메뉴 건너뛰기




Volumn 58, Issue 1, 2018, Pages 119-133

Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment

Author keywords

[No Author keywords available]

Indexed keywords

BINDING ENERGY; COMPLEX NETWORKS; COMPLEXATION; COST EFFECTIVENESS; DECISION TREES; DEEP NEURAL NETWORKS; DIAGNOSIS; FORECASTING; FORESTRY; MOLECULAR MODELING; NEURAL NETWORKS; PROTEINS;

EID: 85040924553     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.7b00309     Document Type: Article
Times cited : (68)

References (44)
  • 2
    • 84875150414 scopus 로고    scopus 로고
    • The holistic integration of virtual screening in drug discovery
    • Tanrikulu, Y.; Krüger, B.; Proschak, E. The holistic integration of virtual screening in drug discovery Drug Discovery Today 2013, 18, 358-364 10.1016/j.drudis.2013.01.007
    • (2013) Drug Discovery Today , vol.18 , pp. 358-364
    • Tanrikulu, Y.1    Krüger, B.2    Proschak, E.3
  • 3
    • 84860455486 scopus 로고    scopus 로고
    • Discovery of small molecule cancer drugs: Successes, challenges and opportunities
    • Hoelder, S.; Clarke, P. A.; Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities Mol. Oncol. 2012, 6, 155-176 10.1016/j.molonc.2012.02.004
    • (2012) Mol. Oncol. , vol.6 , pp. 155-176
    • Hoelder, S.1    Clarke, P.A.2    Workman, P.3
  • 4
    • 0036835460 scopus 로고    scopus 로고
    • Integration of virtual and high-throughput screening
    • Bajorath, J. Integration of virtual and high-throughput screening Nat. Rev. Drug Discovery 2002, 1, 882 10.1038/nrd941
    • (2002) Nat. Rev. Drug Discovery , vol.1 , pp. 882
    • Bajorath, J.1
  • 7
    • 0030255303 scopus 로고    scopus 로고
    • Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities
    • Jain, A. N. Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities J. Comput.-Aided Mol. Des. 1996, 10, 427-440 10.1007/BF00124474
    • (1996) J. Comput.-Aided Mol. Des. , vol.10 , pp. 427-440
    • Jain, A.N.1
  • 8
    • 84856049185 scopus 로고    scopus 로고
    • version 2.0; Accelrys Software, Inc.
    • The Discovery Studio Software, version 2.0; Accelrys Software, Inc., 2001.
    • (2001) The Discovery Studio Software
  • 10
    • 85040913425 scopus 로고    scopus 로고
    • Chemical Computing Group, Montreal, Quebec, Canada.
    • MOE; Chemical Computing Group, Montreal, Quebec, Canada, 2006.
    • (2006) MOE
  • 11
    • 84927634713 scopus 로고    scopus 로고
    • A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction
    • Ashtawy, H. M.; Mahapatra, N. R. A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction IEEE/ACM Trans. Comput. Biol. Bioinf. 2015, 12, 335-347 10.1109/TCBB.2014.2351824
    • (2015) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.12 , pp. 335-347
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 12
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester, P.; Mitchell, J. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking Bioinformatics 2010, 26, 1169 10.1093/bioinformatics/btq112
    • (2010) Bioinformatics , vol.26 , pp. 1169
    • Ballester, P.1    Mitchell, J.2
  • 13
    • 84903287174 scopus 로고    scopus 로고
    • Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results
    • Li, Y.; Han, L.; Liu, Z.; Wang, R. Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results J. Chem. Inf. Model. 2014, 54, 1717-1736 10.1021/ci500081m
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 1717-1736
    • Li, Y.1    Han, L.2    Liu, Z.3    Wang, R.4
  • 14
    • 2542530042 scopus 로고    scopus 로고
    • The PDBbind Database: Collection of Binding Affinities for Protein-Ligand Complexes with Known Three-Dimensional Structures
    • PMID: 15163179
    • Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind Database: Collection of Binding Affinities for Protein-Ligand Complexes with Known Three-Dimensional Structures J. Med. Chem. 2004, 47, 2977-2980 PMID: 15163179 10.1021/jm030580l
    • (2004) J. Med. Chem. , vol.47 , pp. 2977-2980
    • Wang, R.1    Fang, X.2    Lu, Y.3    Wang, S.4
  • 15
    • 66149103553 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on a diverse test set
    • Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R. Comparative assessment of scoring functions on a diverse test set J. Chem. Inf. Model. 2009, 49, 1079-1093 10.1021/ci9000053
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 16
    • 84903302003 scopus 로고    scopus 로고
    • Comparative Assessment of Scoring Functions on an Updated Benchmark: I. Compilation of the Test Set
    • Li, Y.; Liu, Z.; Li, J.; Han, L.; Liu, J.; Zhao, Z.-X.; Wang, R. Comparative Assessment of Scoring Functions on an Updated Benchmark: I. Compilation of the Test Set J. Chem. Inf. Model. 2014, 54, 1700-1716 10.1021/ci500080q
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 1700-1716
    • Li, Y.1    Liu, Z.2    Li, J.3    Han, L.4    Liu, J.5    Zhao, Z.-X.6    Wang, R.7
  • 17
    • 79953005609 scopus 로고    scopus 로고
    • PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
    • Yap, C. W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints J. Comput. Chem. 2011, 32, 1466-1474 10.1002/jcc.21707
    • (2011) J. Comput. Chem. , vol.32 , pp. 1466-1474
    • Yap, C.W.1
  • 18
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 19
    • 84977574223 scopus 로고    scopus 로고
    • BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes
    • Ashtawy, H. M.; Mahapatra, N. R. BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes BMC Bioinf. 2015, 16, S8 10.1186/1471-2105-16-S4-S8
    • (2015) BMC Bioinf. , vol.16 , pp. S8
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 20
    • 84964698564 scopus 로고    scopus 로고
    • Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins
    • Ashtawy, H. M.; Mahapatra, N. R. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins BMC Bioinf. 2015, 16, S3 10.1186/1471-2105-16-S6-S3
    • (2015) BMC Bioinf. , vol.16 , pp. S3
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 21
    • 78649517318 scopus 로고    scopus 로고
    • Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
    • Kramer, C.; Gedeck, P. Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets J. Chem. Inf. Model. 2010, 50, 1961-1969 10.1021/ci100264e
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1961-1969
    • Kramer, C.1    Gedeck, P.2
  • 22
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading J. Comput. Chem. 2010, 31, 455-461 10.1002/jcc.21334
    • (2010) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 23
    • 0036022960 scopus 로고    scopus 로고
    • Further development and validation of empirical scoring functions for structure-based binding affinity prediction
    • Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction J. Comput.-Aided Mol. Des. 2002, 16, 11-26 10.1023/A:1016357811882
    • (2002) J. Comput.-Aided Mol. Des. , vol.16 , pp. 11-26
    • Wang, R.1    Lai, L.2    Wang, S.3
  • 24
    • 84902438255 scopus 로고    scopus 로고
    • Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model
    • Cao, Y.; Li, L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model Bioinformatics 2014, 30, 1674-1680 10.1093/bioinformatics/btu104
    • (2014) Bioinformatics , vol.30 , pp. 1674-1680
    • Cao, Y.1    Li, L.2
  • 25
    • 79952262090 scopus 로고    scopus 로고
    • FRED pose prediction and virtual screening accuracy
    • McGann, M. FRED pose prediction and virtual screening accuracy J. Chem. Inf. Model. 2011, 51, 578-596 10.1021/ci100436p
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 578-596
    • McGann, M.1
  • 26
    • 84883247468 scopus 로고    scopus 로고
    • Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise
    • Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise J. Chem. Inf. Model. 2013, 53, 1893-1904 10.1021/ci300604z
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1893-1904
    • Koes, D.R.1    Baumgartner, M.P.2    Camacho, C.J.3
  • 27
    • 77958585233 scopus 로고    scopus 로고
    • NNScore: A neural-network-based scoring function for the characterization of protein- ligand complexes
    • Durrant, J. D.; McCammon, J. A. NNScore: A neural-network-based scoring function for the characterization of protein- ligand complexes J. Chem. Inf. Model. 2010, 50, 1865-1871 10.1021/ci100244v
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1865-1871
    • Durrant, J.D.1    McCammon, J.A.2
  • 28
    • 77954260902 scopus 로고    scopus 로고
    • Fpocket: Online tools for protein ensemble pocket detection and tracking
    • Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tufféry, P. Fpocket: online tools for protein ensemble pocket detection and tracking Nucleic Acids Res. 2010, 38, W582-W589 10.1093/nar/gkq383
    • (2010) Nucleic Acids Res. , vol.38 , pp. W582-W589
    • Schmidtke, P.1    Le Guilloux, V.2    Maupetit, J.3    Tufféry, P.4
  • 29
    • 80054943835 scopus 로고    scopus 로고
    • DSX: A knowledge-based scoring function for the assessment of protein-ligand complexes
    • Neudert, G.; Klebe, G. DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes J. Chem. Inf. Model. 2011, 51, 2731-2745 10.1021/ci200274q
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2731-2745
    • Neudert, G.1    Klebe, G.2
  • 31
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • In; Springer
    • Freund, Y.; Schapire, R. A decision-theoretic generalization of on-line learning and an application to boosting. In Computational Learning Theory; Springer, 1995; Vol. 904, pp 23-37. 10.1007/3-540-59119-2-166
    • (1995) Computational Learning Theory , vol.904 , pp. 23-37
    • Freund, Y.1    Schapire, R.2
  • 32
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. Greedy function approximation: a gradient boosting machine Annals of Statistics 2001, 29, 1189-1232 10.1214/aos/1013203451
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 33
  • 34
    • 84964778324 scopus 로고    scopus 로고
    • Xgboost: EXtreme Gradient Boosting
    • version 0.4-2.
    • Chen, T.; He, T. xgboost: eXtreme Gradient Boosting; R package, version 0.4-2, 2015.
    • (2015) R Package
    • Chen, T.1    He, T.2
  • 35
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
    • Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors) annals of statistics 2000, 28, 337-407 10.1214/aos/1016218223
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 42
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests Machine Learning 2001, 45, 5-32 10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.