-
1
-
-
84891904880
-
Computational methods in drug discovery
-
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W. Computational methods in drug discovery Pharmacol. Rev. 2014, 66, 334-395 10.1124/pr.112.007336
-
(2014)
Pharmacol. Rev.
, vol.66
, pp. 334-395
-
-
Sliwoski, G.1
Kothiwale, S.2
Meiler, J.3
Lowe, E.W.4
-
2
-
-
84875150414
-
The holistic integration of virtual screening in drug discovery
-
Tanrikulu, Y.; Krüger, B.; Proschak, E. The holistic integration of virtual screening in drug discovery Drug Discovery Today 2013, 18, 358-364 10.1016/j.drudis.2013.01.007
-
(2013)
Drug Discovery Today
, vol.18
, pp. 358-364
-
-
Tanrikulu, Y.1
Krüger, B.2
Proschak, E.3
-
3
-
-
84860455486
-
Discovery of small molecule cancer drugs: Successes, challenges and opportunities
-
Hoelder, S.; Clarke, P. A.; Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities Mol. Oncol. 2012, 6, 155-176 10.1016/j.molonc.2012.02.004
-
(2012)
Mol. Oncol.
, vol.6
, pp. 155-176
-
-
Hoelder, S.1
Clarke, P.A.2
Workman, P.3
-
4
-
-
0036835460
-
Integration of virtual and high-throughput screening
-
Bajorath, J. Integration of virtual and high-throughput screening Nat. Rev. Drug Discovery 2002, 1, 882 10.1038/nrd941
-
(2002)
Nat. Rev. Drug Discovery
, vol.1
, pp. 882
-
-
Bajorath, J.1
-
6
-
-
85006056656
-
Improving the tools of clinical pharmacology: Goals for 2017 and beyond
-
Zineh, I.; Abernethy, D.; Hop, C. E.; Bello, A.; Mcclellan, M. B.; Daniel, G. W.; Romine, M. H. Improving the tools of clinical pharmacology: goals for 2017 and beyond Clin. Pharmacol. Ther. 2017, 101, 22-24 10.1002/cpt.530
-
(2017)
Clin. Pharmacol. Ther.
, vol.101
, pp. 22-24
-
-
Zineh, I.1
Abernethy, D.2
Hop, C.E.3
Bello, A.4
McClellan, M.B.5
Daniel, G.W.6
Romine, M.H.7
-
7
-
-
0030255303
-
Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities
-
Jain, A. N. Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities J. Comput.-Aided Mol. Des. 1996, 10, 427-440 10.1007/BF00124474
-
(1996)
J. Comput.-Aided Mol. Des.
, vol.10
, pp. 427-440
-
-
Jain, A.N.1
-
8
-
-
84856049185
-
-
version 2.0; Accelrys Software, Inc.
-
The Discovery Studio Software, version 2.0; Accelrys Software, Inc., 2001.
-
(2001)
The Discovery Studio Software
-
-
-
9
-
-
0041919542
-
Improved protein-ligand docking using GOLD
-
Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved protein-ligand docking using GOLD Proteins: Struct., Funct., Genet. 2003, 52, 609-623 10.1002/prot.10465
-
(2003)
Proteins: Struct., Funct., Genet.
, vol.52
, pp. 609-623
-
-
Verdonk, M.L.1
Cole, J.C.2
Hartshorn, M.J.3
Murray, C.W.4
Taylor, R.D.5
-
10
-
-
85040913425
-
-
Chemical Computing Group, Montreal, Quebec, Canada.
-
MOE; Chemical Computing Group, Montreal, Quebec, Canada, 2006.
-
(2006)
MOE
-
-
-
11
-
-
84927634713
-
A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction
-
Ashtawy, H. M.; Mahapatra, N. R. A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction IEEE/ACM Trans. Comput. Biol. Bioinf. 2015, 12, 335-347 10.1109/TCBB.2014.2351824
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.12
, pp. 335-347
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
12
-
-
77952825581
-
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
-
Ballester, P.; Mitchell, J. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking Bioinformatics 2010, 26, 1169 10.1093/bioinformatics/btq112
-
(2010)
Bioinformatics
, vol.26
, pp. 1169
-
-
Ballester, P.1
Mitchell, J.2
-
13
-
-
84903287174
-
Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results
-
Li, Y.; Han, L.; Liu, Z.; Wang, R. Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results J. Chem. Inf. Model. 2014, 54, 1717-1736 10.1021/ci500081m
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 1717-1736
-
-
Li, Y.1
Han, L.2
Liu, Z.3
Wang, R.4
-
14
-
-
2542530042
-
The PDBbind Database: Collection of Binding Affinities for Protein-Ligand Complexes with Known Three-Dimensional Structures
-
PMID: 15163179
-
Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind Database: Collection of Binding Affinities for Protein-Ligand Complexes with Known Three-Dimensional Structures J. Med. Chem. 2004, 47, 2977-2980 PMID: 15163179 10.1021/jm030580l
-
(2004)
J. Med. Chem.
, vol.47
, pp. 2977-2980
-
-
Wang, R.1
Fang, X.2
Lu, Y.3
Wang, S.4
-
15
-
-
66149103553
-
Comparative assessment of scoring functions on a diverse test set
-
Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R. Comparative assessment of scoring functions on a diverse test set J. Chem. Inf. Model. 2009, 49, 1079-1093 10.1021/ci9000053
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1079-1093
-
-
Cheng, T.1
Li, X.2
Li, Y.3
Liu, Z.4
Wang, R.5
-
16
-
-
84903302003
-
Comparative Assessment of Scoring Functions on an Updated Benchmark: I. Compilation of the Test Set
-
Li, Y.; Liu, Z.; Li, J.; Han, L.; Liu, J.; Zhao, Z.-X.; Wang, R. Comparative Assessment of Scoring Functions on an Updated Benchmark: I. Compilation of the Test Set J. Chem. Inf. Model. 2014, 54, 1700-1716 10.1021/ci500080q
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 1700-1716
-
-
Li, Y.1
Liu, Z.2
Li, J.3
Han, L.4
Liu, J.5
Zhao, Z.-X.6
Wang, R.7
-
17
-
-
79953005609
-
PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
-
Yap, C. W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints J. Comput. Chem. 2011, 32, 1466-1474 10.1002/jcc.21707
-
(2011)
J. Comput. Chem.
, vol.32
, pp. 1466-1474
-
-
Yap, C.W.1
-
18
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
19
-
-
84977574223
-
BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes
-
Ashtawy, H. M.; Mahapatra, N. R. BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes BMC Bioinf. 2015, 16, S8 10.1186/1471-2105-16-S4-S8
-
(2015)
BMC Bioinf.
, vol.16
, pp. S8
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
20
-
-
84964698564
-
Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins
-
Ashtawy, H. M.; Mahapatra, N. R. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins BMC Bioinf. 2015, 16, S3 10.1186/1471-2105-16-S6-S3
-
(2015)
BMC Bioinf.
, vol.16
, pp. S3
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
21
-
-
78649517318
-
Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
-
Kramer, C.; Gedeck, P. Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets J. Chem. Inf. Model. 2010, 50, 1961-1969 10.1021/ci100264e
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1961-1969
-
-
Kramer, C.1
Gedeck, P.2
-
22
-
-
76149120388
-
AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
-
Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading J. Comput. Chem. 2010, 31, 455-461 10.1002/jcc.21334
-
(2010)
J. Comput. Chem.
, vol.31
, pp. 455-461
-
-
Trott, O.1
Olson, A.J.2
-
23
-
-
0036022960
-
Further development and validation of empirical scoring functions for structure-based binding affinity prediction
-
Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction J. Comput.-Aided Mol. Des. 2002, 16, 11-26 10.1023/A:1016357811882
-
(2002)
J. Comput.-Aided Mol. Des.
, vol.16
, pp. 11-26
-
-
Wang, R.1
Lai, L.2
Wang, S.3
-
24
-
-
84902438255
-
Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model
-
Cao, Y.; Li, L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model Bioinformatics 2014, 30, 1674-1680 10.1093/bioinformatics/btu104
-
(2014)
Bioinformatics
, vol.30
, pp. 1674-1680
-
-
Cao, Y.1
Li, L.2
-
25
-
-
79952262090
-
FRED pose prediction and virtual screening accuracy
-
McGann, M. FRED pose prediction and virtual screening accuracy J. Chem. Inf. Model. 2011, 51, 578-596 10.1021/ci100436p
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 578-596
-
-
McGann, M.1
-
26
-
-
84883247468
-
Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise
-
Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise J. Chem. Inf. Model. 2013, 53, 1893-1904 10.1021/ci300604z
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1893-1904
-
-
Koes, D.R.1
Baumgartner, M.P.2
Camacho, C.J.3
-
27
-
-
77958585233
-
NNScore: A neural-network-based scoring function for the characterization of protein- ligand complexes
-
Durrant, J. D.; McCammon, J. A. NNScore: A neural-network-based scoring function for the characterization of protein- ligand complexes J. Chem. Inf. Model. 2010, 50, 1865-1871 10.1021/ci100244v
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1865-1871
-
-
Durrant, J.D.1
McCammon, J.A.2
-
28
-
-
77954260902
-
Fpocket: Online tools for protein ensemble pocket detection and tracking
-
Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tufféry, P. Fpocket: online tools for protein ensemble pocket detection and tracking Nucleic Acids Res. 2010, 38, W582-W589 10.1093/nar/gkq383
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. W582-W589
-
-
Schmidtke, P.1
Le Guilloux, V.2
Maupetit, J.3
Tufféry, P.4
-
29
-
-
80054943835
-
DSX: A knowledge-based scoring function for the assessment of protein-ligand complexes
-
Neudert, G.; Klebe, G. DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes J. Chem. Inf. Model. 2011, 51, 2731-2745 10.1021/ci200274q
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2731-2745
-
-
Neudert, G.1
Klebe, G.2
-
30
-
-
15244346501
-
LigScore: A novel scoring function for predicting binding affinities
-
Krammer, A.; Kirchhoff, P. D.; Jiang, X.; Venkatachalam, C.; Waldman, M. LigScore: A novel scoring function for predicting binding affinities J. Mol. Graphics Modell. 2005, 23, 395-407 10.1016/j.jmgm.2004.11.007
-
(2005)
J. Mol. Graphics Modell.
, vol.23
, pp. 395-407
-
-
Krammer, A.1
Kirchhoff, P.D.2
Jiang, X.3
Venkatachalam, C.4
Waldman, M.5
-
31
-
-
84983110889
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
In; Springer
-
Freund, Y.; Schapire, R. A decision-theoretic generalization of on-line learning and an application to boosting. In Computational Learning Theory; Springer, 1995; Vol. 904, pp 23-37. 10.1007/3-540-59119-2-166
-
(1995)
Computational Learning Theory
, vol.904
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.2
-
32
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. Greedy function approximation: a gradient boosting machine Annals of Statistics 2001, 29, 1189-1232 10.1214/aos/1013203451
-
(2001)
Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
34
-
-
84964778324
-
Xgboost: EXtreme Gradient Boosting
-
version 0.4-2.
-
Chen, T.; He, T. xgboost: eXtreme Gradient Boosting; R package, version 0.4-2, 2015.
-
(2015)
R Package
-
-
Chen, T.1
He, T.2
-
35
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
-
Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors) annals of statistics 2000, 28, 337-407 10.1214/aos/1016218223
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
36
-
-
84927735077
-
-
arXiv preprint arXiv:1502.02072, (accessed October 14, 2017).
-
Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively multi-task networks for drug discovery; arXiv preprint arXiv:1502.02072, 2015, https://arxiv.org/abs/1502.02072 (accessed October 14, 2017).
-
(2015)
Massively Multi-task Networks for Drug Discovery
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
37
-
-
84923361116
-
-
arXiv preprint arXiv:1406.1231, (accessed October 14, 2017).
-
Dahl, G. E.; Jaitly, N.; Salakhutdinov, R. Multi-task neural networks for QSAR predictions; arXiv preprint arXiv:1406.1231, 2014, https://arxiv.org/abs/1406.1231 (accessed October 14, 2017).
-
(2014)
Multi-task Neural Networks for QSAR Predictions
-
-
Dahl, G.E.1
Jaitly, N.2
Salakhutdinov, R.3
-
38
-
-
84981496808
-
Deep learning as an opportunity in virtual screening
-
Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Wegner, J. K.; Ceulemans, H.; Hochreiter, S. Deep learning as an opportunity in virtual screening. Proceedings of the Deep Learning Workshop at NIPS, 2014.
-
(2014)
Proceedings of the Deep Learning Workshop at NIPS
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Steijaert, M.4
Wegner, J.K.5
Ceulemans, H.6
Hochreiter, S.7
-
39
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting Journal of Machine Learning Research 2014, 15, 1929-1958
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
40
-
-
85075670920
-
TensorFlow: A System for Large-Scale Machine Learning
-
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. TensorFlow: A System for Large-Scale Machine Learning OSDI 2016, 265-283
-
(2016)
OSDI
, pp. 265-283
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
-
42
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests Machine Learning 2001, 45, 5-32 10.1023/A:1010933404324
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
43
-
-
33751547539
-
How many drug targets are there?
-
Overington, J.; Al-Lazikani, B.; Hopkins, A. How many drug targets are there? Nat. Rev. Drug Discovery 2006, 5, 993-996 10.1038/nrd2199
-
(2006)
Nat. Rev. Drug Discovery
, vol.5
, pp. 993-996
-
-
Overington, J.1
Al-Lazikani, B.2
Hopkins, A.3
-
44
-
-
84862192766
-
ChEMBL: A large-scale bioactivity database for drug discovery
-
Gaulton, A.; Bellis, L.; Bento, A.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: a large-scale bioactivity database for drug discovery Nucleic Acids Res. 2012, 40, D1100-D1107 10.1093/nar/gkr777
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. D1100-D1107
-
-
Gaulton, A.1
Bellis, L.2
Bento, A.3
Chambers, J.4
Davies, M.5
Hersey, A.6
Light, Y.7
McGlinchey, S.8
Michalovich, D.9
Al-Lazikani, B.10
Overington, J.P.11
|