메뉴 건너뛰기




Volumn 26, Issue 5, 2013, Pages 215-239

Latest developments in molecular docking: 2010-2011 in review

Author keywords

binding mode prediction; GPCR; kinase; postprocessing; receptor flexibility; scoring; validation; virtual screening

Indexed keywords

LIGAND;

EID: 84875480305     PISSN: 09523499     EISSN: 10991352     Source Type: Journal    
DOI: 10.1002/jmr.2266     Document Type: Review
Times cited : (270)

References (218)
  • 1
    • 84861118556 scopus 로고    scopus 로고
    • Outstanding challenges in protein-ligand docking and structure-based virtual screening
    • Waszkowycz B, Clark DE, Gancia E,. 2011. Outstanding challenges in protein-ligand docking and structure-based virtual screening. WIREs Comput. Mol. Sci. 1: 229-259.
    • (2011) WIREs Comput. Mol. Sci. , vol.1 , pp. 229-259
    • Waszkowycz, B.1    Clark, D.E.2    Gancia, E.3
  • 2
    • 79955536838 scopus 로고    scopus 로고
    • A collaborative filtering approach for protein-protein docking scoring functions
    • Bourquard T, Bernauer J, Aze J, Poupon A,. 2011. A collaborative filtering approach for protein-protein docking scoring functions. PLoS One 6: e18541.
    • (2011) PLoS One , vol.6
    • Bourquard, T.1    Bernauer, J.2    Aze, J.3    Poupon, A.4
  • 3
    • 78449251367 scopus 로고    scopus 로고
    • Recent insights on the medicinal chemistry of metal-based compounds: Hints for the successful drug design
    • Hernandes MZ, de SPFJ, Coelho LC, Moreira DR, Pereira VR, Leite AC,. 2010. Recent insights on the medicinal chemistry of metal-based compounds: hints for the successful drug design. Curr. Med. Chem. 17: 3739-3750.
    • (2010) Curr. Med. Chem. , vol.17 , pp. 3739-3750
    • Hernandes, M.Z.1    De, S.P.F.J.2    Coelho, L.C.3    Moreira, D.R.4    Pereira, V.R.5    Leite, A.C.6
  • 4
    • 79952181220 scopus 로고    scopus 로고
    • Challenges and advances in computational docking: 2009 in review
    • Yuriev E, Agostino M, Ramsland PA,. 2011. Challenges and advances in computational docking: 2009 in review. J. Mol. Recognit. 24: 149-164.
    • (2011) J. Mol. Recognit. , vol.24 , pp. 149-164
    • Yuriev, E.1    Agostino, M.2    Ramsland, P.A.3
  • 5
    • 79957628053 scopus 로고    scopus 로고
    • Toward a robust search method for the protein-drug docking problem
    • Sadjad BS, Zsoldos Z,. 2011. Toward a robust search method for the protein-drug docking problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 8: 1120-1133.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.8 , pp. 1120-1133
    • Sadjad, B.S.1    Zsoldos, Z.2
  • 7
    • 77953955973 scopus 로고    scopus 로고
    • A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity
    • Luo W, Pei J, Zhu Y,. 2010. A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity. J. Mol. Model. 16: 903-913.
    • (2010) J. Mol. Model. , vol.16 , pp. 903-913
    • Luo, W.1    Pei, J.2    Zhu, Y.3
  • 8
    • 77952703512 scopus 로고    scopus 로고
    • Automated docking of flexible molecules into receptor binding sites by ligand self-organization in situ
    • Klenner A, Weisel M, Reisen F, Proschak E, Schneider G,. 2010. Automated docking of flexible molecules into receptor binding sites by ligand self-organization in situ. Mol. Inf. 29: 189-193.
    • (2010) Mol. Inf. , vol.29 , pp. 189-193
    • Klenner, A.1    Weisel, M.2    Reisen, F.3    Proschak, E.4    Schneider, G.5
  • 10
    • 77953039644 scopus 로고    scopus 로고
    • Blind docking method combining search of low-resolution binding sites with ligand pose refinement by molecular dynamics-based global optimization
    • Vorobjev YN,. 2010. Blind docking method combining search of low-resolution binding sites with ligand pose refinement by molecular dynamics-based global optimization. J. Comput. Chem. 31: 1080-1092.
    • (2010) J. Comput. Chem. , vol.31 , pp. 1080-1092
    • Vorobjev, Y.N.1
  • 11
    • 77953052604 scopus 로고    scopus 로고
    • Q-Dock(LHM): Low-resolution refinement for ligand comparative modeling
    • Brylinski M, Skolnick J,. 2010. Q-Dock(LHM): low-resolution refinement for ligand comparative modeling. J. Comput. Chem. 31: 1093-1105.
    • (2010) J. Comput. Chem. , vol.31 , pp. 1093-1105
    • Brylinski, M.1    Skolnick, J.2
  • 12
    • 80053177770 scopus 로고    scopus 로고
    • LigDockCSA: Protein-ligand docking using conformational space annealing
    • Shin WH, Heo L, Lee J, Ko J, Seok C, Lee J,. 2011. LigDockCSA: protein-ligand docking using conformational space annealing. J. Comput. Chem. 32: 3226-3232.
    • (2011) J. Comput. Chem. , vol.32 , pp. 3226-3232
    • Shin, W.H.1    Heo, L.2    Lee, J.3    Ko, J.4    Seok, C.5    Lee, J.6
  • 13
    • 79958242366 scopus 로고    scopus 로고
    • Fast docking using the CHARMM force field with EADock DSS
    • Grosdidier A, Zoete V, Michielin O,. 2011. Fast docking using the CHARMM force field with EADock DSS. J. Comput. Chem. 32: 2149-2159.
    • (2011) J. Comput. Chem. , vol.32 , pp. 2149-2159
    • Grosdidier, A.1    Zoete, V.2    Michielin, O.3
  • 14
    • 77956410548 scopus 로고    scopus 로고
    • Theory of docking scores and its application to a customizable scoring function
    • Takahashi O, Masuda Y, Muroya A, Furuya T,. 2010. Theory of docking scores and its application to a customizable scoring function. SAR QSAR Environ. Res. 21: 547-558.
    • (2010) SAR QSAR Environ. Res. , vol.21 , pp. 547-558
    • Takahashi, O.1    Masuda, Y.2    Muroya, A.3    Furuya, T.4
  • 15
    • 78149450921 scopus 로고    scopus 로고
    • SKATE: A docking program that decouples systematic sampling from scoring
    • Feng JA, Marshall GR,. 2010. SKATE: a docking program that decouples systematic sampling from scoring. J. Comput. Chem. 31: 2540-2454.
    • (2010) J. Comput. Chem. , vol.31 , pp. 2540-2454
    • Feng, J.A.1    Marshall, G.R.2
  • 16
    • 80755159036 scopus 로고    scopus 로고
    • A python-based docking program utilizing a receptor bound ligand shape: PythDock
    • Chung JY, Cho SJ, Hah JM,. 2011. A python-based docking program utilizing a receptor bound ligand shape: PythDock. Arch. Pharm. Res. 34: 1451-1458.
    • (2011) Arch. Pharm. Res. , vol.34 , pp. 1451-1458
    • Chung, J.Y.1    Cho, S.J.2    Hah, J.M.3
  • 18
    • 77957237749 scopus 로고    scopus 로고
    • Rapid flexible docking using a stochastic rotamer library of ligands
    • Ding F, Yin S, Dokholyan NV,. 2010. Rapid flexible docking using a stochastic rotamer library of ligands. J. Chem. Inf. Model. 50: 1623-1632.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1623-1632
    • Ding, F.1    Yin, S.2    Dokholyan, N.V.3
  • 19
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • Trott O, Olson AJ,. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.
    • (2010) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 20
    • 77952754227 scopus 로고    scopus 로고
    • ParaDockS: A framework for molecular docking with population-based metaheuristics
    • Meier R, Pippel M, Brandt F, Sippl W, Baldauf C,. 2010. ParaDockS: a framework for molecular docking with population-based metaheuristics. J. Chem. Inf. Model. 50: 879-889.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 879-889
    • Meier, R.1    Pippel, M.2    Brandt, F.3    Sippl, W.4    Baldauf, C.5
  • 21
    • 79960218748 scopus 로고    scopus 로고
    • Efficient incorporation of protein flexibility and dynamics into molecular docking simulations
    • Lill MA,. 2011. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry 50: 6157-669.
    • (2011) Biochemistry , vol.50 , pp. 6157-6669
    • Lill, M.A.1
  • 22
    • 78649867646 scopus 로고    scopus 로고
    • Accounting for induced-fit effects in docking: What is possible and what is not?
    • Sotriffer CA,. 2011. Accounting for induced-fit effects in docking: what is possible and what is not? Curr. Top. Med. Chem. 11: 179-191.
    • (2011) Curr. Top. Med. Chem. , vol.11 , pp. 179-191
    • Sotriffer, C.A.1
  • 23
    • 77950591112 scopus 로고    scopus 로고
    • Exploring hierarchical refinement techniques for induced fit docking with protein and ligand flexibility
    • Borrelli KW, Cossins B, Guallar V,. 2010. Exploring hierarchical refinement techniques for induced fit docking with protein and ligand flexibility. J. Comput. Chem. 31: 1224-1235.
    • (2010) J. Comput. Chem. , vol.31 , pp. 1224-1235
    • Borrelli, K.W.1    Cossins, B.2    Guallar, V.3
  • 24
    • 84986432941 scopus 로고
    • Automated docking with grid-based energy evaluation
    • Meng EC, Shoichet BK, Kuntz ID,. 1992. Automated docking with grid-based energy evaluation. J. Comput. Chem. 13: 505-524.
    • (1992) J. Comput. Chem. , vol.13 , pp. 505-524
    • Meng, E.C.1    Shoichet, B.K.2    Kuntz, I.D.3
  • 25
    • 77951992987 scopus 로고    scopus 로고
    • Ensemble docking into multiple crystallographically derived protein structures: An evaluation based on the statistical analysis of enrichments
    • Craig IR, Essex JW, Spiegel K,. 2010. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J. Chem. Inf. Model. 50: 511-524.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 511-524
    • Craig, I.R.1    Essex, J.W.2    Spiegel, K.3
  • 27
    • 75749093371 scopus 로고    scopus 로고
    • Recipes for the selection of experimental protein conformations for virtual screening
    • Rueda M, Bottegoni G, Abagyan R,. 2010. Recipes for the selection of experimental protein conformations for virtual screening. J. Chem. Inf. Model. 50: 186-193.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 186-193
    • Rueda, M.1    Bottegoni, G.2    Abagyan, R.3
  • 28
    • 84986522918 scopus 로고
    • ICM: A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation
    • Abagyan RA, Totrov MM, Kuznetsov DA,. 1994. ICM: a new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15: 488-506.
    • (1994) J. Comput. Chem. , vol.15 , pp. 488-506
    • Abagyan, R.A.1    Totrov, M.M.2    Kuznetsov, D.A.3
  • 29
    • 78349285583 scopus 로고    scopus 로고
    • Chemical space sampling in virtual screening by different crystal structures
    • Brooijmans N, Humblet C,. 2010. Chemical space sampling in virtual screening by different crystal structures. Chem. Biol. Drug Des. 76: 472-479.
    • (2010) Chem. Biol. Drug Des. , vol.76 , pp. 472-479
    • Brooijmans, N.1    Humblet, C.2
  • 30
    • 79956201474 scopus 로고    scopus 로고
    • Systematic exploitation of multiple receptor conformations for virtual ligand screening
    • Bottegoni G, Rocchia W, Rueda M, Abagyan R, Cavalli A,. 2011. Systematic exploitation of multiple receptor conformations for virtual ligand screening. PLoS One 6: e18845.
    • (2011) PLoS One , vol.6
    • Bottegoni, G.1    Rocchia, W.2    Rueda, M.3    Abagyan, R.4    Cavalli, A.5
  • 32
    • 79960244405 scopus 로고    scopus 로고
    • Predicting fragment binding poses using a combined MCSS MM-GBSA approach
    • Haider MK, Bertrand HO, Hubbard RE,. 2011. Predicting fragment binding poses using a combined MCSS MM-GBSA approach. J. Chem. Inf. Model. 51: 1092-1105.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1092-1105
    • Haider, M.K.1    Bertrand, H.O.2    Hubbard, R.E.3
  • 33
    • 77957225016 scopus 로고    scopus 로고
    • Test MM-PB/SA on true conformational ensembles of protein-ligand complexes
    • Li Y, Liu Z, Wang R,. 2010. Test MM-PB/SA on true conformational ensembles of protein-ligand complexes. J. Chem. Inf. Model. 50: 1682-1692.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1682-1692
    • Li, Y.1    Liu, Z.2    Wang, R.3
  • 34
    • 82355182425 scopus 로고    scopus 로고
    • The ensemble performance index: An improved measure for assessing ensemble pose prediction performance
    • Korb O, McCabe P, Cole J,. 2011. The ensemble performance index: an improved measure for assessing ensemble pose prediction performance. J. Chem. Inf. Model. 51: 2915-2919.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2915-2919
    • Korb, O.1    McCabe, P.2    Cole, J.3
  • 35
    • 77953326788 scopus 로고    scopus 로고
    • Chemical space sampling by different scoring functions and crystal structures
    • Brooijmans N, Humblet C,. 2010. Chemical space sampling by different scoring functions and crystal structures. J. Comput. Aided Mol. Des. 24: 433-447.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 433-447
    • Brooijmans, N.1    Humblet, C.2
  • 36
    • 82355186353 scopus 로고    scopus 로고
    • Discovery of novel checkpoint kinase 1 inhibitors by virtual screening based on multiple crystal structures
    • Li Y, Kim DJ, Ma W, Lubet RA, Bode AM, Dong Z,. 2011. Discovery of novel checkpoint kinase 1 inhibitors by virtual screening based on multiple crystal structures. J. Chem. Inf. Model. 51: 2904-2914.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2904-2914
    • Li, Y.1    Kim, D.J.2    Ma, W.3    Lubet, R.A.4    Bode, A.M.5    Dong, Z.6
  • 37
    • 77953325281 scopus 로고    scopus 로고
    • Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles
    • Park SJ, Kufareva I, Abagyan R,. 2010. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. J. Comput. Aided Mol. Des. 24: 459-471.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 459-471
    • Park, S.J.1    Kufareva, I.2    Abagyan, R.3
  • 39
    • 77955627131 scopus 로고    scopus 로고
    • How to choose relevant multiple receptor conformations for virtual screening: A test case of Cdk2 and normal mode analysis
    • Sperandio O, Mouawad L, Pinto E, Villoutreix BO, Perahia D, Miteva MA,. 2010. How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis. Eur. Biophys. J. 39: 1365-1372.
    • (2010) Eur. Biophys. J. , vol.39 , pp. 1365-1372
    • Sperandio, O.1    Mouawad, L.2    Pinto, E.3    Villoutreix, B.O.4    Perahia, D.5    Miteva, M.A.6
  • 40
    • 79959758718 scopus 로고    scopus 로고
    • Predictive power of molecular dynamics receptor structures in virtual screening
    • Nichols SE, Baron R, Ivetac A, McCammon JA,. 2011. Predictive power of molecular dynamics receptor structures in virtual screening. J. Chem. Inf. Model. 51: 1439-1446.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1439-1446
    • Nichols, S.E.1    Baron, R.2    Ivetac, A.3    McCammon, J.A.4
  • 41
    • 78650813408 scopus 로고    scopus 로고
    • Mining flexible-receptor docking experiments to select promising protein receptor snapshots
    • Machado KS, Winck AT, Ruiz DD, de Souza ON,. 2010. Mining flexible-receptor docking experiments to select promising protein receptor snapshots. BMC Genomics 11 (5): S6.
    • (2010) BMC Genomics , vol.11 , Issue.5
    • Machado, K.S.1    Winck, A.T.2    Ruiz, D.D.3    De Souza, O.N.4
  • 43
    • 84255209045 scopus 로고    scopus 로고
    • FReDoWS: A method to automate molecular docking simulations with explicit receptor flexibility and snapshots selection
    • Machado KS, Schroeder EK, Ruiz DD, Cohen EM, de Souza ON,. 2011. FReDoWS: a method to automate molecular docking simulations with explicit receptor flexibility and snapshots selection. BMC Genomics 12 (4): S6.
    • (2011) BMC Genomics , vol.12 , Issue.4
    • Machado, K.S.1    Schroeder, E.K.2    Ruiz, D.D.3    Cohen, E.M.4    De Souza, O.N.5
  • 44
    • 79953180618 scopus 로고    scopus 로고
    • Significant enhancement of docking sensitivity using implicit ligand sampling
    • Xu M, Lill MA,. 2011. Significant enhancement of docking sensitivity using implicit ligand sampling. J. Chem. Inf. Model. 51: 693-706.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 693-706
    • Xu, M.1    Lill, M.A.2
  • 45
    • 78650701635 scopus 로고    scopus 로고
    • Ligand-steered modeling and docking: A benchmarking study in class a G-protein-coupled receptors
    • Phatak SS, Gatica EA, Cavasotto CN,. 2010. Ligand-steered modeling and docking: a benchmarking study in class a G-protein-coupled receptors. J. Chem. Inf. Model. 50: 2119-2128.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 2119-2128
    • Phatak, S.S.1    Gatica, E.A.2    Cavasotto, C.N.3
  • 46
    • 79751525956 scopus 로고    scopus 로고
    • Docking-based virtual screening for ligands of G protein-coupled receptors: Not only crystal structures but also in silico models
    • Vilar S, Ferino G, Phatak SS, Berk B, Cavasotto CN, Costanzi S,. 2011. Docking-based virtual screening for ligands of G protein-coupled receptors: not only crystal structures but also in silico models. J. Mol. Graph. Model. 29: 614-623.
    • (2011) J. Mol. Graph. Model. , vol.29 , pp. 614-623
    • Vilar, S.1    Ferino, G.2    Phatak, S.S.3    Berk, B.4    Cavasotto, C.N.5    Costanzi, S.6
  • 47
  • 48
    • 78149496978 scopus 로고    scopus 로고
    • Structure based prediction of subtype-selectivity for adenosine receptor antagonists
    • Katritch V, Kufareva I, Abagyan R,. 2011. Structure based prediction of subtype-selectivity for adenosine receptor antagonists. Neuropharmacology 60: 108-15.
    • (2011) Neuropharmacology , vol.60 , pp. 108-115
    • Katritch, V.1    Kufareva, I.2    Abagyan, R.3
  • 49
    • 77649196223 scopus 로고    scopus 로고
    • GPCR 3D homology models for ligand screening: Lessons learned from blind predictions of adenosine A2a receptor complex
    • Katritch V, Rueda M, Lam PC, Yeager M, Abagyan R,. 2010. GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78: 197-211.
    • (2010) Proteins , vol.78 , pp. 197-211
    • Katritch, V.1    Rueda, M.2    Lam, P.C.3    Yeager, M.4    Abagyan, R.5
  • 50
    • 76749123486 scopus 로고    scopus 로고
    • Conformational transitions upon ligand binding: Holo-structure prediction from apo conformations
    • Seeliger D, de Groot BL,. 2010. Conformational transitions upon ligand binding: holo-structure prediction from apo conformations. PLoS Comput. Biol. 6: e1000634.
    • (2010) PLoS Comput. Biol. , vol.6
    • Seeliger, D.1    De Groot, B.L.2
  • 51
    • 79958781134 scopus 로고    scopus 로고
    • Hybrid steered molecular dynamics-docking: An efficient solution to the problem of ranking inhibitor affinities against a flexible drug target
    • Whalen KL, Chang KM, Spies MA,. 2011. Hybrid steered molecular dynamics-docking: an efficient solution to the problem of ranking inhibitor affinities against a flexible drug target. Mol. Inf. 30: 459-471.
    • (2011) Mol. Inf. , vol.30 , pp. 459-471
    • Whalen, K.L.1    Chang, K.M.2    Spies, M.A.3
  • 52
    • 77951223167 scopus 로고    scopus 로고
    • DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility
    • Antes I,. 2010. DynaDock: a new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 78: 1084-1104.
    • (2010) Proteins , vol.78 , pp. 1084-1104
    • Antes, I.1
  • 53
    • 80054707836 scopus 로고    scopus 로고
    • Efficient inclusion of receptor flexibility in grid-based protein-ligand docking
    • Leis S, Zacharias M,. 2011. Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. J. Comput. Chem. 32: 3433-3439.
    • (2011) J. Comput. Chem. , vol.32 , pp. 3433-3439
    • Leis, S.1    Zacharias, M.2
  • 54
    • 77957235850 scopus 로고    scopus 로고
    • Reducing docking score variations arising from input differences
    • Feher M, Williams CI,. 2010. Reducing docking score variations arising from input differences. J. Chem. Inf. Model. 50: 1549-1560.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1549-1560
    • Feher, M.1    Williams, C.I.2
  • 55
    • 0037434582 scopus 로고    scopus 로고
    • Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine
    • Jain AN,. 2003. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 46: 499-511.
    • (2003) J. Med. Chem. , vol.46 , pp. 499-511
    • Jain, A.N.1
  • 56
    • 79251524915 scopus 로고    scopus 로고
    • Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database
    • Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K,. 2011. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem. 32: 742-755.
    • (2011) J. Comput. Chem. , vol.32 , pp. 742-755
    • Plewczynski, D.1    Lazniewski, M.2    Augustyniak, R.3    Ginalski, K.4
  • 57
    • 77955658562 scopus 로고    scopus 로고
    • Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble
    • Yongye AB, Bender A, Martinez-Mayorga K,. 2010. Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble. J. Comput. Aided Mol. Des. 24: 675-686.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 675-686
    • Yongye, A.B.1    Bender, A.2    Martinez-Mayorga, K.3
  • 58
    • 77953189302 scopus 로고    scopus 로고
    • A new Lamarckian genetic algorithm for flexible ligand-receptor docking
    • Fuhrmann J, Rurainski A, Lenhof HP, Neumann D,. 2010. A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J. Comput. Chem. 31: 1911-1918.
    • (2010) J. Comput. Chem. , vol.31 , pp. 1911-1918
    • Fuhrmann, J.1    Rurainski, A.2    Lenhof, H.P.3    Neumann, D.4
  • 59
    • 77954065505 scopus 로고    scopus 로고
    • Tautomer preference in PDB complexes and its impact on structure-based drug discovery
    • Milletti F, Vulpetti A,. 2010. Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J. Chem. Inf. Model. 50: 1062-1074.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1062-1074
    • Milletti, F.1    Vulpetti, A.2
  • 60
    • 78649776250 scopus 로고    scopus 로고
    • Estimating binding affinities by docking/scoring methods using variable protonation states
    • Park MS, Gao C, Stern HA,. 2011. Estimating binding affinities by docking/scoring methods using variable protonation states. Proteins 79: 304-314.
    • (2011) Proteins , vol.79 , pp. 304-314
    • Park, M.S.1    Gao, C.2    Stern, H.A.3
  • 61
    • 78149410394 scopus 로고    scopus 로고
    • PK(a) based protonation states and microspecies for protein-ligand docking
    • ten Brink T, Exner TE,. 2010. pK(a) based protonation states and microspecies for protein-ligand docking. J. Comput. Aided Mol. Des. 24: 935-942.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 935-942
    • Ten Brink, T.1    Exner, T.E.2
  • 62
    • 77953467124 scopus 로고    scopus 로고
    • Multiple ligand simultaneous docking: Orchestrated dancing of ligands in binding sites of protein
    • vLi H, Li C,. 2010. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein. J. Comput. Chem. 31: 2014-2022.
    • (2010) J. Comput. Chem. , vol.31 , pp. 2014-2022
    • Vli, H.1    Li, C.2
  • 63
    • 77649221514 scopus 로고    scopus 로고
    • Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions
    • Huang SY, Zou X,. 2010. Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions. J. Chem. Inf. Model. 50: 262-273.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 262-273
    • Huang, S.Y.1    Zou, X.2
  • 65
    • 77949797550 scopus 로고    scopus 로고
    • Ligand-protein cross-docking with water molecules
    • Thilagavathi R, Mancera RL,. 2010. Ligand-protein cross-docking with water molecules. J. Chem. Inf. Model. 50: 415-21.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 415-421
    • Thilagavathi, R.1    Mancera, R.L.2
  • 66
    • 75749127293 scopus 로고    scopus 로고
    • Role of water in molecular docking simulations of cytochrome P450 2D6
    • Santos R, Hritz J, Oostenbrink C,. 2010. Role of water in molecular docking simulations of cytochrome P450 2D6. J. Chem. Inf. Model. 50: 146-54.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 146-154
    • Santos, R.1    Hritz, J.2    Oostenbrink, C.3
  • 67
    • 0030599010 scopus 로고    scopus 로고
    • A fast flexible docking method using an incremental construction algorithm
    • Rarey M, Kramer B, Lengauer T, Klebe G,. 1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261: 470-89.
    • (1996) J. Mol. Biol. , vol.261 , pp. 470-489
    • Rarey, M.1    Kramer, B.2    Lengauer, T.3    Klebe, G.4
  • 68
    • 80054931721 scopus 로고    scopus 로고
    • Probing the dynamic nature of water molecules and their influences on ligand binding in a model binding site
    • Cappel D, Wahlstrom R, Brenk R, Sotriffer CA,. 2011. Probing the dynamic nature of water molecules and their influences on ligand binding in a model binding site. J. Chem. Inf. Model. 51: 2581-94.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2581-2594
    • Cappel, D.1    Wahlstrom, R.2    Brenk, R.3    Sotriffer, C.A.4
  • 69
    • 79955464058 scopus 로고    scopus 로고
    • Role of bridging water molecules in GSK3 beta-inhibitor complexes: Insights from QM/MM, MD, and molecular docking studies
    • Lu SY, Jiang YJ, Lv J, Zou JW, Wu TX,. 2011. Role of bridging water molecules in GSK3 beta-inhibitor complexes: Insights from QM/MM, MD, and molecular docking studies. J. Comput. Chem. 32: 1907-1918.
    • (2011) J. Comput. Chem. , vol.32 , pp. 1907-1918
    • Lu, S.Y.1    Jiang, Y.J.2    Lv, J.3    Zou, J.W.4    Wu, T.X.5
  • 71
    • 0037763817 scopus 로고    scopus 로고
    • Comparative evaluation of 11 scoring functions for molecular docking
    • Wang R, Lu Y, Wang S,. 2003. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem. 46: 2287-303.
    • (2003) J. Med. Chem. , vol.46 , pp. 2287-2303
    • Wang, R.1    Lu, Y.2    Wang, S.3
  • 72
    • 0033545622 scopus 로고    scopus 로고
    • A general and fast scoring function for protein-ligand interactions: A simplified potential approach
    • Muegge I, Martin YC,. 1999. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J. Med. Chem. 42: 791-804.
    • (1999) J. Med. Chem. , vol.42 , pp. 791-804
    • Muegge, I.1    Martin, Y.C.2
  • 73
    • 77951997454 scopus 로고    scopus 로고
    • Assessment of a novel scoring method based on solvent accessible surface area descriptors
    • Nunez S, Venhorst J, Kruse CG,. 2010. Assessment of a novel scoring method based on solvent accessible surface area descriptors. J. Chem. Inf. Model. 50: 480-6.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 480-486
    • Nunez, S.1    Venhorst, J.2    Kruse, C.G.3
  • 74
    • 79951996670 scopus 로고    scopus 로고
    • Assessing the performance of the Molecular Mechanics/Poisson Boltzmann Surface Area and Molecular Mechanics/Generalized Born Surface Area Methods. II. The accuracy of ranking poses generated from docking
    • Hou TJ, Wang JM, Li YY, Wang W,. 2011. Assessing the performance of the Molecular Mechanics/Poisson Boltzmann Surface Area and Molecular Mechanics/Generalized Born Surface Area Methods. II. The accuracy of ranking poses generated from docking. J. Comput. Chem. 32: 866-877.
    • (2011) J. Comput. Chem. , vol.32 , pp. 866-877
    • Hou, T.J.1    Wang, J.M.2    Li, Y.Y.3    Wang, W.4
  • 75
    • 77957222180 scopus 로고    scopus 로고
    • Rapid context-dependent ligand desolvation in molecular docking
    • Mysinger MM, Shoichet BK,. 2010. Rapid context-dependent ligand desolvation in molecular docking. J. Chem. Inf. Model. 50: 1561-73.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1561-1573
    • Mysinger, M.M.1    Shoichet, B.K.2
  • 76
    • 77951997162 scopus 로고    scopus 로고
    • Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free energy perturbation calculations
    • Guimaraes CR, Mathiowetz AM,. 2010. Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free energy perturbation calculations. J. Chem. Inf. Model. 50: 547-59.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 547-559
    • Guimaraes, C.R.1    Mathiowetz, A.M.2
  • 77
    • 77957242467 scopus 로고    scopus 로고
    • Postprocessing of protein-ligand docking poses using linear response MM-PB/SA: Application to Wee1 kinase inhibitors
    • Wichapong K, Lawson M, Pianwanit S, Kokpol S, Sippl W,. 2010. Postprocessing of protein-ligand docking poses using linear response MM-PB/SA: application to Wee1 kinase inhibitors. J. Chem. Inf. Model. 50: 1574-88.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1574-1588
    • Wichapong, K.1    Lawson, M.2    Pianwanit, S.3    Kokpol, S.4    Sippl, W.5
  • 78
    • 77950862947 scopus 로고    scopus 로고
    • Post-docking virtual screening of diverse binding pockets: Comparative study using DOCK, AMMOS, X-Score and FRED scoring functions
    • Pencheva T, Soumana OS, Pajeva I, Miteva MA,. 2010. Post-docking virtual screening of diverse binding pockets: comparative study using DOCK, AMMOS, X-Score and FRED scoring functions. Eur. J. Med. Chem. 45: 2622-8.
    • (2010) Eur. J. Med. Chem. , vol.45 , pp. 2622-2628
    • Pencheva, T.1    Soumana, O.S.2    Pajeva, I.3    Miteva, M.A.4
  • 80
    • 80053299829 scopus 로고    scopus 로고
    • A molecular mechanics approach to modeling protein-ligand interactions: Relative binding affinities in congeneric series
    • Rapp C, Kalyanaraman C, Schiffmiller A, Schoenbrun EL, Jacobson MP,. 2011. A molecular mechanics approach to modeling protein-ligand interactions: relative binding affinities in congeneric series. J. Chem. Inf. Model. 51: 2082-9.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2082-2089
    • Rapp, C.1    Kalyanaraman, C.2    Schiffmiller, A.3    Schoenbrun, E.L.4    Jacobson, M.P.5
  • 81
    • 77950917551 scopus 로고    scopus 로고
    • Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function
    • Garden DP, Zhorov BS,. 2010. Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function. J. Comput. Aided Mol. Des. 24: 91-105.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 91-105
    • Garden, D.P.1    Zhorov, B.S.2
  • 82
    • 77956400583 scopus 로고    scopus 로고
    • Use of the FACTS solvation model for protein-ligand docking calculations. Application to EADock
    • Zoete V, Grosdidier A, Cuendet M, Michielin O,. 2010. Use of the FACTS solvation model for protein-ligand docking calculations. Application to EADock. J. Mol. Recognit. 23: 457-61.
    • (2010) J. Mol. Recognit. , vol.23 , pp. 457-461
    • Zoete, V.1    Grosdidier, A.2    Cuendet, M.3    Michielin, O.4
  • 84
    • 77952850252 scopus 로고    scopus 로고
    • An interaction-motif-based scoring function for protein-ligand docking
    • Xie ZR, Hwang MJ,. 2010. An interaction-motif-based scoring function for protein-ligand docking. BMC Bioinformatics 11: 298.
    • (2010) BMC Bioinformatics , vol.11 , pp. 298
    • Xie, Z.R.1    Hwang, M.J.2
  • 85
    • 77950908360 scopus 로고    scopus 로고
    • A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction
    • Cheng T, Liu Z, Wang R,. 2010. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction. BMC Bioinformatics 11: 193.
    • (2010) BMC Bioinformatics , vol.11 , pp. 193
    • Cheng, T.1    Liu, Z.2    Wang, R.3
  • 86
    • 80054943835 scopus 로고    scopus 로고
    • DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes
    • Neudert G, Klebe G,. 2011. DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes. J. Chem. Inf. Model. 51: 2731-2745.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2731-2745
    • Neudert, G.1    Klebe, G.2
  • 87
    • 82355186287 scopus 로고    scopus 로고
    • Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions
    • Zheng M, Xiong B, Luo C, Li S, Liu X, Shen Q, Li J, Zhu W, Luo X, Jiang H,. 2011. Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions. J. Chem. Inf. Model. 51: 2994-3004.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2994-3004
    • Zheng, M.1    Xiong, B.2    Luo, C.3    Li, S.4    Liu, X.5    Shen, Q.6    Li, J.7    Zhu, W.8    Luo, X.9    Jiang, H.10
  • 88
    • 78649501368 scopus 로고    scopus 로고
    • Prediction of protein-ligand binding affinities using multiple instance learning
    • Teramoto R, Kashima H,. 2010. Prediction of protein-ligand binding affinities using multiple instance learning. J. Mol. Graph. Model. 29: 492-7.
    • (2010) J. Mol. Graph. Model. , vol.29 , pp. 492-497
    • Teramoto, R.1    Kashima, H.2
  • 89
    • 84555194741 scopus 로고    scopus 로고
    • PLS-DA - Docking Optimized Combined Energetic Terms (PLSDA-DOCET) protocol: A brief evaluation
    • Avram S, Pacureanu LM, Seclaman E, Bora A, Kurunczi L,. 2011. PLS-DA-Docking Optimized Combined Energetic Terms (PLSDA-DOCET) protocol: a brief evaluation. J. Chem. Inf. Model. 51: 3169-79.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 3169-3179
    • Avram, S.1    Pacureanu, L.M.2    Seclaman, E.3    Bora, A.4    Kurunczi, L.5
  • 90
    • 79952262090 scopus 로고    scopus 로고
    • FRED pose prediction and virtual screening accuracy
    • McGann M,. 2011. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 51: 578-96.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 578-596
    • McGann, M.1
  • 91
    • 80053337594 scopus 로고    scopus 로고
    • Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets
    • Hsieh JH, Yin S, Liu S, Sedykh A, Dokholyan NV, Tropsha A,. 2011. Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets. J. Chem. Inf. Model. 51: 2027-35.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2027-2035
    • Hsieh, J.H.1    Yin, S.2    Liu, S.3    Sedykh, A.4    Dokholyan, N.V.5    Tropsha, A.6
  • 92
    • 80052948931 scopus 로고    scopus 로고
    • Consensus virtual screening approaches to predict protein ligands
    • Kukol A,. 2011. Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. Chem. 46: 4661-4.
    • (2011) Eur. J. Med. Chem. , vol.46 , pp. 4661-4664
    • Kukol, A.1
  • 93
    • 0035025191 scopus 로고    scopus 로고
    • DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases
    • Ewing TJ, Makino S, Skillman AG, Kuntz ID,. 2001. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 15: 411-28.
    • (2001) J. Comput. Aided Mol. Des. , vol.15 , pp. 411-428
    • Ewing, T.J.1    Makino, S.2    Skillman, A.G.3    Kuntz, I.D.4
  • 96
    • 77958585233 scopus 로고    scopus 로고
    • NNScore: A neural-network-based scoring function for the characterization of protein-ligand complexes
    • Durrant JD, McCammon JA,. 2010. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J. Chem. Inf. Model. 50: 1865-71.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1865-1871
    • Durrant, J.D.1    McCammon, J.A.2
  • 97
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: A neural-network receptor-ligand scoring function
    • Durrant JD, McCammon JA,. 2011. NNScore 2.0: a neural-network receptor-ligand scoring function. J. Chem. Inf. Model. 51: 2897-903.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 98
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester PJ, Mitchell JB,. 2010. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26: 1169-75.
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.2
  • 99
    • 79952178127 scopus 로고    scopus 로고
    • A machine learning-based method to improve docking scoring functions and its application to drug repurposing
    • Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE,. 2011. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J. Chem. Inf. Model. 51: 408-19.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 100
    • 75749126524 scopus 로고    scopus 로고
    • Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening
    • Sato T, Honma T, Yokoyama S,. 2010. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening. J. Chem. Inf. Model. 50: 170-85.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 170-185
    • Sato, T.1    Honma, T.2    Yokoyama, S.3
  • 101
    • 80051530659 scopus 로고    scopus 로고
    • Prediction of ligand binding using an approach designed to accommodate diversity in protein-ligand interactions
    • Marsh L,. 2011. Prediction of ligand binding using an approach designed to accommodate diversity in protein-ligand interactions. PLoS One 6: e23215.
    • (2011) PLoS One , vol.6
    • Marsh, L.1
  • 102
    • 78649517318 scopus 로고    scopus 로고
    • Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
    • Kramer C, Gedeck P,. 2010. Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. J. Chem. Inf. Model. 50: 1961-9.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1961-1969
    • Kramer, C.1    Gedeck, P.2
  • 103
    • 80053313926 scopus 로고    scopus 로고
    • Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
    • Li L, Wang B, Meroueh SO,. 2011. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J. Chem. Inf. Model. 51: 2132-8.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 104
    • 79955401050 scopus 로고    scopus 로고
    • Target-specific support vector machine scoring in structure-based virtual screening: Computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation
    • Li L, Khanna M, Jo I, Wang F, Ashpole NM, Hudmon A, Meroueh SO,. 2011. Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation. J. Chem. Inf. Model. 51: 755-9.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 755-759
    • Li, L.1    Khanna, M.2    Jo, I.3    Wang, F.4    Ashpole, N.M.5    Hudmon, A.6    Meroueh, S.O.7
  • 105
    • 79952148691 scopus 로고    scopus 로고
    • PHOENIX: A scoring function for affinity prediction derived using high-resolution crystal structures and measurements
    • Tang YT, Marshall GR,. 2011. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and measurements. J. Chem. Inf. Model. 51: 214-28.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 214-228
    • Tang, Y.T.1    Marshall, G.R.2
  • 107
    • 80054928964 scopus 로고    scopus 로고
    • Robust scoring functions for protein-ligand interactions with quantum chemical charge models
    • Wang JC, Lin JH, Chen CM, Perryman AL, Olson AJ,. 2011. Robust scoring functions for protein-ligand interactions with quantum chemical charge models. J. Chem. Inf. Model. 51: 2528-37.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2528-2537
    • Wang, J.C.1    Lin, J.H.2    Chen, C.M.3    Perryman, A.L.4    Olson, A.J.5
  • 108
    • 77954114200 scopus 로고    scopus 로고
    • High-throughput virtual screening using quantum mechanical probes: Discovery of selective kinase inhibitors
    • Zhou T, Caflisch A,. 2010. High-throughput virtual screening using quantum mechanical probes: discovery of selective kinase inhibitors. ChemMedChem 5: 1007-14.
    • (2010) ChemMedChem , vol.5 , pp. 1007-1014
    • Zhou, T.1    Caflisch, A.2
  • 109
    • 77957291978 scopus 로고    scopus 로고
    • A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands
    • Fanfrlik J, Bronowska AK, Rezac J, Prenosil O, Konvalinka J, Hobza P,. 2010. A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. J. Phys. Chem. B 114: 12666-78.
    • (2010) J. Phys. Chem. B , vol.114 , pp. 12666-12678
    • Fanfrlik, J.1    Bronowska, A.K.2    Rezac, J.3    Prenosil, O.4    Konvalinka, J.5    Hobza, P.6
  • 110
    • 77956034718 scopus 로고    scopus 로고
    • Knowledge-based scoring functions in drug design. 1. Developing a target-specific method for kinase-ligand interactions
    • Xue M, Zheng M, Xiong B, Li Y, Jiang H, Shen J,. 2010. Knowledge-based scoring functions in drug design. 1. Developing a target-specific method for kinase-ligand interactions. J. Chem. Inf. Model. 50: 1378-86.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1378-1386
    • Xue, M.1    Zheng, M.2    Xiong, B.3    Li, Y.4    Jiang, H.5    Shen, J.6
  • 111
    • 77949351951 scopus 로고    scopus 로고
    • Comparative binding energy analysis for binding affinity and target selectivity prediction
    • Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC,. 2010. Comparative binding energy analysis for binding affinity and target selectivity prediction. Proteins 78: 135-53.
    • (2010) Proteins , vol.78 , pp. 135-153
    • Henrich, S.1    Feierberg, I.2    Wang, T.3    Blomberg, N.4    Wade, R.C.5
  • 113
    • 84855187626 scopus 로고    scopus 로고
    • Improving molecular docking through eHiTS' tunable scoring function
    • Ravitz O, Zsoldos Z, Simon A,. 2011. Improving molecular docking through eHiTS' tunable scoring function. J. Comput. Aided Mol. Des. 25: 1033-51.
    • (2011) J. Comput. Aided Mol. Des. , vol.25 , pp. 1033-1051
    • Ravitz, O.1    Zsoldos, Z.2    Simon, A.3
  • 114
    • 77954071784 scopus 로고    scopus 로고
    • Accuracy assessment of protein-based docking programs against RNA targets
    • Li Y, Shen J, Sun X, Li W, Liu G, Tang Y,. 2010. Accuracy assessment of protein-based docking programs against RNA targets. J. Chem. Inf. Model. 50: 1134-46.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1134-1146
    • Li, Y.1    Shen, J.2    Sun, X.3    Li, W.4    Liu, G.5    Tang, Y.6
  • 115
    • 77950902962 scopus 로고    scopus 로고
    • Post processing of protein-compound docking for fragment-based drug discovery (FBDD): In-silico structure-based drug screening and ligand-binding pose prediction
    • Fukunishi Y,. 2010. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): In-silico structure-based drug screening and ligand-binding pose prediction. Curr. Top. Med. Chem. 10: 680-94.
    • (2010) Curr. Top. Med. Chem. , vol.10 , pp. 680-694
    • Fukunishi, Y.1
  • 116
    • 77958566813 scopus 로고    scopus 로고
    • In silico fragment-based drug design
    • Konteatis ZD,. 2010. In silico fragment-based drug design. Expert Opin. Drug Discov. 5: 1047-1065.
    • (2010) Expert Opin. Drug Discov. , vol.5 , pp. 1047-1065
    • Konteatis, Z.D.1
  • 118
    • 77954036921 scopus 로고    scopus 로고
    • Virtual fragment docking by Glide: A validation study on 190 protein-fragment complexes
    • Sandor M, Kiss R, Keseru GM,. 2010. Virtual fragment docking by Glide: a validation study on 190 protein-fragment complexes. J. Chem. Inf. Model. 50: 1165-72.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1165-1172
    • Sandor, M.1    Kiss, R.2    Keseru, G.M.3
  • 121
    • 77956308900 scopus 로고    scopus 로고
    • Binding-site assessment by virtual fragment screening
    • Huang N, Jacobson MP,. 2010. Binding-site assessment by virtual fragment screening. PLoS One 5: e10109.
    • (2010) PLoS One , vol.5
    • Huang, N.1    Jacobson, M.P.2
  • 122
    • 79951774159 scopus 로고    scopus 로고
    • Using protein-ligand docking to assess the chemical tractability of inhibiting a protein target
    • Ward RA,. 2010. Using protein-ligand docking to assess the chemical tractability of inhibiting a protein target. J. Mol. Model. 16: 1833-43.
    • (2010) J. Mol. Model. , vol.16 , pp. 1833-1843
    • Ward, R.A.1
  • 123
    • 79960712148 scopus 로고    scopus 로고
    • Structure-based fragment hopping for lead optimization using predocked fragment database
    • Lin FY, Tseng YJ,. 2011. Structure-based fragment hopping for lead optimization using predocked fragment database. J. Chem. Inf. Model. 51: 1703-15.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1703-1715
    • Lin, F.Y.1    Tseng, Y.J.2
  • 124
    • 76649089979 scopus 로고    scopus 로고
    • Library screening by fragment-based docking
    • Huang D, Caflisch A,. 2010. Library screening by fragment-based docking. J. Mol. Recognit. 23: 183-93.
    • (2010) J. Mol. Recognit. , vol.23 , pp. 183-193
    • Huang, D.1    Caflisch, A.2
  • 127
    • 77952683248 scopus 로고    scopus 로고
    • Structure-based approaches to target fishing and ligand profiling
    • Rognan D,. 2010. Structure-based approaches to target fishing and ligand profiling. Mol. Inf. 29: 176-187.
    • (2010) Mol. Inf. , vol.29 , pp. 176-187
    • Rognan, D.1
  • 128
    • 78649525086 scopus 로고    scopus 로고
    • Evaluation of various inverse docking schemes in multiple targets identification
    • Hui-fang L, Qing S, Jian Z, Wei F,. 2010. Evaluation of various inverse docking schemes in multiple targets identification. J. Mol. Graph. Model. 29: 326-30.
    • (2010) J. Mol. Graph. Model. , vol.29 , pp. 326-330
    • Hui-Fang, L.1    Qing, S.2    Jian, Z.3    Wei, F.4
  • 129
    • 79953286431 scopus 로고    scopus 로고
    • An inverse docking approach for identifying new potential anti-cancer targets
    • Grinter SZ, Liang Y, Huang SY, Hyder SM, Zou X,. 2011. An inverse docking approach for identifying new potential anti-cancer targets. J. Mol. Graph. Model. 29: 795-9.
    • (2011) J. Mol. Graph. Model. , vol.29 , pp. 795-799
    • Grinter, S.Z.1    Liang, Y.2    Huang, S.Y.3    Hyder, S.M.4    Zou, X.5
  • 130
    • 80052148863 scopus 로고    scopus 로고
    • A comparative reverse docking strategy to identify potential antineoplastic targets of tea functional components and binding mode
    • Zheng R, Chen TS, Lu T,. 2011. A comparative reverse docking strategy to identify potential antineoplastic targets of tea functional components and binding mode. Int. J. Mol. Sci. 12: 5200-12.
    • (2011) Int. J. Mol. Sci. , vol.12 , pp. 5200-5212
    • Zheng, R.1    Chen, T.S.2    Lu, T.3
  • 131
    • 77955092172 scopus 로고    scopus 로고
    • Improving performance of docking-based virtual screening by structural filtration
    • Novikov FN, Stroylov VS, Stroganov OV, Chilov GG,. 2010. Improving performance of docking-based virtual screening by structural filtration. J. Mol. Model. 16: 1223-30.
    • (2010) J. Mol. Model. , vol.16 , pp. 1223-1230
    • Novikov, F.N.1    Stroylov, V.S.2    Stroganov, O.V.3    Chilov, G.G.4
  • 133
    • 77952842605 scopus 로고    scopus 로고
    • Identification of preferred carbohydrate binding modes in xenoreactive antibodies by combining conformational filters and binding site maps
    • Agostino M, Sandrin MS, Thompson PE, Yuriev E, Ramsland PA,. 2010. Identification of preferred carbohydrate binding modes in xenoreactive antibodies by combining conformational filters and binding site maps. Glycobiology 20: 724-735.
    • (2010) Glycobiology , vol.20 , pp. 724-735
    • Agostino, M.1    Sandrin, M.S.2    Thompson, P.E.3    Yuriev, E.4    Ramsland, P.A.5
  • 134
    • 84859956034 scopus 로고    scopus 로고
    • A computational approach for exploring carbohydrate recognition by lectins in innate immunity
    • Agostino M, Yuriev E, Ramsland P,. 2011. A computational approach for exploring carbohydrate recognition by lectins in innate immunity. Front. Immun. 2: 23.
    • (2011) Front. Immun. , vol.2 , pp. 23
    • Agostino, M.1    Yuriev, E.2    Ramsland, P.3
  • 135
    • 84859941752 scopus 로고    scopus 로고
    • Antibody recognition of cancer-related gangliosides and their mimics investigated using in silico site mapping
    • Agostino M, Yuriev E, Ramsland PA,. 2012. Antibody recognition of cancer-related gangliosides and their mimics investigated using in silico site mapping. PLoS One 7: e35457.
    • (2012) PLoS One , vol.7
    • Agostino, M.1    Yuriev, E.2    Ramsland, P.A.3
  • 136
    • 70450242830 scopus 로고    scopus 로고
    • In silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies
    • Agostino M, Sandrin MS, Thompson PE, Yuriev E, Ramsland P,. 2009. In silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies. Mol. Immunol. 47: 233-246.
    • (2009) Mol. Immunol. , vol.47 , pp. 233-246
    • Agostino, M.1    Sandrin, M.S.2    Thompson, P.E.3    Yuriev, E.4    Ramsland, P.5
  • 137
    • 73349128445 scopus 로고    scopus 로고
    • Molecular docking of carbohydrate ligands to antibodies: Structural validation against crystal structures
    • Agostino M, Jene C, Boyle T, Ramsland PA, Yuriev E,. 2009. Molecular docking of carbohydrate ligands to antibodies: Structural validation against crystal structures. J. Chem. Inf. Model. 49: 2749-2760.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2749-2760
    • Agostino, M.1    Jene, C.2    Boyle, T.3    Ramsland, P.A.4    Yuriev, E.5
  • 138
    • 79960669494 scopus 로고    scopus 로고
    • Peptide inhibitors of xenoreactive antibodies mimic the interaction profile of the native carbohydrate antigens
    • Agostino M, Sandrin MS, Thompson PE, Ramsland PA, Yuriev E,. 2011. Peptide inhibitors of xenoreactive antibodies mimic the interaction profile of the native carbohydrate antigens. Biopolymers 96: 193-206.
    • (2011) Biopolymers , vol.96 , pp. 193-206
    • Agostino, M.1    Sandrin, M.S.2    Thompson, P.E.3    Ramsland, P.A.4    Yuriev, E.5
  • 139
    • 75249095132 scopus 로고    scopus 로고
    • Automatic clustering of docking poses in virtual screening process using self-organizing map
    • Bouvier G, Evrard-Todeschi N, Girault JP, Bertho G,. 2010. Automatic clustering of docking poses in virtual screening process using self-organizing map. Bioinformatics 26: 53-60.
    • (2010) Bioinformatics , vol.26 , pp. 53-60
    • Bouvier, G.1    Evrard-Todeschi, N.2    Girault, J.P.3    Bertho, G.4
  • 140
    • 79959740108 scopus 로고    scopus 로고
    • MiniMuDS: A New Optimizer using Knowledge-Based Potentials Improves Scoring of Docking Solutions
    • Spitzmuller A, Velec HFG, Klebe G,. 2011. MiniMuDS: A New Optimizer using Knowledge-Based Potentials Improves Scoring of Docking Solutions. J. Chem. Inf. Model. 51: 1423-1430.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1423-1430
    • Spitzmuller, A.1    Velec, H.F.G.2    Klebe, G.3
  • 141
    • 79952582249 scopus 로고    scopus 로고
    • Quantum mechanics/molecular mechanics strategies for docking pose refinement: Distinguishing between binders and decoys in cytochrome C peroxidase
    • Burger SK, Thompson DC, Ayers PW,. 2011. Quantum mechanics/molecular mechanics strategies for docking pose refinement: distinguishing between binders and decoys in cytochrome C peroxidase. J. Chem. Inf. Model. 51: 93-101.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 93-101
    • Burger, S.K.1    Thompson, D.C.2    Ayers, P.W.3
  • 142
    • 79958181369 scopus 로고    scopus 로고
    • Implementation and evaluation of a docking-rescoring method using molecular footprint comparisons
    • Balius TE, Mukherjee S, Rizzo RC,. 2011. Implementation and evaluation of a docking-rescoring method using molecular footprint comparisons. J. Comput. Chem. 32: 2273-2289.
    • (2011) J. Comput. Chem. , vol.32 , pp. 2273-2289
    • Balius, T.E.1    Mukherjee, S.2    Rizzo, R.C.3
  • 143
    • 79953167563 scopus 로고    scopus 로고
    • Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies
    • Taha MO, Habash M, Al-Hadidi Z, Al-Bakri A, Younis K, Sisan S,. 2011. Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J. Chem. Inf. Model. 51: 647-69.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 647-669
    • Taha, M.O.1    Habash, M.2    Al-Hadidi, Z.3    Al-Bakri, A.4    Younis, K.5    Sisan, S.6
  • 144
    • 78650193280 scopus 로고    scopus 로고
    • An improved weighted-residue profile based method of using protein-ligand interaction information in increasing hits selection from virtual screening: A study on virtual screening of human GPCR A2A receptor antagonists
    • Shahid M, Kasam V, Hofmann-Apitius M,. 2010. An improved weighted-residue profile based method of using protein-ligand interaction information in increasing hits selection from virtual screening: A study on virtual screening of human GPCR A2A receptor antagonists. Mol. Inf. 29: 781-791.
    • (2010) Mol. Inf. , vol.29 , pp. 781-791
    • Shahid, M.1    Kasam, V.2    Hofmann-Apitius, M.3
  • 145
    • 72449144245 scopus 로고    scopus 로고
    • Drug efficiency indices for improvement of molecular docking scoring functions
    • Garcia-Sosa AT, Hetenyi C, Maran U,. 2010. Drug efficiency indices for improvement of molecular docking scoring functions. J. Comput. Chem. 31: 174-84.
    • (2010) J. Comput. Chem. , vol.31 , pp. 174-184
    • Garcia-Sosa, A.T.1    Hetenyi, C.2    Maran, U.3
  • 146
    • 79960725124 scopus 로고    scopus 로고
    • Using free energy of binding calculations to improve the accuracy of virtual screening predictions
    • Malmstrom RD, Watowich SJ,. 2011. Using free energy of binding calculations to improve the accuracy of virtual screening predictions. J. Chem. Inf. Model. 51: 1648-55.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1648-1655
    • Malmstrom, R.D.1    Watowich, S.J.2
  • 147
    • 79960009157 scopus 로고    scopus 로고
    • Homology models in docking and high-throughput docking
    • Cavasotto CN,. 2011. Homology models in docking and high-throughput docking. Curr. Top. Med. Chem. 11: 1528-34.
    • (2011) Curr. Top. Med. Chem. , vol.11 , pp. 1528-1534
    • Cavasotto, C.N.1
  • 148
    • 78649537557 scopus 로고    scopus 로고
    • Predicting the accuracy of protein-ligand docking on homology models
    • Bordogna A, Pandini A, Bonati L,. 2011. Predicting the accuracy of protein-ligand docking on homology models. J. Comput. Chem. 32: 81-98.
    • (2011) J. Comput. Chem. , vol.32 , pp. 81-98
    • Bordogna, A.1    Pandini, A.2    Bonati, L.3
  • 149
    • 84862789167 scopus 로고    scopus 로고
    • Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?
    • Tang H, Wang XS, Hsieh JH, Tropsha A,. 2012. Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening? Proteins 80: 1503-21.
    • (2012) Proteins , vol.80 , pp. 1503-1521
    • Tang, H.1    Wang, X.S.2    Hsieh, J.H.3    Tropsha, A.4
  • 151
    • 80051521545 scopus 로고    scopus 로고
    • Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment
    • Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R,. 2011. Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19: 1108-26.
    • (2011) Structure , vol.19 , pp. 1108-1126
    • Kufareva, I.1    Rueda, M.2    Katritch, V.3    Stevens, R.C.4    Abagyan, R.5
  • 154
    • 84555169343 scopus 로고    scopus 로고
    • Molecular docking and competitive binding study discovered different binding modes of microsomal prostaglandin e synthase-1 inhibitors
    • He S, Lai L,. 2011. Molecular docking and competitive binding study discovered different binding modes of microsomal prostaglandin E synthase-1 inhibitors. J. Chem. Inf. Model. 51: 3254-61.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 3254-3261
    • He, S.1    Lai, L.2
  • 155
    • 82355168493 scopus 로고    scopus 로고
    • New aryl hydrocarbon receptor homology model targeted to improve docking reliability
    • Motto I, Bordogna A, Soshilov AA, Denison MS, Bonati L,. 2011. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. J. Chem. Inf. Model. 51: 2868-81.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2868-2881
    • Motto, I.1    Bordogna, A.2    Soshilov, A.A.3    Denison, M.S.4    Bonati, L.5
  • 158
    • 82355168486 scopus 로고    scopus 로고
    • Identification of inhibitors against p90 ribosomal S6 kinase 2 (RSK2) through structure-based virtual screening with the inhibitor-constrained refined homology model
    • Li S, Zhou Y, Lu W, Zhong Y, Song W, Liu K, Huang J, Zhao Z, Xu Y, Liu X, Li H,. 2011. Identification of inhibitors against p90 ribosomal S6 kinase 2 (RSK2) through structure-based virtual screening with the inhibitor-constrained refined homology model. J. Chem. Inf. Model. 51: 2939-47.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2939-2947
    • Li, S.1    Zhou, Y.2    Lu, W.3    Zhong, Y.4    Song, W.5    Liu, K.6    Huang, J.7    Zhao, Z.8    Xu, Y.9    Liu, X.10    Li, H.11
  • 159
    • 82355168414 scopus 로고    scopus 로고
    • Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure
    • Park H, Chi O, Kim J, Hong S,. 2011. Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure. J. Chem. Inf. Model. 51: 2986-93.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2986-2993
    • Park, H.1    Chi, O.2    Kim, J.3    Hong, S.4
  • 161
    • 77958567426 scopus 로고    scopus 로고
    • Comprehensive structural and functional characterization of the human kinome by protein structure modeling and ligand virtual screening
    • Brylinski M, Skolnick J,. 2010. Comprehensive structural and functional characterization of the human kinome by protein structure modeling and ligand virtual screening. J. Chem. Inf. Model. 50: 1839-54.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1839-1854
    • Brylinski, M.1    Skolnick, J.2
  • 162
    • 80053300057 scopus 로고    scopus 로고
    • Selection of in silico drug screening results for G-protein-coupled receptors by using universal active probes
    • Wada M, Kanamori E, Nakamura H, Fukunishi Y,. 2011. Selection of in silico drug screening results for G-protein-coupled receptors by using universal active probes. J. Chem. Inf. Model. 51: 2398-407.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2398-2407
    • Wada, M.1    Kanamori, E.2    Nakamura, H.3    Fukunishi, Y.4
  • 163
    • 84555177517 scopus 로고    scopus 로고
    • Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials
    • Kim SK, Fristrup P, Abrol R, Goddard WA, III,. 2011. Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials. J. Chem. Inf. Model. 51: 3262-74.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 3262-3274
    • Kim, S.K.1    Fristrup, P.2    Abrol, R.3    Goddard Iii, W.A.4
  • 164
    • 82355160707 scopus 로고    scopus 로고
    • The 5-HT(1A) agonism potential of substituted piperazine-ethyl-amide derivatives is conserved in the hexyl homologues: Molecular modeling and pharmacological evaluation
    • Dilly S, Scuvee-Moreau J, Wouters J, Liegeois JF,. 2011. The 5-HT(1A) agonism potential of substituted piperazine-ethyl-amide derivatives is conserved in the hexyl homologues: molecular modeling and pharmacological evaluation. J. Chem. Inf. Model. 51: 2961-6.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2961-2966
    • Dilly, S.1    Scuvee-Moreau, J.2    Wouters, J.3    Liegeois, J.F.4
  • 165
    • 77955413077 scopus 로고    scopus 로고
    • Affinity of aporphines for the human 5-HT2A receptor: Insights from homology modeling and molecular docking studies
    • Pecic S, Makkar P, Chaudhary S, Reddy BV, Navarro HA, Harding WW,. 2010. Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. Bioorg. Med. Chem. 18: 5562-75.
    • (2010) Bioorg. Med. Chem. , vol.18 , pp. 5562-5575
    • Pecic, S.1    Makkar, P.2    Chaudhary, S.3    Reddy, B.V.4    Navarro, H.A.5    Harding, W.W.6
  • 166
    • 79960476804 scopus 로고    scopus 로고
    • X-ray crystallography: Assessment and validation of protein-small molecule complexes for drug discovery
    • Cooper DR, Porebski PJ, Chruszcz M, Minor W,. 2011. X-ray crystallography: Assessment and validation of protein-small molecule complexes for drug discovery. Expert Opin. Drug Discov. 6: 771-782.
    • (2011) Expert Opin. Drug Discov. , vol.6 , pp. 771-782
    • Cooper, D.R.1    Porebski, P.J.2    Chruszcz, M.3    Minor, W.4
  • 167
    • 78651250896 scopus 로고    scopus 로고
    • Challenges in the determination of the binding modes of non-standard ligands in X-ray crystal complexes
    • Malde AK, Mark AE,. 2011. Challenges in the determination of the binding modes of non-standard ligands in X-ray crystal complexes. J. Comput. Aided Mol. Des. 25: 1-12.
    • (2011) J. Comput. Aided Mol. Des. , vol.25 , pp. 1-12
    • Malde, A.K.1    Mark, A.E.2
  • 168
    • 78649505687 scopus 로고    scopus 로고
    • Docking validation resources: Protein family and ligand flexibility experiments
    • Mukherjee S, Balius TE, Rizzo RC,. 2010. Docking validation resources: protein family and ligand flexibility experiments. J. Chem. Inf. Model. 50: 1986-2000.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1986-2000
    • Mukherjee, S.1    Balius, T.E.2    Rizzo, R.C.3
  • 170
    • 80051589779 scopus 로고    scopus 로고
    • Structure-based virtual screening of glycogen synthase kinase 3beta inhibitors: Analysis of scoring functions applied to large true actives and decoy sets
    • Osolodkin DI, Palyulin VA, Zefirov NS,. 2011. Structure-based virtual screening of glycogen synthase kinase 3beta inhibitors: analysis of scoring functions applied to large true actives and decoy sets. Chem. Biol. Drug Des. 78: 378-90.
    • (2011) Chem. Biol. Drug Des. , vol.78 , pp. 378-390
    • Osolodkin, D.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 174
    • 79959872463 scopus 로고    scopus 로고
    • Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore
    • Dong M, Lam PC, Pinon DI, Hosohata K, Orry A, Sexton PM, Abagyan R, Miller LJ,. 2011. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore. J. Biol. Chem. 286: 23888-99.
    • (2011) J. Biol. Chem. , vol.286 , pp. 23888-23899
    • Dong, M.1    Lam, P.C.2    Pinon, D.I.3    Hosohata, K.4    Orry, A.5    Sexton, P.M.6    Abagyan, R.7    Miller, L.J.8
  • 175
    • 79955540676 scopus 로고    scopus 로고
    • Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling
    • Miller LJ, Chen Q, Lam PC, Pinon DI, Sexton PM, Abagyan R, Dong M,. 2011. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling. J. Biol. Chem. 286: 15895-907.
    • (2011) J. Biol. Chem. , vol.286 , pp. 15895-15907
    • Miller, L.J.1    Chen, Q.2    Lam, P.C.3    Pinon, D.I.4    Sexton, P.M.5    Abagyan, R.6    Dong, M.7
  • 176
    • 77951245644 scopus 로고    scopus 로고
    • Secretin occupies a single protomer of the homodimeric secretin receptor
    • Dong M, Lam PC, Pinon DI, Orry A, Sexton PM, Abagyan R, Miller LJ,. 2010. Secretin occupies a single protomer of the homodimeric secretin receptor complex: insights from photoaffinity labeling studies using dual sites of covalent attachment. J. Biol. Chem. 285: 9919-31.
    • (2010) J. Biol. Chem. , vol.285 , pp. 9919-9931
    • Dong, M.1    Lam, P.C.2    Pinon, D.I.3    Orry, A.4    Sexton, P.M.5    Abagyan, R.6    Miller, L.J.7
  • 177
    • 78650352933 scopus 로고    scopus 로고
    • Quo vadis, virtual screening? A comprehensive survey of prospective applications
    • Ripphausen P, Nisius B, Peltason L, Bajorath J,. 2010. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J. Med. Chem. 53: 8461-7.
    • (2010) J. Med. Chem. , vol.53 , pp. 8461-8467
    • Ripphausen, P.1    Nisius, B.2    Peltason, L.3    Bajorath, J.4
  • 179
    • 79952161315 scopus 로고    scopus 로고
    • Virtual decoy sets for molecular docking benchmarks
    • Wallach I, Lilien R,. 2011. Virtual decoy sets for molecular docking benchmarks. J. Chem. Inf. Model. 51: 196-202.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 196-202
    • Wallach, I.1    Lilien, R.2
  • 181
    • 80054933039 scopus 로고    scopus 로고
    • DEKOIS: Demanding evaluation kits for objective in silico screening - A versatile tool for benchmarking docking programs and scoring functions
    • Vogel SM, Bauer MR, Boeckler FM,. 2011. DEKOIS: demanding evaluation kits for objective in silico screening - a versatile tool for benchmarking docking programs and scoring functions. J. Chem. Inf. Model. 51: 2650-65.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2650-2665
    • Vogel, S.M.1    Bauer, M.R.2    Boeckler, F.M.3
  • 182
    • 77955662300 scopus 로고    scopus 로고
    • Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: A parallelized tool based on AutoDock 4.0
    • Vistoli G, Pedretti A, Mazzolari A, Testa B,. 2010. Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: a parallelized tool based on AutoDock 4.0. J. Comput. Aided Mol. Des. 24: 771-87.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 771-787
    • Vistoli, G.1    Pedretti, A.2    Mazzolari, A.3    Testa, B.4
  • 183
    • 79952528590 scopus 로고    scopus 로고
    • Task-parallel message passing interface implementation of AutoDock4 for docking of very large databases of compounds using high-performance super-computers
    • Collignon B, Schulz R, Smith JC, Baudry J,. 2011. Task-parallel message passing interface implementation of AutoDock4 for docking of very large databases of compounds using high-performance super-computers. J. Comput. Chem. 32: 1202-1209.
    • (2011) J. Comput. Chem. , vol.32 , pp. 1202-1209
    • Collignon, B.1    Schulz, R.2    Smith, J.C.3    Baudry, J.4
  • 184
    • 78649692457 scopus 로고    scopus 로고
    • MOLA: A bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters
    • Abreu RM, Froufe HJ, Queiroz MJ, Ferreira IC,. 2010. MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters. J. Cheminform. 2: 10.
    • (2010) J. Cheminform. , vol.2 , pp. 10
    • Abreu, R.M.1    Froufe, H.J.2    Queiroz, M.J.3    Ferreira, I.C.4
  • 185
    • 77952832378 scopus 로고    scopus 로고
    • VSDocker: A tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters
    • Prakhov ND, Chernorudskiy AL, Gainullin MR,. 2010. VSDocker: a tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters. Bioinformatics 26: 1374-5.
    • (2010) Bioinformatics , vol.26 , pp. 1374-1375
    • Prakhov, N.D.1    Chernorudskiy, A.L.2    Gainullin, M.R.3
  • 187
    • 79955407842 scopus 로고    scopus 로고
    • Accelerating molecular docking calculations using graphics processing units
    • Korb O, Stutzle T, Exner TE,. 2011. Accelerating molecular docking calculations using graphics processing units. J. Chem. Inf. Model. 51: 865-76.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 865-876
    • Korb, O.1    Stutzle, T.2    Exner, T.E.3
  • 189
    • 77958565592 scopus 로고    scopus 로고
    • Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening
    • Wei D, Zheng H, Su N, Deng M, Lai L,. 2010. Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening. J. Chem. Inf. Model. 50: 1855-64.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1855-1864
    • Wei, D.1    Zheng, H.2    Su, N.3    Deng, M.4    Lai, L.5
  • 190
    • 78651321597 scopus 로고    scopus 로고
    • Biased retrieval of chemical series in receptor-based virtual screening
    • Brooijmans N, Cross JB, Humblet C,. 2010. Biased retrieval of chemical series in receptor-based virtual screening. J. Comput. Aided Mol. Des. 24: 1053-62.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 1053-1062
    • Brooijmans, N.1    Cross, J.B.2    Humblet, C.3
  • 192
    • 79960587603 scopus 로고    scopus 로고
    • Integration of Ligand- and Target-Based Virtual Screening for the Discovery of Cruzain Inhibitors
    • Wiggers HJ, Rocha JR, Cheleski J, Montanari CA,. 2011. Integration of Ligand- and Target-Based Virtual Screening for the Discovery of Cruzain Inhibitors. Mol. Inf. 30: 565-578.
    • (2011) Mol. Inf. , vol.30 , pp. 565-578
    • Wiggers, H.J.1    Rocha, J.R.2    Cheleski, J.3    Montanari, C.A.4
  • 193
    • 74849085203 scopus 로고    scopus 로고
    • Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors
    • Kruger DM, Evers A,. 2010. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 5: 148-58.
    • (2010) ChemMedChem , vol.5 , pp. 148-158
    • Kruger, D.M.1    Evers, A.2
  • 194
    • 80053331281 scopus 로고    scopus 로고
    • A call to arms: What you can do for computational drug discovery
    • Carlson HA, Dunbar JB, Jr., 2011. A call to arms: what you can do for computational drug discovery. J. Chem. Inf. Model. 51: 2025-6.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2025-2026
    • Carlson, H.A.1    Dunbar, Jr.J.B.2
  • 196
    • 80053322295 scopus 로고    scopus 로고
    • Construction and test of ligand decoy sets using MDock: Community Structure-Activity Resource benchmarks for binding mode prediction
    • Huang SY, Zou X,. 2011. Construction and test of ligand decoy sets using MDock: Community Structure-Activity Resource benchmarks for binding mode prediction. J. Chem. Inf. Model. 51: 2107-14.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2107-2114
    • Huang, S.Y.1    Zou, X.2
  • 199
    • 80053297657 scopus 로고    scopus 로고
    • Scoring and lessons learned with the CSAR benchmark using an improved iterative knowledge-based scoring function
    • Huang SY, Zou X,. 2011. Scoring and lessons learned with the CSAR benchmark using an improved iterative knowledge-based scoring function. J. Chem. Inf. Model. 51: 2097-106.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2097-2106
    • Huang, S.Y.1    Zou, X.2
  • 200
    • 80053334687 scopus 로고    scopus 로고
    • Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 2. Benchmark in the CSAR-2010 scoring exercise
    • Sulea T, Cui Q, Purisima EO,. 2011. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 2. Benchmark in the CSAR-2010 scoring exercise. J. Chem. Inf. Model. 51: 2066-81.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2066-2081
    • Sulea, T.1    Cui, Q.2    Purisima, E.O.3
  • 201
    • 80053302991 scopus 로고    scopus 로고
    • Evaluation of several two-step scoring functions based on linear interaction energy, effective ligand size, and empirical pair potentials for prediction of protein-ligand binding geometry and free energy
    • Rahaman O, Estrada TP, Doren DJ, Taufer M, Brooks CL, III, Armen RS,. 2011. Evaluation of several two-step scoring functions based on linear interaction energy, effective ligand size, and empirical pair potentials for prediction of protein-ligand binding geometry and free energy. J. Chem. Inf. Model. 51: 2047-65.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2047-2065
    • Rahaman, O.1    Estrada, T.P.2    Doren, D.J.3    Taufer, M.4    Brooks Iii, C.L.5    Armen, R.S.6
  • 202
    • 77954274507 scopus 로고    scopus 로고
    • Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes
    • Li X, Li Y, Cheng T, Liu Z, Wang R,. 2010. Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes. J. Comput. Chem. 31: 2109-25.
    • (2010) J. Comput. Chem. , vol.31 , pp. 2109-2125
    • Li, X.1    Li, Y.2    Cheng, T.3    Liu, Z.4    Wang, R.5
  • 203
    • 77954080572 scopus 로고    scopus 로고
    • Comparative evaluation of 3D virtual ligand screening methods: Impact of the molecular alignment on enrichment
    • Giganti D, Guillemain H, Spadoni JL, Nilges M, Zagury JF, Montes M,. 2010. Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment. J. Chem. Inf. Model. 50: 992-1004.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 992-1004
    • Giganti, D.1    Guillemain, H.2    Spadoni, J.L.3    Nilges, M.4    Zagury, J.F.5    Montes, M.6
  • 204
    • 77953595300 scopus 로고    scopus 로고
    • Benchmarking docking and scoring protocol for the identification of potential acetylcholinesterase inhibitors
    • Zaheer ul H, Halim SA, Uddin R, Madura JD,. 2010. Benchmarking docking and scoring protocol for the identification of potential acetylcholinesterase inhibitors. J. Mol. Graph. Model. 28: 870-82.
    • (2010) J. Mol. Graph. Model. , vol.28 , pp. 870-882
    • Zaheer Ul, H.1    Halim, S.A.2    Uddin, R.3    Madura, J.D.4
  • 205
    • 77953727831 scopus 로고    scopus 로고
    • Comparison of current docking tools for the simulation of inhibitor binding by the transmembrane domain of the sarco/endoplasmic reticulum calcium ATPase
    • Lape M, Elam C, Paula S,. 2010. Comparison of current docking tools for the simulation of inhibitor binding by the transmembrane domain of the sarco/endoplasmic reticulum calcium ATPase. Biophys. Chem. 150: 88-97.
    • (2010) Biophys. Chem. , vol.150 , pp. 88-97
    • Lape, M.1    Elam, C.2    Paula, S.3
  • 206
    • 76449121008 scopus 로고    scopus 로고
    • A comparative study of AutoDock and PMF scoring performances, and SAR of 2-substituted pyrazolotriazolopyrimidines and 4-substituted pyrazolopyrimidines as potent xanthine oxidase inhibitors
    • Ali HI, Fujita T, Akaho E, Nagamatsu T,. 2010. A comparative study of AutoDock and PMF scoring performances, and SAR of 2-substituted pyrazolotriazolopyrimidines and 4-substituted pyrazolopyrimidines as potent xanthine oxidase inhibitors. J. Comput. Aided Mol. Des. 24: 57-75.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 57-75
    • Ali, H.I.1    Fujita, T.2    Akaho, E.3    Nagamatsu, T.4
  • 207
    • 80054961271 scopus 로고    scopus 로고
    • AADS - An automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors
    • Singh T, Biswas D, Jayaram B,. 2011. AADS - an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J. Chem. Inf. Model. 51: 2515-27.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2515-2527
    • Singh, T.1    Biswas, D.2    Jayaram, B.3
  • 208
  • 211
    • 79960642266 scopus 로고    scopus 로고
    • DockoMatic: Automated peptide analog creation for high throughput virtual screening
    • Jacob RB, Bullock CW, Andersen T, McDougal OM,. 2011. DockoMatic: Automated peptide analog creation for high throughput virtual screening. J. Comput. Chem. 32: 2936-2941.
    • (2011) J. Comput. Chem. , vol.32 , pp. 2936-2941
    • Jacob, R.B.1    Bullock, C.W.2    Andersen, T.3    McDougal, O.M.4
  • 212
    • 79951520837 scopus 로고    scopus 로고
    • IGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis
    • Hsu KC, Chen YF, Lin SR, Yang JM,. 2011. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 12 (1): S33.
    • (2011) BMC Bioinformatics , vol.12 , Issue.1
    • Hsu, K.C.1    Chen, Y.F.2    Lin, S.R.3    Yang, J.M.4
  • 213
    • 77953325845 scopus 로고    scopus 로고
    • Ligand docking and binding site analysis with PyMOL and AutoDock/Vina
    • Seeliger D, de Groot BL,. 2010. Ligand docking and binding site analysis with PyMOL and AutoDock/Vina. J. Comput. Aided Mol. Des. 24: 417-22.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 417-422
    • Seeliger, D.1    De Groot, B.L.2
  • 214
  • 215
    • 84886594198 scopus 로고    scopus 로고
    • VSDK: Virtual screening of small molecules using AutoDock Vina on Windows platform
    • Baba N, Akaho E,. 2011. VSDK: Virtual screening of small molecules using AutoDock Vina on Windows platform. Bioinformation 6: 387-8.
    • (2011) Bioinformation , vol.6 , pp. 387-388
    • Baba, N.1    Akaho, E.2
  • 216
    • 80054908338 scopus 로고    scopus 로고
    • VSDMIP 1.5: An automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface
    • Cabrera AC, Gil-Redondo R, Perona A, Gago F, Morreale A,. 2011. VSDMIP 1.5: an automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface. J. Comput. Aided Mol. Des. 25: 813-24.
    • (2011) J. Comput. Aided Mol. Des. , vol.25 , pp. 813-824
    • Cabrera, A.C.1    Gil-Redondo, R.2    Perona, A.3    Gago, F.4    Morreale, A.5
  • 217
    • 80051545693 scopus 로고    scopus 로고
    • IScreen: World's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan
    • Tsai TY, Chang KW, Chen CY,. 2011. iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J. Comput. Aided Mol. Des. 25: 525-31.
    • (2011) J. Comput. Aided Mol. Des. , vol.25 , pp. 525-531
    • Tsai, T.Y.1    Chang, K.W.2    Chen, C.Y.3
  • 218
    • 79960029361 scopus 로고    scopus 로고
    • SwissDock, a protein-small molecule docking web service based on EADock DSS
    • Grosdidier A, Zoete V, Michielin O,. 2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39: W270-7.
    • (2011) Nucleic Acids Res. , vol.39
    • Grosdidier, A.1    Zoete, V.2    Michielin, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.