hybrid knowledge-based and empirical scoring function for protein-ligand interaction: SMoG2016. J. Chem. Inform. Model. 57, 584-593. doi:10.1021/acs.jcim.6b00610.
    • (2017) J. Chem. Inform. Model. , vol.57 , pp. 584-593
    • Debroise, T.1    Shakhnovich, E.I.2    Chéron, N.3
  • 59
    • 0031022887 scopus 로고    scopus 로고
    • Additivity principles in biochemistry
    • Dill, K. A. (1997). Additivity principles in biochemistry. J. Biol. Chem. 272, 701-704. doi:10.1074/jbc.272.2.701.
    • (1997) J. Biol. Chem. , vol.272 , pp. 701-704
    • Dill, K.A.1
  • 60
    • 84959128138 scopus 로고    scopus 로고
    • Innovation in the pharmaceutical industry: New estimates of R&D costs
    • DiMasi, J. A., Grabowski, H. G., and Hansen, R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 47, 20-33. doi:10.1016/j.jhealeco.2016.01.012.
    • (2016) J. Health Econ. , vol.47 , pp. 20-33
    • Di Masi, J.A.1    Grabowski, H.G.2    Hansen, R.W.3
  • 61
    • 84873041650 scopus 로고    scopus 로고
    • Characterization of small molecule binding. I. Accurate Identification of Strong Inhibitors in Virtual Screening
    • Ding, B., Wang, J., Li, N., and Wang, W. (2013). Characterization of small molecule binding. I. Accurate Identification of Strong Inhibitors in Virtual Screening. J. Chem. Inform. Model. 53, 114-122. doi:10.1021/ci300508m.
    • (2013) J. Chem. Inform. Model. , vol.53 , pp. 114-122
    • Ding, B.1    Wang, J.2    Li, N.3    Wang, W.4
  • 62
    • 0346506503 scopus 로고    scopus 로고
    • Fast, accurate semiempirical molecular orbital calculations for macromolecules
    • Dixon, S. L., and Merz, K. M. (1997). Fast, accurate semiempirical molecular orbital calculations for macromolecules. J. Chem. Phys. 107, 879-893. doi:10.1063/1.474386.
    • (1997) J. Chem. Phys. , vol.107 , pp. 879-893
    • Dixon, S.L.1    Merz, K.M.2
  • 64
    • 0031226772 scopus 로고    scopus 로고
    • Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes
    • Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11, 425-445.
    • (1997) J. Comput. Aided Mol. Des. , vol.11 , pp. 425-445
    • Eldridge, M.D.1    Murray, C.W.2    Auton, T.R.3    Paolini, G.V.4    Mee, R.P.5
  • 65
    • 41349090342 scopus 로고    scopus 로고
    • Can we use docking and scoring for hit-to-lead optimization?
    • Enyedy, I. J., and Egan, W. J. (2008). Can we use docking and scoring for hit-to-lead optimization? J. Comput. Aided Mol. Des. 22, 161-168. doi:10.1007/s10822-007-9165-4.
    • (2008) J. Comput. Aided Mol. Des. , vol.22 , pp. 161-168
    • Enyedy, I.J.1    Egan, W.J.2
  • 66
    • 85025668923 scopus 로고    scopus 로고
    • Machine learning consensus scoring improves performance across targets in structure-based virtual screening
    • Ericksen, S. S., Wu, H., Zhang, H., Michael, L. A., Newton, M. A., Hoffmann, F. M., et al. (2017). Machine learning consensus scoring improves performance across targets in structure-based virtual screening. J. Chem. Inform. Model. 57, 1579-1590. doi:10.1021/acs.jcim.7b00153.
    • (2017) J. Chem. Inform. Model. , vol.57 , pp. 1579-1590
    • Ericksen, S.S.1    Wu, H.2    Zhang, H.3    Michael, L.A.4    Newton, M.A.5    Hoffmann, F.M.6
  • 67
    • 1542390499 scopus 로고    scopus 로고
    • Identification of protein-protein interaction sites from docking energy landscapes
    • Fernández-Recio, J., Totrov, M., and Abagyan, R. (2004). Identification of protein-protein interaction sites from docking energy landscapes. J. Mol. Biol. 335, 843-865.
    • (2004) J. Mol. Biol. , vol.335 , pp. 843-865
    • Fernández-Recio, J.1    Totrov, M.2    Abagyan, R.3
  • 68
    • 4744365803 scopus 로고    scopus 로고
    • Soft docking and multiple receptor conformations in virtual screening
    • Ferrari, A. M., Wei, B. Q., Costantino, L., and Shoichet, B. K. (2004). Soft docking and multiple receptor conformations in virtual screening. J. Med. Chem. 47, 5076-5084. doi:10.1021/jm049756p.
    • (2004) J. Med. Chem. , vol.47 , pp. 5076-5084
    • Ferrari, A.M.1    Wei, B.Q.2    Costantino, L.3    Shoichet, B.K.4
  • 69
    • 84938316204 scopus 로고    scopus 로고
    • Molecular docking and structure-based drug design strategies
    • Ferreira, L., dos Santos, R., Oliva, G., and Andricopulo, A. (2015). Molecular docking and structure-based drug design strategies. Molecules 20, 13384-13421. doi:10.3390/molecules200713384.
    • (2015) Molecules , vol.20 , pp. 13384-13421
    • Ferreira, L.1    Dos Santos, R.2    Oliva, G.3    Andricopulo, A.4
  • 70
    • 69049101145 scopus 로고    scopus 로고
    • Divergent modes of enzyme inhibition in a homologous structure-activity series
    • Ferreira, R. S., Bryant, C., Ang, K. K. H., McKerrow, J. H., Shoichet, B. K., and Renslo, A. R. (2009). Divergent modes of enzyme inhibition in a homologous structure-activity series. J. Med. Chem. 52, 5005-5008. doi:10.1021/jm9009229.
    • (2009) J. Med. Chem. , vol.52 , pp. 5005-5008
    • Ferreira, R.S.1    Bryant, C.2    Ang, K.K.H.3    McKerrow, J.H.4    Shoichet, B.K.5    Renslo, A.R.6
  • 71
    • 84903133311 scopus 로고    scopus 로고
    • Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery
    • Fischer, M., Coleman, R. G., Fraser, J. S., and Shoichet, B. K. (2014). Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat. Chem. 6, 575-583. doi:10.1038/nchem.1954.
    • (2014) Nat. Chem. , vol.6 , pp. 575-583
    • Fischer, M.1    Coleman, R.G.2    Fraser, J.S.3    Shoichet, B.K.4
  • 72
    • 84960866293 scopus 로고    scopus 로고
    • Computational tools to model halogen bonds in medicinal chemistry
    • Ford, M. C., and Ho, P. S. (2016). Computational tools to model halogen bonds in medicinal chemistry. J. Med. Chem. 59, 1655-1670. doi:10.1021/acs.jmedchem.5b00997.
    • (2016) J. Med. Chem. , vol.59 , pp. 1655-1670
    • Ford, M.C.1    Ho, P.S.2
  • 73
    • 84856397848 scopus 로고    scopus 로고
    • A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking
    • Forli, S., and Olson, A. J. (2012). A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 55, 623-638. doi:10.1021/jm2005145.
    • (2012) J. Med. Chem. , vol.55 , pp. 623-638
    • Forli, S.1    Olson, A.J.2
  • 74
    • 52049123291 scopus 로고    scopus 로고
    • Do enthalpy and entropy distinguish first in class from best in class?
    • Freire, E. (2008). Do enthalpy and entropy distinguish first in class from best in class? Drug Discov. Today 13, 869-874. doi:10.1016/j.drudis.2008.07.005.
    • (2008) Drug Discov. Today , vol.13 , pp. 869-874
    • Freire, E.1
  • 75
    • 12144289984 scopus 로고    scopus 로고
    • Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
    • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., et al. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J. Med. Chem. 47, 1739-1749. doi:10.1021/jm0306430.
    • (2004) J. Med. Chem. , vol.47 , pp. 1739-1749
    • Friesner, R.A.1    Banks, J.L.2    Murphy, R.B.3    Halgren, T.A.4    Klicic, J.J.5    Mainz, D.T.6
  • 76
    • 33750124980 scopus 로고    scopus 로고
    • Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
    • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., et al. (2006a). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177-6196. doi:10.1021/jm051256o.
    • (2006) J. Med. Chem. , vol.49 , pp. 6177-6196
    • Friesner, R.A.1    Murphy, R.B.2    Repasky, M.P.3    Frye, L.L.4    Greenwood, J.R.5    Halgren, T.A.6
  • 77
    • 33750124980 scopus 로고    scopus 로고
    • Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
    • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., et al. (2006b). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177-6196. doi:10.1021/jm051256o.
    • (2006) J. Med. Chem. , vol.49 , pp. 6177-6196
    • Friesner, R.A.1    Murphy, R.B.2    Repasky, M.P.3    Frye, L.L.4    Greenwood, J.R.5    Halgren, T.A.6
  • 78
    • 84908242076 scopus 로고    scopus 로고
    • Beware of machine learning-based scoring functions-on the danger of developing black boxes
    • Gabel, J., Desaphy, J., and Rognan, D. (2014). Beware of machine learning-based scoring functions-on the danger of developing black boxes. J. Chem. Inform. Model. 54, 2807-2815. doi:10.1021/ci500406k.
    • (2014) J. Chem. Inform. Model. , vol.54 , pp. 2807-2815
    • Gabel, J.1    Desaphy, J.2    Rognan, D.3
  • 79
    • 85036546727 scopus 로고    scopus 로고
    • D3R grand challenge 2: Blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies
    • Gaieb, Z., Liu, S., Gathiaka, S., Chiu, M., Yang, H., Shao, C., et al. (2018). D3R grand challenge 2: Blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J. Comput. Aided Mol. Des. 32, 1-20. doi:10.1007/s10822-017-0088-4.
    • (2018) J. Comput. Aided Mol. Des. , vol.32 , pp. 1-20
    • Gaieb, Z.1    Liu, S.2    Gathiaka, S.3    Chiu, M.4    Yang, H.5    Shao, C.6
  • 80
    • 85030699657 scopus 로고    scopus 로고
    • Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: Lessons learned from a collaborative effort
    • Gao, Y.-D., Hu, Y., Crespo, A., Wang, D., Armacost, K. A., Fells, J. I., et al. (2018). Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: Lessons learned from a collaborative effort. J. Comput. Aided Mol. Des. 32, 129-142. doi:10.1007/s10822-017-0072-z.
    • (2018) J. Comput. Aided Mol. Des. , vol.32 , pp. 129-142
    • Gao, Y.-D.1    Hu, Y.2    Crespo, A.3    Wang, D.4    Armacost, K.A.5    Fells, J.I.6
  • 81
    • 84989159600 scopus 로고    scopus 로고
    • D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions
    • Gathiaka, S., Liu, S., Chiu, M., Yang, H., Stuckey, J. A., Kang, Y. N., et al. (2016). D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions. J. Comput. Aided Mol. Des. 30, 651-668. doi:10.1007/s10822-016-9946-8.
    • (2016) J. Comput. Aided Mol. Des. , vol.30 , pp. 651-668
    • Gathiaka, S.1    Liu, S.2    Chiu, M.3    Yang, H.4    Stuckey, J.A.5    Kang, Y.N.6
  • 82
    • 0031080551 scopus 로고    scopus 로고
    • A new class of models for computing receptor-ligand binding affinities
    • Gilson, M. K., Given, J. A., and Head, M. S. (1997). A new class of models for computing receptor-ligand binding affinities. Chem. Biol. 4, 87-92.
    • (1997) Chem. Biol. , vol.4 , pp. 87-92
    • Gilson, M.K.1    Given, J.A.2    Head, M.S.3
  • 83
    • 34347224684 scopus 로고    scopus 로고
    • Calculation of protein-ligand binding affinities
    • Gilson, M. K., and Zhou, H.-X. (2007). Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36, 21-42. doi:10.1146/annurev.biophys.36.040306.132550.
    • (2007) Annu. Rev. Biophys. Biomol. Struct , vol.36 , pp. 21-42
    • Gilson, M.K.1    Zhou, H.-X.2
  • 84
    • 0037008160 scopus 로고    scopus 로고
    • Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors
    • Gohlke, H., and Klebe, G. (2002). Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. 41, 2644-2676.
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 2644-2676
    • Gohlke, H.1    Klebe, G.2
  • 86
    • 84867365195 scopus 로고    scopus 로고
    • Can the Energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening?
    • Grigoryan, A. V., Wang, H., and Cardozo, T. J. (2012). Can the Energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening? PLoS One 7:e46532. doi:10.1371/journal.pone.0046532.
    • (2012) PLoS One , vol.7 , pp. e46532
    • Grigoryan, A.V.1    Wang, H.2    Cardozo, T.J.3
  • 87
    • 84904819424 scopus 로고    scopus 로고
    • Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design
    • Grinter, S. Z., and Zou, X. (2014). Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Mol. Basel Switz. 19, 10150-10176. doi:10.3390/molecules190710150.
    • (2014) Mol. Basel Switz , vol.19 , pp. 10150-10176
    • Grinter, S.Z.1    Zou, X.2
  • 90
    • 0011134241 scopus 로고    scopus 로고
    • Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions
    • Halgren, T. A. (1996). Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 17, 520-552.
    • (1996) J. Comput. Chem. , vol.17 , pp. 520-552
    • Halgren, T.A.1
  • 91
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins, D. M. (2004). The problem of overfitting. J. Chem. Inform. Comput. Sci. 44, 1-12. doi:10.1021/ci0342472.
    • (2004) J. Chem. Inform. Comput. Sci. , vol.44 , pp. 1-12
    • Hawkins, D.M.1
  • 92
    • 33751385054 scopus 로고
    • Macroscopic models of aqueous solutions: Biological and chemical applications
    • Honig, B., Sharp, K., and Yang, A. S. (1993). Macroscopic models of aqueous solutions: Biological and chemical applications. J. Phys. Chem. 97, 1101-1109. doi:10.1021/j100108a002.
    • (1993) J. Phys. Chem. , vol.97 , pp. 1101-1109
    • Honig, B.1    Sharp, K.2    Yang, A.S.3
  • 93
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking sets for molecular docking
    • Huang, N., Shoichet, B. K., and Irwin, J. J. (2006). Benchmarking sets for molecular docking. J. Med. Chem. 49, 6789-6801. doi:10.1021/jm0608356.
    • (2006) J. Med. Chem. , vol.49 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 94
    • 77957898063 scopus 로고    scopus 로고
    • Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions
    • Huang, S.-Y., Grinter, S. Z., and Zou, X. (2010). Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions. Phys. Chem. Chem. Phys. 12, 12899-12908. doi:10.1039/c0cp00151a.
    • (2010) Phys. Chem. Chem. Phys. , vol.12 , pp. 12899-12908
    • Huang, S.-Y.1    Grinter, S.Z.2    Zou, X.3
  • 95
    • 84955498031 scopus 로고    scopus 로고
    • Inexpensive method for selecting receptor structures for virtual screening
    • Huang, Z., and Wong, C. F. (2016). Inexpensive method for selecting receptor structures for virtual screening. J. Chem. Inform. Model. 56, 21-34. doi:10.1021/acs.jcim.5b00299.
    • (2016) J. Chem. Inform. Model. , vol.56 , pp. 21-34
    • Huang, Z.1    Wong, C.F.2
  • 97
    • 0026345750 scopus 로고
    • Folding of chymotrypsin inhibitor 2. 1, Evidence for a two-state transition
    • Mosc
    • Jackson, S. E., and Fersht, A. R. (1991). Folding of chymotrypsin inhibitor 2. 1, Evidence for a two-state transition. Biochemistry (Mosc.) 30, 10428-10435. doi:10.1021/bi00107a010.
    • (1991) Biochemistry , vol.30 , pp. 10428-10435
    • Jackson, S.E.1    Fersht, A.R.2
  • 98
    • 0030255303 scopus 로고    scopus 로고
    • Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities
    • Jain, A. N. (1996). Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities. J. Comput. Aided Mol. Des. 10, 427-440.
    • (1996) J. Comput. Aided Mol. Des. , vol.10 , pp. 427-440
    • Jain, A.N.1
  • 99
    • 33749513370 scopus 로고    scopus 로고
    • Scoring functions for protein-ligand docking.
    • Jain, A. N. (2006). Scoring functions for protein-ligand docking. Curr. Protein Pept. Sci. 7, 407-420.
    • (2006) Curr. Protein Pept. Sci , vol.7 , pp. 407-420
    • Jain, A.N.1
  • 100
    • 41349106542 scopus 로고    scopus 로고
    • Recommendations for evaluation of computational methods
    • Jain, A. N., and Nicholls, A. (2008). Recommendations for evaluation of computational methods. J. Comput. Aided Mol. Des. 22, 133-139. doi:10.1007/s10822-008-9196-5.
    • (2008) J. Comput. Aided Mol. Des. , vol.22 , pp. 133-139
    • Jain, A.N.1    Nicholls, A.2
  • 101
    • 27944463552 scopus 로고    scopus 로고
    • An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes
    • Jain, T., and Jayaram, B. (2005). An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes. FEBS Lett. 579, 6659-6666. doi:10.1016/j.febslet.2005.10.031.
    • (2005) FEBS Lett. , vol.579 , pp. 6659-6666
    • Jain, T.1    Jayaram, B.2
  • 102
    • 85042374412 scopus 로고    scopus 로고
    • KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks
    • Jiménez Luna, J., Skalic, M., Martinez-Rosell, G., and De Fabritiis, G. (2018). KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inform. Model. 58, 287-296. doi:10.1021/acs.jcim.7b00650.
    • (2018) J. Chem. Inform. Model. , vol.58 , pp. 287-296
    • Jiménez Luna, J.1    Skalic, M.2    Martinez-Rosell, G.3    De Fabritiis, G.4
  • 103
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation of a genetic algorithm for flexible docking
    • Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727-748. doi:10.1006/jmbi.1996.0897.
    • (1997) J. Mol. Biol. , vol.267 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 104
    • 0001195574 scopus 로고
    • On the determination of molecular fields, I. From the variation of the viscosity of a gas with temperature
    • Jones, J. E. (1924a). On the determination of molecular fields, I. From the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 106, 441-462. doi:10.1098/rspa.1924.0081.
    • (1924) Proc. R. Soc. Lond. Math. Phys. Eng. Sci. , vol.106 , pp. 441-462
    • Jones, J.E.1
  • 105
    • 0001195575 scopus 로고
    • On the determination of molecular fields, II. From the equation of state of a gas
    • Jones, J. E. (1924b). On the determination of molecular fields, II. From the equation of state of a gas. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 106, 463-477. doi:10.1098/rspa.1924.0082.
    • (1924) Proc. R. Soc. Lond. Math. Phys. Eng. Sci. , vol.106 , pp. 463-477
    • Jones, J.E.1
  • 106
    • 73349107775 scopus 로고    scopus 로고
    • The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening
    • Kalliokoski, T., Salo, H. S., Lahtela-Kakkonen, M., and Poso, A. (2009). The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J. Chem. Inform. Model. 49, 2742-2748. doi:10.1021/ci900364w.
    • (2009) J. Chem. Inform. Model. , vol.49 , pp. 2742-2748
    • Kalliokoski, T.1    Salo, H.S.2    Lahtela-Kakkonen, M.3    Poso, A.4
  • 107
    • 84878052306 scopus 로고    scopus 로고
    • Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease
    • Kar, P., Lipowsky, R., and Knecht, V. (2013). Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. J. Phys. Chem. B 117, 5793-5805. doi:10.1021/jp3085292.
    • (2013) J. Phys. Chem. B , vol.117 , pp. 5793-5805
    • Kar, P.1    Lipowsky, R.2    Knecht, V.3
  • 108
    • 84928563915 scopus 로고    scopus 로고
    • Prospective performance evaluation of selected common virtual screening tools, case study: Cyclooxygenase (COX) 1 and 2
    • Kaserer, T., Temml, V., Kutil, Z., Vanek, T., Landa, P., and Schuster, D. (2015). Prospective performance evaluation of selected common virtual screening tools, case study: Cyclooxygenase (COX) 1 and 2. Eur. J. Med. Chem. 96, 445-457. doi:10.1016/j.ejmech.2015.04.017.
    • (2015) Eur. J. Med. Chem. , vol.96 , pp. 445-457
    • Kaserer, T.1    Temml, V.2    Kutil, Z.3    Vanek, T.4    Landa, P.5    Schuster, D.6
  • 109
    • 84961177291 scopus 로고    scopus 로고
    • Structure-based consensus scoring scheme for selecting class A aminergic GPCR fragments
    • Kelemen, Á. A., Kiss, R., Ferenczy, G. G., Kovács, L., Flachner, B., Lõrincz, Z., et al. (2016). Structure-based consensus scoring scheme for selecting class A aminergic GPCR fragments. J. Chem. Inform. Model. 56, 412-422. doi:10.1021/acs.jcim.5b00598.
    • (2016) J. Chem. Inform. Model. , vol.56 , pp. 412-422
    • Kelemen, Á.A.1    Kiss, R.2    Ferenczy, G.G.3    Kovács, L.4    Flachner, B.5    Lõrincz, Z.6
  • 111
    • 84941117199 scopus 로고    scopus 로고
    • Comparative assessment of machine-learning scoring functions on PDBbind 2013
    • Khamis, M. A., and Gomaa, W. (2015). Comparative assessment of machine-learning scoring functions on PDBbind 2013. Eng. Appl. Artif. Intell. 45, 136-151. doi:10.1016/j.engappai.2015.06.021.
    • (2015) Eng. Appl. Artif. Intell. , vol.45 , pp. 136-151
    • Khamis, M.A.1    Gomaa, W.2
  • 112
    • 84975045758 scopus 로고    scopus 로고
    • AutoDock VinaXB: Implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina
    • Koebel, M. R., Schmadeke, G., Posner, R. G., and Sirimulla, S. (2016). AutoDock VinaXB: Implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. J. Cheminform. 8:27. doi:10.1186/s13321-016-0139-1.
    • (2016) J. Cheminform. , vol.8 , pp. 27
    • Koebel, M.R.1    Schmadeke, G.2    Posner, R.G.3    Sirimulla, S.4
  • 113
    • 73449145345 scopus 로고    scopus 로고
    • Docking screens: Right for the right reasons?
    • Kolb, P., and Irwin, J. J. (2009). Docking screens: Right for the right reasons? Curr. Top. Med. Chem. 9, 755-770.
    • (2009) Curr. Top. Med. Chem. , vol.9 , pp. 755-770
    • Kolb, P.1    Irwin, J.J.2
  • 114
    • 85042150443 scopus 로고    scopus 로고
    • Importance of protein flexibility in molecular recognition: A case study on Type-I1/2 inhibitors of ALK
    • Kong, X., Sun, H., Pan, P., Zhu, F., Chang, S., Xu, L., et al. (2018). Importance of protein flexibility in molecular recognition: A case study on Type-I1/2 inhibitors of ALK. Phys. Chem. Chem. Phys. 20, 4851-4863. doi:10.1039/C7CP08241J.
    • (2018) Phys. Chem. Chem. Phys. , vol.20 , pp. 4851-4863
    • Kong, X.1    Sun, H.2    Pan, P.3    Zhu, F.4    Chang, S.5    Xu, L.6
  • 116
    • 78649517318 scopus 로고    scopus 로고
    • Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
    • Kramer, C., and Gedeck, P. (2010). Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. J. Chem. Inform. Model. 50, 1961-1969. doi:10.1021/ci100264e.
    • (2010) J. Chem. Inform. Model. , vol.50 , pp. 1961-1969
    • Kramer, C.1    Gedeck, P.2
  • 117
    • 84862276184 scopus 로고    scopus 로고
    • The experimental uncertainty of heterogeneous public ki data
    • Kramer, C., Kalliokoski, T., Gedeck, P., and Vulpetti, A. (2012). The experimental uncertainty of heterogeneous public ki data. J. Med. Chem. 55, 5165-5173. doi:10.1021/jm300131x.
    • (2012) J. Med. Chem. , vol.55 , pp. 5165-5173
    • Kramer, C.1    Kalliokoski, T.2    Gedeck, P.3    Vulpetti, A.4
  • 119
    • 84912572423 scopus 로고    scopus 로고
    • Which three-dimensional characteristics make efficient inhibitors of protein-protein interactions?
    • Kuenemann, M. A., Bourbon, L. M. L., Labbé, C. M., Villoutreix, B. O., and Sperandio, O. (2014). Which three-dimensional characteristics make efficient inhibitors of protein-protein interactions? J. Chem. Inform. Model. 54, 3067-3079. doi:10.1021/ci500487q.
    • (2014) J. Chem. Inform. Model. , vol.54 , pp. 3067-3079
    • Kuenemann, M.A.1    Bourbon, L.M.L.2    Labb, C.M.3    Villoutreix, B.O.4    Sperandio, O.5
  • 120
    • 84555169381 scopus 로고    scopus 로고
    • Rationalizing tight ligand binding through cooperative interaction networks
    • Kuhn, B., Fuchs, J. E., Reutlinger, M., Stahl, M., and Taylor, N. R. (2011). Rationalizing tight ligand binding through cooperative interaction networks. J. Chem. Inform. Model. 51, 3180-3198. doi:10.1021/ci200319e.
    • (2011) J. Chem. Inform. Model. , vol.51 , pp. 3180-3198
    • Kuhn, B.1    Fuchs, J.E.2    Reutlinger, M.3    Stahl, M.4    Taylor, N.R.5
  • 121
    • 84921920564 scopus 로고    scopus 로고
    • Theory and applications of covalent docking in drug discovery: Merits and pitfalls
    • Kumalo, H. M., Bhakat, S., and Soliman, M. E. S. (2015). Theory and applications of covalent docking in drug discovery: Merits and pitfalls. Mol. Basel Switz. 20, 1984-2000. doi:10.3390/molecules20021984.
    • (2015) Mol. Basel Switz. , vol.20 , pp. 1984-2000
    • Kumalo, H.M.1    Bhakat, S.2    Soliman, M.E.S.3
  • 122
    • 85027857854 scopus 로고    scopus 로고
    • Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R grand challenge 2
    • Kurkcuoglu, Z., Koukos, P. I., Citro, N., Trellet, M. E., Rodrigues, J. P. G. L. M., Moreira, I. S., et al. (2018). Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R grand challenge 2. J. Comput. Aided Mol. Des. 32, 175-185. doi:10.1007/s10822-017-0049-y.
    • (2018) J. Comput. Aided Mol. des , vol.32 , pp. 175-185
    • Kurkcuoglu, Z.1    Koukos, P.I.2    Citro, N.3    Trellet, M.E.4    Rodrigues, J.P.G.L.M.5    Moreira, I.S.6
  • 123
    • 84979850761 scopus 로고    scopus 로고
    • MTiOpenScreen: A web server for structure-based virtual screening
    • Labbé, C. M., Rey, J., Lagorce, D., Vavruša, M., Becot, J., Sperandio, O., et al. (2015). MTiOpenScreen: A web server for structure-based virtual screening. Nucleic Acids Res. 43, W448-W454. doi:10.1093/nar/gkv306.
    • (2015) Nucleic Acids Res. , vol.43 , pp. W448-W454
    • Labb, C.M.1    Rey, J.2    Lagorce, D.3    Vavruša, M.4    Becot, J.5    Sperandio, O.6
  • 124
    • 84938151793 scopus 로고    scopus 로고
    • Benchmarking data sets for the evaluation of virtual ligand screening methods: Review and perspectives
    • Lagarde, N., Zagury, J.-F., and Montes, M. (2015). Benchmarking data sets for the evaluation of virtual ligand screening methods: Review and perspectives. J. Chem. Inform. Model. 55, 1297-1307. doi:10.1021/acs.jcim.5b00090.
    • (2015) J. Chem. Inform. Model. , vol.55 , pp. 1297-1307
    • Lagarde, N.1    Zagury, J.-F.2    Montes, M.3
  • 125
    • 85029005758 scopus 로고    scopus 로고
    • Ligand-biased ensemble receptor docking (LigBEnD): A hybrid ligand/receptor structure-based approach
    • Lam, P. C.-H., Abagyan, R., and Totrov, M. (2017). Ligand-biased ensemble receptor docking (LigBEnD): A hybrid ligand/receptor structure-based approach. J. Comput. Aided Mol. Des. 32, 187-198. doi:10.1007/s10822-017-0058-x.
    • (2017) J. Comput. Aided Mol. Des. , vol.32 , pp. 187-198
    • Lam, P.C.-H.1    Abagyan, R.2    Totrov, M.3
  • 126
    • 33745032291 scopus 로고    scopus 로고
    • Water mediation in protein folding and molecular recognition
    • Levy, Y., and Onuchic, J. N. (2006). Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 35, 389-415. doi:10.1146/annurev.biophys.35.040405.102134.
    • (2006) Annu. Rev. Biophys. Biomol. Struct , vol.35 , pp. 389-415
    • Levy, Y.1    Onuchic, J.N.2
  • 127
    • 85034103749 scopus 로고    scopus 로고
    • Consensus scoring model for the molecular docking study of mTOR kinase inhibitor
    • Li, D.-D., Meng, X.-F., Wang, Q., Yu, P., Zhao, L.-G., Zhang, Z.-P., et al. (2018). Consensus scoring model for the molecular docking study of mTOR kinase inhibitor. J. Mol. Graph. Model. 79, 81-87. doi:10.1016/j.jmgm.2017.11.003.
    • (2018) J. Mol. Graph. Model. , vol.79 , pp. 81-87
    • Li, D.-D.1    Meng, X.-F.2    Wang, Q.3    Yu, P.4    Zhao, L.-G.5    Zhang, Z.-P.6
  • 128
    • 85044292801 scopus 로고    scopus 로고
    • The impact of protein structure and sequence similarity on the accuracy of machine-learning scoring functions for binding affinity prediction
    • Li, H., Peng, J., Leung, Y., Leung, K.-S., Wong, M.-H., Lu, G., et al. (2018). The impact of protein structure and sequence similarity on the accuracy of machine-learning scoring functions for binding affinity prediction. Biomolecules 8:12. doi:10.3390/biom8010012.
    • (2018) Biomolecules , vol.8 , pp. 12
    • Li, H.1    Peng, J.2    Leung, Y.3    Leung, K.-S.4    Wong, M.-H.5    Lu, G.6
  • 129
    • 85044295465 scopus 로고    scopus 로고
    • Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark
    • Li, Y., Su, M., Liu, Z., Li, J., Liu, J., Han, L., et al. (2018). Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark. Nat. Protoc. 13, 666-680. doi:10.1038/nprot.2017.114.
    • (2018) Nat. Protoc. , vol.13 , pp. 666-680
    • Li, Y.1    Su, M.2    Liu, Z.3    Li, J.4    Liu, J.5    Han, L.6
  • 130
    • 84875428269 scopus 로고    scopus 로고
    • ID-score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
    • Li, G.-B., Yang, L.-L., Wang, W.-J., Li, L.-L., and Yang, S.-Y. (2013). ID-score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inform. Model. 53, 592-600. doi:10.1021/ci300493w.
    • (2013) J. Chem. Inform. Model. , vol.53 , pp. 592-600
    • Li, G.-B.1    Yang, L.-L.2    Wang, W.-J.3    Li, L.-L.4    Yang, S.-Y.5
  • 131
    • 84938280812 scopus 로고    scopus 로고
    • Low-quality structural and interaction data improves binding affinity prediction via random forest
    • Li, H., Leung, K.-S., Wong, M.-H., and Ballester, P. (2015a). Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules 20, 10947-10962. doi:10.3390/molecules200610947.
    • (2015) Molecules , vol.20 , pp. 10947-10962
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.4
  • 132
    • 84923588607 scopus 로고    scopus 로고
    • Improving autodock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
    • Li, H., Leung, K.-S., Wong, M.-H., and Ballester, P. J. (2015b). Improving autodock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol. Inform. 34, 115-126. doi:10.1002/minf.201400132.
    • (2015) Mol. Inform. , vol.34 , pp. 115-126
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 133
    • 84906829436 scopus 로고    scopus 로고
    • Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
    • Li, H., Leung, K.-S., Wong, M.-H., and Ballester, P. J. (2014a). Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 15:291. doi:10.1186/1471-2105-15-291.
    • (2014) BMC Bioinformatics , vol.15 , pp. 291
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 134
    • 84945454057 scopus 로고    scopus 로고
    • The impact of docking pose generation error on the prediction of binding affinity
    • eds C. D. Serio, P. Liò, A. Nonis, and R. Tagliaferri Berlin: Springer International Publishing
    • Li, H., Leung, K.-S., Wong, M.-H., and Ballester, P. J. (2014b). "The impact of docking pose generation error on the prediction of binding affinity, " in Computational Intelligence Methods for Bioinformatics and Biostatistics Lecture Notes in Computer Science, eds C. D. Serio, P. Liò, A. Nonis, and R. Tagliaferri (Berlin: Springer International Publishing), 231-241. doi:10.1007/978-3-319-24462-4-20.
    • (2014) Computational Intelligence Methods for Bioinformatics and Biostatistics Lecture Notes in Computer Science , pp. 231-241
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 135
    • 84903287174 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on an updated benchmark: 2, evaluation methods and general results
    • Li, Y., Han, L., Liu, Z., and Wang, R. (2014c). Comparative assessment of scoring functions on an updated benchmark: 2, evaluation methods and general results. J. Chem. Inform. Model. 54, 1717-1736. doi:10.1021/ci500081m.
    • (2014) J. Chem. Inform. Model. , vol.54 , pp. 1717-1736
    • Li, Y.1    Han, L.2    Liu, Z.3    Wang, R.4
  • 136
    • 84925387258 scopus 로고    scopus 로고
    • Classification of current scoring functions
    • Liu, J., and Wang, R. (2015). Classification of current scoring functions. J. Chem. Inform. Model. 55, 475-482. doi:10.1021/ci500731a.
    • (2015) J. Chem. Inform. Model. , vol.55 , pp. 475-482
    • Liu, J.1    Wang, R.2
  • 137
    • 84862224304 scopus 로고    scopus 로고
    • Application of consensus scoring and principal component analysis for virtual screening against β-secretase (BACE-1)
    • doi: 10.1371/journal.pone.0038086
    • Liu, S., Fu, R., Zhou, L.-H., and Chen, S.-P. (2012). Application of consensus scoring and principal component analysis for virtual screening against β-secretase (BACE-1). PLoS One 7:e38086. doi: 10.1371/journal.pone.0038086.
    • (2012) PLoS One , vol.7 , pp. e38086
    • Liu, S.1    Fu, R.2    Zhou, L.-H.3    Chen, S.-P.4
  • 138
    • 84929141895 scopus 로고    scopus 로고
    • PDB-wide collection of binding data: Current status of the PDBbind database
    • Liu, Z., Li, Y., Han, L., Li, J., Liu, J., Zhao, Z., et al. (2015). PDB-wide collection of binding data: Current status of the PDBbind database. Bioinformatics 31, 405-412. doi:10.1093/bioinformatics/btu626.
    • (2015) Bioinformatics , vol.31 , pp. 405-412
    • Liu, Z.1    Li, Y.2    Han, L.3    Li, J.4    Liu, J.5    Zhao, Z.6
  • 139
    • 85013653033 scopus 로고    scopus 로고
    • Forging the basis for developing protein-ligand interaction scoring functions
    • Liu, Z., Su, M., Han, L., Liu, J., Yang, Q., Li, Y., et al. (2017). Forging the basis for developing protein-ligand interaction scoring functions. Acc. Chem. Res. 50, 302-309. doi:10.1021/acs.accounts.6b00491.
    • (2017) Acc. Chem. Res. , vol.50 , pp. 302-309
    • Liu, Z.1    Su, M.2    Han, L.3    Liu, J.4    Yang, Q.5    Li, Y.6
  • 140
    • 0035848409 scopus 로고    scopus 로고
    • Customized versus universal scoring functions: Application to class I MHC-peptide binding free energy predictions
    • Logean, A., Sette, A., and Rognan, D. (2001). Customized versus universal scoring functions: Application to class I MHC-peptide binding free energy predictions. Bioorg. Med. Chem. Lett. 11, 675-679.
    • (2001) Bioorg. Med. Chem. Lett. , vol.11 , pp. 675-679
    • Logean, A.1    Sette, A.2    Rognan, D.3
  • 141
    • 84913544750 scopus 로고    scopus 로고
    • Covalent docking of large libraries for the discovery of chemical probes
    • London, N., Miller, R. M., Krishnan, S., Uchida, K., Irwin, J. J., Eidam, O., et al. (2014). Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 10, 1066-1072. doi:10.1038/nchembio.1666.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 1066-1072
    • London, N.1    Miller, R.M.2    Krishnan, S.3    Uchida, K.4    Irwin, J.J.5    Eidam, O.6
  • 142
    • 76249106208 scopus 로고    scopus 로고
    • Let's not forget tautomers
    • Martin, Y. C. (2009). Let's not forget tautomers. J. Comput. Aided Mol. Des. 23, 693-704. doi:10.1007/s10822-009-9303-2.
    • (2009) J. Comput. Aided Mol. Des. , vol.23 , pp. 693-704
    • Martin, Y.C.1
  • 143
    • 84962526213 scopus 로고    scopus 로고
    • Glossary of terms used in computational drug design, part II (IUPAC Recommendations 2015)
    • Martin, Y. C., Abagyan, R., Ferenczy, G. G., Gillet, V. J., Oprea, T. I., Ulander, J., et al. (2016). Glossary of terms used in computational drug design, part II (IUPAC Recommendations 2015). Pure Appl. Chem. 88, 239-264. doi:10.1515/pac-2012-1204.
    • (2016) Pure Appl. Chem. , vol.88 , pp. 239-264
    • Martin, Y.C.1    Abagyan, R.2    Ferenczy, G.G.3    Gillet, V.J.4    Oprea, T.I.5    Ulander, J.6
  • 144
    • 78650725078 scopus 로고    scopus 로고
    • Applications and success stories in virtual screening
    • ed. C. Sotriffer Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA
    • Matter, H., and Sotriffer, C. (2011). "Applications and success stories in virtual screening, " in Methods and Principles in Medicinal Chemistry, ed. C. Sotriffer (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 319-358.
    • (2011) Methods and Principles in Medicinal Chemistry , pp. 319-358
    • Matter, H.1    Sotriffer, C.2
  • 146
    • 84986432941 scopus 로고
    • Automated docking with grid-based energy evaluation
    • Meng, E. C., Shoichet, B. K., and Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. J. Comput. Chem. 13, 505-524. doi:10.1002/jcc.540130412.
    • (1992) J. Comput. Chem , vol.13 , pp. 505-524
    • Meng, E.C.1    Shoichet, B.K.2    Kuntz, I.D.3
  • 147
    • 84950162061 scopus 로고    scopus 로고
    • Why and how have drug discovery strategies in pharma changed? What are the new mindsets?
    • Mignani, S., Huber, S., Tomás, H., Rodrigues, J., and Majoral, J.-P. (2016). Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discov. Today 21, 239-249. doi:10.1016/j.drudis.2015.09.007.
    • (2016) Drug Discov. Today , vol.21 , pp. 239-249
    • Mignani, S.1    Huber, S.2    Tomás, H.3    Rodrigues, J.4    Majoral, J.-P.5
  • 148
    • 0030867610 scopus 로고    scopus 로고
    • Ligand binding to proteins: The binding landscape model
    • Miller, D. W., and Dill, K. A. (1997). Ligand binding to proteins: The binding landscape model. Protein Sci. 6, 2166-2179. doi:10.1002/pro.5560061011.
    • (1997) Protein Sci. , vol.6 , pp. 2166-2179
    • Miller, D.W.1    Dill, K.A.2
  • 149
    • 40349087133 scopus 로고    scopus 로고
    • Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go: Docking/scoring methods-a review
    • Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., and Corbeil, C. R. (2009). Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go: Docking/scoring methods-a review. Br. J. Pharmacol. 153, S7-S26. doi:10.1038/sj.bjp.0707515.
    • (2009) Br. J. Pharmacol. , vol.153 , pp. S7-S26
    • Moitessier, N.1    Englebienne, P.2    Lee, D.3    Lawandi, J.4    Corbeil, C.R.5
  • 150
    • 79960990847 scopus 로고    scopus 로고
    • Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I)
    • Morelli, X., Bourgeas, R., and Roche, P. (2011). Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr. Opin. Chem. Biol. 15, 475-481. doi:10.1016/j.cbpa.2011.05.024.
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 475-481
    • Morelli, X.1    Bourgeas, R.2    Roche, P.3
  • 151
    • 33749242403 scopus 로고    scopus 로고
    • PMF scoring revisited
    • Muegge, I. (2006). PMF scoring revisited. J. Med. Chem. 49, 5895-5902. doi:10.1021/jm050038s.
    • (2006) J. Med. Chem. , vol.49 , pp. 5895-5902
    • Muegge, I.1
  • 152
    • 84933041169 scopus 로고    scopus 로고
    • New drugs cost US$2.6 billion to develop
    • Mullard, A. (2014). New drugs cost US$2.6 billion to develop. Nat. Rev. Drug Discov. 13, 877-877. doi:10.1038/nrd4507.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 877-877
    • Mullard, A.1
  • 153
    • 84969512867 scopus 로고    scopus 로고
    • WScore: A flexible and accurate treatment of explicit water molecules in ligand-receptor docking
    • Murphy, R. B., Repasky, M. P., Greenwood, J. R., Tubert-Brohman, I., Jerome, S., Annabhimoju, R., et al. (2016). WScore: A flexible and accurate treatment of explicit water molecules in ligand-receptor docking. J. Med. Chem. 59, 4364-4384. doi:10.1021/acs.jmedchem.6b00131.
    • (2016) J. Med. Chem. , vol.59 , pp. 4364-4384
    • Murphy, R.B.1    Repasky, M.P.2    Greenwood, J.R.3    Tubert-Brohman, I.4    Jerome, S.5    Annabhimoju, R.6
  • 154
    • 84864264343 scopus 로고    scopus 로고
    • Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking
    • Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582-6594. doi:10.1021/jm300687e.
    • (2012) J. Med. Chem. , vol.55 , pp. 6582-6594
    • Mysinger, M.M.1    Carchia, M.2    Irwin, J.J.3    Shoichet, B.K.4
  • 155
    • 85061217218 scopus 로고    scopus 로고
    • Mathematical deep learning for pose and binding affinity prediction and ranking in D3R grand challenges
    • Epub ahead of print
    • Nguyen, D. D., Cang, Z., Wu, K., Wang, M., Cao, Y., and Wei, G.-W. (2018). Mathematical deep learning for pose and binding affinity prediction and ranking in D3R grand challenges. J. Comput. Aided Mol. Des. [Epub ahead of print].
    • (2018) J. Comput. Aided Mol. Des.
    • Nguyen, D.D.1    Cang, Z.2    Wu, K.3    Wang, M.4    Cao, Y.5    Wei, G.-W.6
  • 156
    • 9144230700 scopus 로고    scopus 로고
    • In situ extension as an approach for identifying novel α-amylase inhibitors
    • Numao, S., Damager, I., Li, C., Wrodnigg, T. M., Begum, A., Overall, C. M., et al. (2004). In situ extension as an approach for identifying novel α-amylase inhibitors. J. Biol. Chem. 279, 48282-48291. doi:10.1074/jbc.M406804200.
    • (2004) J. Biol. Chem. , vol.279 , pp. 48282-48291
    • Numao, S.1    Damager, I.2    Li, C.3    Wrodnigg, T.M.4    Begum, A.5    Overall, C.M.6
  • 157
    • 84906539667 scopus 로고    scopus 로고
    • Ligand-receptor affinities computed by an adapted linear interaction model for continuum electrostatics and by protein conformational averaging
    • Nunes-Alves, A., and Arantes, G. M. (2014). Ligand-receptor affinities computed by an adapted linear interaction model for continuum electrostatics and by protein conformational averaging. J. Chem. Inform. Model. 54, 2309-2319. doi:10.1021/ci500301s.
    • (2014) J. Chem. Inform. Model. , vol.54 , pp. 2309-2319
    • Nunes-Alves, A.1    Arantes, G.M.2
  • 158
    • 84872598296 scopus 로고    scopus 로고
    • Covalent dock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints
    • Ouyang, X., Zhou, S., Su, C. T. T., Ge, Z., Li, R., and Kwoh, C. K. (2013). Covalent dock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J. Comput. Chem. 34, 326-336. doi:10.1002/jcc.23136.
    • (2013) J. Comput. Chem. , vol.34 , pp. 326-336
    • Ouyang, X.1    Zhou, S.2    Su, C.T.T.3    Ge, Z.4    Li, R.5    Kwoh, C.K.6
  • 159
    • 85017008018 scopus 로고    scopus 로고
    • Software for molecular docking: A review
    • Pagadala, N. S., Syed, K., and Tuszynski, J. (2017). Software for molecular docking: A review. Biophys. Rev. 9, 91-102. doi:10.1007/s12551-016-0247-1.
    • (2017) Biophys. Rev , vol.9 , pp. 91-102
    • Pagadala, N.S.1    Syed, K.2    Tuszynski, J.3
  • 160
    • 65249095339 scopus 로고    scopus 로고
    • Evaluating docking methods for prediction of binding affinities of small molecules to the g protein βγ subunits
    • Park, M.-S., Dessal, A. L., Smrcka, A. V., and Stern, H. A. (2009). Evaluating docking methods for prediction of binding affinities of small molecules to the g protein βγ subunits. J. Chem. Inform. Model. 49, 437-443. doi:10.1021/ci800384q.
    • (2009) J. Chem. Inform. Model. , vol.49 , pp. 437-443
    • Park, M.-S.1    Dessal, A.L.2    Smrcka, A.V.3    Stern, H.A.4
  • 161
    • 77953325281 scopus 로고    scopus 로고
    • Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles
    • Park, S.-J., Kufareva, I., and Abagyan, R. (2010). Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. J. Comput. Aided Mol. Des. 24, 459-471. doi:10.1007/s10822-010-9362-4.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 459-471
    • Park, S.-J.1    Kufareva, I.2    Abagyan, R.3
  • 162
    • 84978269171 scopus 로고    scopus 로고
    • Empirical scoring functions for affinity prediction of protein-ligand complexes
    • Pason, L. P., and Sotriffer, C. A. (2016). Empirical scoring functions for affinity prediction of protein-ligand complexes. Mol. Inform. 35, 541-548. doi:10.1002/minf.201600048.
    • (2016) Mol. Inform. , vol.35 , pp. 541-548
    • Pason, L.P.1    Sotriffer, C.A.2
  • 163
    • 73349111930 scopus 로고    scopus 로고
    • Scoring ensembles of docked protein: Ligand interactions for virtual lead optimization
    • Paulsen, J. L., and Anderson, A. C. (2009). Scoring ensembles of docked protein: Ligand interactions for virtual lead optimization. J. Chem. Inform. Model. 49:2813. doi:10.1021/ci9003078.
    • (2009) J. Chem. Inform. Model. , vol.49 , pp. 2813
    • Paulsen, J.L.1    Anderson, A.C.2
  • 164
    • 85042127714 scopus 로고    scopus 로고
    • Ranking power of the SQM/COSMO scoring function on carbonic anhydrase II-inhibitor complexes
    • Pecina, A., Brynda, J., Vrzal, L., Gnanasekaran, R., Horejší, M., Eyrilmez, S. M., et al. (2018). Ranking power of the SQM/COSMO scoring function on carbonic anhydrase II-inhibitor complexes. Chem Phys Chem 19, 873-879. doi:10.1002/cphc.201701104.
    • (2018) Chem Phys Chem , vol.19 , pp. 873-879
    • Pecina, A.1    Brynda, J.2    Vrzal, L.3    Gnanasekaran, R.4    Horejší, M.5    Eyrilmez, S.M.6
  • 165
    • 85008475964 scopus 로고    scopus 로고
    • Boosting docking-based virtual screening with deep learning
    • Pereira, J. C., Caffarena, E. R., and dos Santos, C. N. (2016). Boosting docking-based virtual screening with deep learning. J. Chem. Inform. Model. 56, 2495-2506. doi:10.1021/acs.jcim.6b00355.
    • (2016) J. Chem. Inform. Model. , vol.56 , pp. 2495-2506
    • Pereira, J.C.1    Caffarena, E.R.2    Dos Santos, C.N.3
  • 166
    • 84878652881 scopus 로고    scopus 로고
    • The role of protonation states in ligand-receptor recognition and binding
    • Petukh, M., Stefl, S., and Alexov, E. (2013). The role of protonation states in ligand-receptor recognition and binding. Curr. Pharm. Des. 19, 4182-4190.
    • (2013) Curr. Pharm. Des. , vol.19 , pp. 4182-4190
    • Petukh, M.1    Stefl, S.2    Alexov, E.3
  • 167
    • 0036893503 scopus 로고    scopus 로고
    • Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding
    • Pierce, A. C., Sandretto, K. L., and Bemis, G. W. (2002). Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding. Proteins 49, 567-576. doi:10.1002/prot.10259.
    • (2002) Proteins , vol.49 , pp. 567-576
    • Pierce, A.C.1    Sandretto, K.L.2    Bemis, G.W.3
  • 168
    • 85008692166 scopus 로고    scopus 로고
    • CSM-lig: A web server for assessing and comparing protein-small molecule affinities
    • Pires, D. E. V., and Ascher, D. B. (2016). CSM-lig: A web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res. 44, W557-W561. doi:10.1093/nar/gkw390.
    • (2016) Nucleic Acids Res. , vol.44 , pp. W557-W561
    • Pires, D.E.V.1    Ascher, D.B.2
  • 169
    • 0029450365 scopus 로고
    • Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions
    • Poornima, C. S., and Dean, P. M. (1995). Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. J. Comput. Aided Mol. Des. 9, 500-512.
    • (1995) J. Comput. Aided Mol. Des. , vol.9 , pp. 500-512
    • Poornima, C.S.1    Dean, P.M.2
  • 170
    • 4043171970 scopus 로고    scopus 로고
    • The Gb/SA continuum model for solvation. A fast analytical method for the calculation of approximate born radii
    • Qiu, D., Shenkin, P. S., Hollinger, F. P., and Still, W. C. (1997). The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate born radii. J. Phys. Chem. A 101, 3005-3014. doi:10.1021/jp961992r.
    • (1997) J. Phys. Chem. a , vol.101 , pp. 3005-3014
    • Qiu, D.1    Shenkin, P.S.2    Hollinger, F.P.3    Still, W.C.4
  • 171
    • 85018558434 scopus 로고    scopus 로고
    • Protein-ligand scoring with convolutional neural networks
    • Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., and Koes, D. R. (2017). Protein-ligand scoring with convolutional neural networks. J. Chem. Inform. Model. 57, 942-957. doi:10.1021/acs.jcim.6b00740.
    • (2017) J. Chem. Inform. Model. , vol.57 , pp. 942-957
    • Ragoza, M.1    Hochuli, J.2    Idrobo, E.3    Sunseri, J.4    Koes, D.R.5
  • 172
    • 22244451417 scopus 로고    scopus 로고
    • Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes
    • Raha, K., and Merz, K. M. (2005). Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem. 48, 4558-4575. doi:10.1021/jm048973n.
    • (2005) J. Med. Chem , vol.48 , pp. 4558-4575
    • Raha, K.1    Merz, K.M.2
  • 173
    • 0030599010 scopus 로고    scopus 로고
    • A fast flexible docking method using an incremental construction algorithm
    • Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470-489. doi:10.1006/jmbi.1996.0477.
    • (1996) J. Mol. Biol. , vol.261 , pp. 470-489
    • Rarey, M.1    Kramer, B.2    Lengauer, T.3    Klebe, G.4
  • 174
    • 84953216380 scopus 로고    scopus 로고
    • AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility
    • Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., and Sanner, M. F. (2015). AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput. Biol. 11:e1004586. doi:10.1371/journal.pcbi.1004586.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004586
    • Ravindranath, P.A.1    Forli, S.2    Goodsell, D.S.3    Olson, A.J.4    Sanner, M.F.5
  • 175
    • 85041127181 scopus 로고    scopus 로고
    • Decoys selection in benchmarking datasets: Overview and perspectives
    • Réau, M., Langenfeld, F., Zagury, J.-F., Lagarde, N., and Montes, M. (2018). Decoys selection in benchmarking datasets: Overview and perspectives. Front. Pharmacol. 9:11. doi:10.3389/fphar.2018.00011.
    • (2018) Front. Pharmacol. , vol.9 , pp. 11
    • Réau, M.1    Langenfeld, F.2    Zagury, J.-F.3    Lagarde, N.4    Montes, M.5
  • 177
    • 85013656808 scopus 로고    scopus 로고
    • The impact of in silico screening in the discovery of novel and safer drug candidates
    • Rognan, D. (2017). The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacol. Ther. 175, 47-66. doi:10.1016/j.pharmthera.2017.02.034.
    • (2017) Pharmacol. Ther. , vol.175 , pp. 47-66
    • Rognan, D.1
  • 178
    • 0033523959 scopus 로고    scopus 로고
    • Predicting binding affinities of protein ligands from three-dimensional models: Application to peptide binding to class I major histocompatibility proteins
    • Rognan, D., Lauemoller, S. L., Holm, A., Buus, S., and Tschinke, V. (1999). Predicting binding affinities of protein ligands from three-dimensional models: Application to peptide binding to class I major histocompatibility proteins. J. Med. Chem. 42, 4650-4658.
    • (1999) J. Med. Chem , vol.42 , pp. 4650-4658
    • Rognan, D.1    Lauemoller, S.L.2    Holm, A.3    Buus, S.4    Tschinke, V.5
  • 179
    • 84969593568 scopus 로고    scopus 로고
    • Ligand-binding affinity estimates supported by quantum-mechanical methods
    • Ryde, U., and Söderhjelm, P. (2016). Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem. Rev. 116, 5520-5566. doi:10.1021/acs.chemrev.5b00630.
    • (2016) Chem. Rev. , vol.116 , pp. 5520-5566
    • Ryde, U.1    Söderhjelm, P.2
  • 180
    • 84983535300 scopus 로고    scopus 로고
    • Interaction with specific HSP90 residues as a scoring function: Validation in the D3R Grand Challenge 2015
    • Santos-Martins, D. (2016). Interaction with specific HSP90 residues as a scoring function: Validation in the D3R Grand Challenge 2015. J. Comput. Aided Mol. Des. 30, 731-742. doi:10.1007/s10822-016-9943-y.
    • (2016) J. Comput. Aided Mol. Des. , vol.30 , pp. 731-742
    • Santos-Martins, D.1
  • 181
    • 84906569752 scopus 로고    scopus 로고
    • AutoDock4Zn: An improved autodock force field for small-molecule docking to zinc metalloproteins
    • Santos-Martins, D., Forli, S., Ramos, M. J., and Olson, A. J. (2014). AutoDock4Zn: An improved autodock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inform. Model. 54, 2371-2379. doi:10.1021/ci500209e.
    • (2014) J. Chem. Inform. Model. , vol.54 , pp. 2371-2379
    • Santos-Martins, D.1    Forli, S.2    Ramos, M.J.3    Olson, A.J.4
  • 182
    • 84880529288 scopus 로고    scopus 로고
    • Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments
    • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., and Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221-234. doi:10.1007/s10822-013-9644-8.
    • (2013) J. Comput. Aided Mol. Des. , vol.27 , pp. 221-234
    • Sastry, G.M.1    Adzhigirey, M.2    Day, T.3    Annabhimoju, R.4    Sherman, W.5
  • 183
    • 0036467064 scopus 로고    scopus 로고
    • Entropy calculations on the molten globule state of a protein: Side-chain entropies of α-lactalbumin
    • Schäfer, H., Smith, L. J., Mark, A. E., and van Gunsteren, W. F. (2002). Entropy calculations on the molten globule state of a protein: Side-chain entropies of α-lactalbumin. Proteins Struct. Funct. Bioinform. 46, 215-224. doi:10.1002/prot.1166.
    • (2002) Proteins Struct. Funct. Bioinform. , vol.46 , pp. 215-224
    • Schäfer, H.1    Smith, L.J.2    Mark, A.E.3    Van Gunsteren, W.F.4
  • 184
    • 23844449940 scopus 로고    scopus 로고
    • Computer-based de novo design of drug-like molecules
    • Schneider, G., and Fechner, U. (2005). Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649-663. doi:10.1038/nrd1799.
    • (2005) Nat. Rev. Drug Discov. , vol.4 , pp. 649-663
    • Schneider, G.1    Fechner, U.2
  • 185
    • 84923327259 scopus 로고    scopus 로고
    • DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment
    • Scholz, C., Knorr, S., Hamacher, K., and Schmidt, B. (2015). DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment. J. Chem. Inform. Model. 55, 398-406. doi:10.1021/ci500681r.
    • (2015) J. Chem. Inform. Model. , vol.55 , pp. 398-406
    • Scholz, C.1    Knorr, S.2    Hamacher, K.3    Schmidt, B.4
  • 186
    • 67349104587 scopus 로고    scopus 로고
    • Targeted scoring functions for virtual screening
    • Seifert, M. H. J. (2009). Targeted scoring functions for virtual screening. Drug Discov. Today 14, 562-569. doi:10.1016/j.drudis.2009.03.013.
    • (2009) Drug Discov. Today , vol.14 , pp. 562-569
    • Seifert, M.H.J.1
  • 187
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • Shao, J. (1993). Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486-494. doi:10.2307/2290328.
    • (1993) J. Am. Stat. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 188
    • 33845491449 scopus 로고    scopus 로고
    • Interpreting steep dose-response curves in early inhibitor discovery
    • Shoichet, B. K. (2006). Interpreting steep dose-response curves in early inhibitor discovery. J. Med. Chem. 49, 7274-7277. doi:10.1021/jm061103g.
    • (2006) J. Med. Chem. , vol.49 , pp. 7274-7277
    • Shoichet, B.K.1
  • 189
    • 32844457567 scopus 로고
    • Accurate calculation of hydration free energies using macroscopic solvent models
    • Sitkoff, D., Sharp, K. A., and Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978-1988doi:10.1021/j100058a043.
    • (1994) J. Phys. Chem. , vol.98 , pp. 1978-1988
    • Sitkoff, D.1    Sharp, K.A.2    Honig, B.3
  • 190
    • 84976347059 scopus 로고    scopus 로고
    • CSAR benchmark exercise 2013: Evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge
    • Smith, R. D., Damm-Ganamet, K. L., Dunbar, J. B., Ahmed, A., Chinnaswamy, K., Delproposto, J. E., et al. (2016). CSAR benchmark exercise 2013: Evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge. J. Chem. Inform. Model. 56, 1022-1031. doi:10.1021/acs.jcim.5b00387.
    • (2016) J. Chem. Inform. Model. , vol.56 , pp. 1022-1031
    • Smith, R.D.1    Damm-Ganamet, K.L.2    Dunbar, J.B.3    Ahmed, A.4    Chinnaswamy, K.5    Delproposto, J.E.6
  • 191
    • 84871717368 scopus 로고    scopus 로고
    • Scoring functions for protein-ligand interactions
    • , ed. H. Gohlke Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA
    • Sotriffer, C. (2012). "Scoring functions for protein-ligand interactions, " in Protein-Ligand Interactions, ed. H. Gohlke (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 237-263.
    • (2012) Protein-Ligand Interactions , pp. 237-263
    • Sotriffer, C.1
  • 192
    • 84883237021 scopus 로고    scopus 로고
    • The challenge of affinity prediction: Scoring functions for structure-based virtual screening
    • ed. C. Sotriffer Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA
    • Sotriffer, C., and Matter, H. (2011). "The challenge of affinity prediction: Scoring functions for structure-based virtual screening, " in Methods and Principles in Medicinal Chemistry, ed. C. Sotriffer (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 177-221.
    • (2011) Methods and Principles in Medicinal Chemistry , pp. 177-221
    • Sotriffer, C.1    Matter, H.2
  • 193
    • 52249113723 scopus 로고    scopus 로고
    • SFCscore: Scoring functions for affinity prediction of protein-ligand complexes
    • Sotriffer, C. A., Sanschagrin, P., Matter, H., and Klebe, G. (2008). SFCscore: Scoring functions for affinity prediction of protein-ligand complexes. Proteins 73, 395-419. doi:10.1002/prot.22058.
    • (2008) Proteins , vol.73 , pp. 395-419
    • Sotriffer, C.A.1    Sanschagrin, P.2    Matter, H.3    Klebe, G.4
  • 195
    • 84939813976 scopus 로고    scopus 로고
    • Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description
    • Spyrakis, F., and Cavasotto, C. N. (2015). Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Arch. Biochem. Biophys. 583, 105-119. doi:10.1016/j.abb.2015.08.002.
    • (2015) Arch. Biochem. Biophys. , vol.583 , pp. 105-119
    • Spyrakis, F.1    Cavasotto, C.N.2
  • 196
    • 0344778061 scopus 로고
    • Semianalytical treatment of solvation for molecular mechanics and dynamics
    • Still, W. C., Tempczyk, A., Hawley, R. C., and Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127-6129. doi:10.1021/ja00172a038.
    • (1990) J. Am. Chem. Soc. , vol.112 , pp. 6127-6129
    • Still, W.C.1    Tempczyk, A.2    Hawley, R.C.3    Hendrickson, T.4
  • 197
    • 41349113136 scopus 로고    scopus 로고
    • Editorial: Special issue on "evaluation of computational methods
    • Stouch, T. (2008). Editorial: Special issue on "evaluation of computational methods." J. Comput. Aided Mol. Des. 22:131. doi:10.1007/s10822-008-9197-4.
    • (2008) J. Comput. Aided Mol. Des. , vol.22 , pp. 131
    • Stouch, T.1
  • 198
    • 84904438047 scopus 로고    scopus 로고
    • Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set
    • Sun, H., Li, Y., Tian, S., Xu, L., and Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 16, 16719-16729. doi:10.1039/c4cp01388c.
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 16719-16729
    • Sun, H.1    Li, Y.2    Tian, S.3    Xu, L.4    Hou, T.5
  • 200
    • 34247262566 scopus 로고    scopus 로고
    • Supervised consensus scoring for docking and virtual screening
    • Teramoto, R., and Fukunishi, H. (2007). Supervised consensus scoring for docking and virtual screening. J. Chem. Inform. Model. 47, 526-534. doi:10.1021/ci6004993.
    • (2007) J. Chem. Inform. Model. , vol.47 , pp. 526-534
    • Teramoto, R.1    Fukunishi, H.2
  • 201
    • 0035811458 scopus 로고    scopus 로고
    • A new concept for multidimensional selection of ligand conformations (multiselect) and multidimensional scoring (multiscore) of protein-ligand binding affinities
    • Terp, G. E., Johansen, B. N., Christensen, I. T., and Jørgensen, F. S. (2001). A new concept for multidimensional selection of ligand conformations (multiselect) and multidimensional scoring (multiscore) of protein-ligand binding affinities. J. Med. Chem. 44, 2333-2343. doi:10.1021/jm001090l.
    • (2001) J. Med. Chem. , vol.44 , pp. 2333-2343
    • Terp, G.E.1    Johansen, B.N.2    Christensen, I.T.3    Jørgensen, F.S.4
  • 202
    • 0031302358 scopus 로고    scopus 로고
    • Flexible protein-ligand docking by global energy optimization in internal coordinates
    • Totrov, M., and Abagyan, R. (1997). Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Suppl. 1, 215-220.
    • (1997) Proteins Suppl , vol.1 , pp. 215-220
    • Totrov, M.1    Abagyan, R.2
  • 204
    • 85042878150 scopus 로고    scopus 로고
    • Rapid measurement of inhibitor binding kinetics by isothermal titration calorimetry
    • Trani, J. M. D., Cesco, S. D., O'Leary, R., Plescia, J., Nascimento, C. J. do, Moitessier, N., et al. (2018). Rapid measurement of inhibitor binding kinetics by isothermal titration calorimetry. Nat. Commun. 9:893. doi:10.1038/s41467-018-03263-3.
    • (2018) Nat. Commun. , vol.9 , pp. 893
    • Trani, J.M.D.1    Cesco, S.D.2    O'Leary, R.3    Plescia, J.4    Nascimento, C.J.D.5    Moitessier, N.6
  • 205
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading
    • Trott, O., and Olson, A. J. (2010). AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455-461. doi:10.1002/jcc.21334.
    • (2010) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 206
    • 84855460321 scopus 로고    scopus 로고
    • Flexibility and binding affinity in protein-ligand, protein-protein and multi-component protein interactions: Limitations of current computational approaches
    • Tuffery, P., and Derreumaux, P. (2012). Flexibility and binding affinity in protein-ligand, protein-protein and multi-component protein interactions: Limitations of current computational approaches. J. R. Soc. Interface 9, 20-33. doi:10.1098/rsif.2011.0584.
    • (2012) J. R. Soc. Interface , vol.9 , pp. 20-33
    • Tuffery, P.1    Derreumaux, P.2
  • 207
    • 85050906554 scopus 로고    scopus 로고
    • The taxonomy of covalent inhibitors
    • Mosc
    • Tuley, A., and Fast, W. (2018). The taxonomy of covalent inhibitors. Biochemistry (Mosc.) 57, 3326-3337. doi:10.1021/acs.biochem.8b00315.
    • (2018) Biochemistry , vol.57 , pp. 3326-3337
    • Tuley, A.1    Fast, W.2
  • 208
    • 85043348813 scopus 로고    scopus 로고
    • Recent updates on computer-aided drug discovery: Time for a paradigm shift
    • Usha, T., Shanmugarajan, D., Goyal, A. K., Kumar, C. S., and Middha, S. K. (2017). Recent updates on computer-aided drug discovery: Time for a paradigm shift. Curr. Top. Med. Chem. 17, 3296-3307. doi:10.2174/1568026618666180101163651.
    • (2017) Curr. Top. Med. Chem. , vol.17 , pp. 3296-3307
    • Usha, T.1    Shanmugarajan, D.2    Goyal, A.K.3    Kumar, C.S.4    Middha, S.K.5
  • 209
    • 84959457637 scopus 로고    scopus 로고
    • The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes
    • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., et al. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720-725. doi:10.1016/j.jmb.2015.09.014.
    • (2016) J. Mol. Biol. , vol.428 , pp. 720-725
    • Van Zundert, G.C.P.1    Rodrigues, J.P.G.L.M.2    Trellet, M.3    Schmitz, C.4    Kastritis, P.L.5    Karaca, E.6
  • 210
    • 26444588137 scopus 로고    scopus 로고
    • DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction
    • Velec, H. F. G., Gohlke, H., and Klebe, G. (2005). DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J. Med. Chem. 48, 6296-6303. doi:10.1021/jm050436v.
    • (2005) J. Med. Chem. , vol.48 , pp. 6296-6303
    • Velec, H.F.G.1    Gohlke, H.2    Klebe, G.3
  • 213
    • 71249128422 scopus 로고    scopus 로고
    • Structure-based virtual ligand screening: Recent success stories
    • Villoutreix, B., Eudes, R., and Miteva, M. (2009). Structure-based virtual ligand screening: Recent success stories. Comb. Chem. High Throughput Screen. 12, 1000-1016. doi:10.2174/138620709789824682.
    • (2009) Comb. Chem. High Throughput Screen , vol.12 , pp. 1000-1016
    • Villoutreix, B.1    Eudes, R.2    Miteva, M.3
  • 214
    • 80054933039 scopus 로고    scopus 로고
    • DEKOIS: Demanding evaluation kits for objective in silico screening - A versatile tool for benchmarking docking programs and scoring functions
    • Vogel, S. M., Bauer, M. R., and Boeckler, F. M. (2011). DEKOIS: Demanding evaluation kits for objective in silico screening - A versatile tool for benchmarking docking programs and scoring functions. J. Chem. Inf. Model. 51, 2650-2665. doi:10.1021/ci2001549.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2650-2665
    • Vogel, S.M.1    Bauer, M.R.2    Boeckler, F.M.3
  • 216
    • 85000454204 scopus 로고    scopus 로고
    • Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest
    • Wang, C., and Zhang, Y. (2017). Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem. 38, 169-177. doi:10.1002/jcc.24667.
    • (2017) J. Comput. Chem. , vol.38 , pp. 169-177
    • Wang, C.1    Zhang, Y.2
  • 217
    • 80054928964 scopus 로고    scopus 로고
    • Robust scoring functions for protein-ligand interactions with quantum chemical charge models
    • Wang, J.-C., Lin, J.-H., Chen, C.-M., Perryman, A. L., and Olson, A. J. (2011). Robust scoring functions for protein-ligand interactions with quantum chemical charge models. J. Chem. Inform. Model. 51, 2528-2537. doi:10.1021/ci200220v.
    • (2011) J. Chem. Inform. Model. , vol.51 , pp. 2528-2537
    • Wang, J.-C.1    Lin, J.-H.2    Chen, C.-M.3    Perryman, A.L.4    Olson, A.J.5
  • 218
    • 0036022960 scopus 로고    scopus 로고
    • Further development and validation of empirical scoring functions for structure-based binding affinity prediction
    • Wang, R., Lai, L., and Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16, 11-26.
    • (2002) J. Comput. Aided Mol. Des. , vol.16 , pp. 11-26
    • Wang, R.1    Lai, L.2    Wang, S.3
  • 219
    • 0001704085 scopus 로고    scopus 로고
    • SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex
    • Wang, R., Liu, L., Lai, L., and Tang, Y. (1998). SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex. J. Mol. Model. 4, 379-394. doi:10.1007/s008940050096.
    • (1998) J. Mol. Model. , vol.4 , pp. 379-394
    • Wang, R.1    Liu, L.2    Lai, L.3    Tang, Y.4
  • 220
    • 0037763817 scopus 로고    scopus 로고
    • Comparative evaluation of 11 scoring functions for molecular docking
    • Wang, R., Lu, Y., and Wang, S. (2003). Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem. 46, 2287-2303. doi:10.1021/jm0203783.
    • (2003) J. Med. Chem. , vol.46 , pp. 2287-2303
    • Wang, R.1    Lu, Y.2    Wang, S.3
  • 221
    • 0035438402 scopus 로고    scopus 로고
    • How does consensus scoring work for virtual library screening? An idealized computer experiment
    • Wang, R., and Wang, S. (2001). How does consensus scoring work for virtual library screening? An idealized computer experiment. J. Chem. Inform. Comput. Sci. 41, 1422-1426.
    • (2001) J. Chem. Inform. Comput. Sci. , vol.41 , pp. 1422-1426
    • Wang, R.1    Wang, S.2
  • 222
    • 84925496993 scopus 로고    scopus 로고
    • A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach
    • Wang, Y., Guo, Y., Kuang, Q., Pu, X., Ji, Y., Zhang, Z., et al. (2015). A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach. J. Comput. Aided Mol. Des. 29, 349-360. doi:10.1007/s10822-014-9827-y.
    • (2015) J. Comput. Aided Mol. Des. , vol.29 , pp. 349-360
    • Wang, Y.1    Guo, Y.2    Kuang, Q.3    Pu, X.4    Ji, Y.5    Zhang, Z.6
  • 223
    • 0036382728 scopus 로고    scopus 로고
    • A model binding site for testing scoring functions in molecular docking
    • Wei, B. Q., Baase, W. A., Weaver, L. H., Matthews, B. W., and Shoichet, B. K. (2002). A model binding site for testing scoring functions in molecular docking. J. Mol. Biol. 322, 339-355.
    • (2002) J. Mol. Biol. , vol.322 , pp. 339-355
    • Wei, B.Q.1    Baase, W.A.2    Weaver, L.H.3    Matthews, B.W.4    Shoichet, B.K.5
  • 224
    • 77958565592 scopus 로고    scopus 로고
    • Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening
    • Wei, D., Zheng, H., Su, N., Deng, M., and Lai, L. (2010). Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening. J. Chem. Inform. Model. 50, 1855-1864. doi:10.1021/ci900463u.
    • (2010) J. Chem. Inform. Model. , vol.50 , pp. 1855-1864
    • Wei, D.1    Zheng, H.2    Su, N.3    Deng, M.4    Lai, L.5
  • 225
    • 0033451033 scopus 로고    scopus 로고
    • Estimating binding constants - The hydrophobic effect and cooperativity
    • Williams, D. H., and Bardsley, B. (1999). Estimating binding constants - The hydrophobic effect and cooperativity. Perspect. Drug Discov. Des. 17, 43-59. doi:10.1023/A:1008770523049.
    • (1999) Perspect. Drug Discov. Des. , vol.17 , pp. 43-59
    • Williams, D.H.1    Bardsley, B.2
  • 226
    • 85027440798 scopus 로고    scopus 로고
    • Performance of machine-learning scoring functions in structure-based virtual screening
    • Wójcikowski, M., Ballester, P. J., and Siedlecki, P. (2017). Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 7:46710. doi:10.1038/srep46710.
    • (2017) Sci. Rep. , vol.7 , pp. 46710
    • Wójcikowski, M.1    Ballester, P.J.2    Siedlecki, P.3
  • 227
    • 23844555629 scopus 로고    scopus 로고
    • Consensus scoring criteria for improving enrichment in virtual screening
    • Yang, J.-M., Chen, Y.-F., Shen, T.-W., Kristal, B. S., and Hsu, D. F. (2005). Consensus scoring criteria for improving enrichment in virtual screening. J. Chem. Inform. Model. 45, 1134-1146. doi:10.1021/ci050034w.
    • (2005) J. Chem. Inform. Model. , vol.45 , pp. 1134-1146
    • Yang, J.-M.1    Chen, Y.-F.2    Shen, T.-W.3    Kristal, B.S.4    Hsu, D.F.5
  • 228
    • 84874299846 scopus 로고    scopus 로고
    • Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: The use of WaterMap
    • Yang, Y., Lightstone, F. C., and Wong, S. E. (2013). Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: The use of WaterMap. Exp. Opin. Drug Discov. 8, 277-287. doi:10.1517/17460441.2013.749853.
    • (2013) Exp. Opin. Drug Discov. , vol.8 , pp. 277-287
    • Yang, Y.1    Lightstone, F.C.2    Wong, S.E.3
  • 229
    • 84938078670 scopus 로고    scopus 로고
    • A quantum mechanics-based halogen bonding scoring function for protein-ligand interactions
    • Yang, Z., Liu, Y., Chen, Z., Xu, Z., Shi, J., Chen, K., et al. (2015). A quantum mechanics-based halogen bonding scoring function for protein-ligand interactions. J. Mol. Model. 21:138. doi:10.1007/s00894-015-2681-6.
    • (2015) J. Mol. Model. , vol.21 , pp. 138
    • Yang, Z.1    Liu, Y.2    Chen, Z.3    Xu, Z.4    Shi, J.5    Chen, K.6
  • 230
    • 84983643559 scopus 로고    scopus 로고
    • Prospects of applying enhanced semi-empirical QM methods for 2101 virtual drug design
    • Yilmazer, N. D., and Korth, M. (2016). Prospects of applying enhanced semi-empirical QM methods for 2101 virtual drug design. Curr. Med. Chem. 23, 2101-2111.
    • (2016) Curr. Med. Chem. , vol.23 , pp. 2101-2111
    • Yilmazer, N.D.1    Korth, M.2
  • 231
    • 84941075640 scopus 로고    scopus 로고
    • Improvements, trends, and new ideas in molecular docking: 2012-2013 in review: Improvements, trends, and new ideas in molecular docking
    • Yuriev, E., Holien, J., and Ramsland, P. A. (2015). Improvements, trends, and new ideas in molecular docking: 2012-2013 in review: Improvements, trends, and new ideas in molecular docking. J. Mol. Recognit. 28, 581-604. doi:10.1002/jmr.2471.
    • (2015) J. Mol. Recognit. , vol.28 , pp. 581-604
    • Yuriev, E.1    Holien, J.2    Ramsland, P.A.3
  • 232
    • 84875480305 scopus 로고    scopus 로고
    • Latest developments in molecular docking: 2010-2011 in review
    • Yuriev, E., and Ramsland, P. A. (2013). Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit. JMR 26, 215-239. doi:10.1002/jmr.2266.
    • (2013) J. Mol. Recognit. JMR , vol.26 , pp. 215-239
    • Yuriev, E.1    Ramsland, P.A.2
  • 233
    • 85028803040 scopus 로고    scopus 로고
    • From machine learning to deep learning: Progress in machine intelligence for rational drug discovery
    • Zhang, L., Tan, J., Han, D., and Zhu, H. (2017). From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov. Today 22, 1680-1685. doi:10.1016/j.drudis.2017.08.010.
    • (2017) Drug Discov. Today , vol.22 , pp. 1680-1685
    • Zhang, L.1    Tan, J.2    Han, D.3    Zhu, H.4
  • 234
    • 85019550196 scopus 로고    scopus 로고
    • A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin
    • Zhang, X., Perez-Sanchez, H., and Lightstone, F. C. (2017). A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr. Top. Med. Chem. 17, 1631-1639. doi:10.2174/1568026616666161117112604.
    • (2017) Curr. Top. Med. Chem. , vol.17 , pp. 1631-1639
    • Zhang, X.1    Perez-Sanchez, H.2    Lightstone, F.C.3
  • 235
    • 79959765741 scopus 로고    scopus 로고
    • Ligand identification scoring algorithm (LISA)
    • Zheng, Z., and Merz, K. M. (2011). Ligand identification scoring algorithm (LISA). J. Chem. Inform. Model. 51, 1296-1306. doi:10.1021/ci2000665.
    • (2011) J. Chem. Inform. Model. , vol.51 , pp. 1296-1306
    • Zheng, Z.1    Merz, K.M.2
  • 236
    • 84904966114 scopus 로고    scopus 로고
    • Docking covalent inhibitors: A parameter free approach to pose prediction and scoring
    • Zhu, K., Borrelli, K. W., Greenwood, J. R., Day, T., Abel, R., Farid, R. S., et al. (2014). Docking covalent inhibitors: A parameter free approach to pose prediction and scoring. J. Chem. Inform. Model. 54, 1932-1940. doi:10.1021/ci500118s.
    • (2014) J. Chem. Inform. Model. , vol.54 , pp. 1932-1940
    • Zhu, K.1    Borrelli, K.W.2    Greenwood, J.R.3    Day, T.4    Abel, R.5    Farid, R.S.6
  • 237
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore RF: A random forest-based scoring function for improved affinity prediction of proteinligand complexes
    • Zilian, D., and Sotriffer, C. A. (2013). SFCscore RF: A random forest-based scoring function for improved affinity prediction of proteinligand complexes. J. Chem. Inf. Model. 53, 1923-1933. doi:10.1021/ci400120b.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 238
    • 84925434864 scopus 로고    scopus 로고
    • Evaluating the potential of halogen bonding in molecular design: Automated scaffold decoration using the new scoring function XBScore
    • Zimmermann, M. O., Lange, A., and Boeckler, F. M. (2015). Evaluating the potential of halogen bonding in molecular design: Automated scaffold decoration using the new scoring function XBScore. J. Chem. Inform. Model. 55, 687-699. doi:10.1021/ci5007118.
    • (2015) J. Chem. Inform. Model. , vol.55 , pp. 687-699
    • Zimmermann, M.O.1    Lange, A.2    Boeckler, F.M.3
  • 239
    • 0033536456 scopus 로고    scopus 로고
    • Inclusion of solvation in ligand binding free energy calculations using the generalized-born model
    • Zou, X., and Kuntz, I. D. (1999). Inclusion of solvation in ligand binding free energy calculations using the generalized-born model. J. Am. Chem. Soc. 121, 8033-8043. doi:10.1021/ja984102p.
    • (1999) J. Am. Chem. Soc. , vol.121 , pp. 8033-8043
    • Zou, X.1    Kuntz, I.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.