-
1
-
-
77950503976
-
Virtual screening: An endless staircase?
-
Schneider, G. Virtual screening: an endless staircase? Nat. Rev. Drug Discov. 9, 273-276 (2010).
-
(2010)
Nat. Rev. Drug Discov
, vol.9
, pp. 273-276
-
-
Schneider, G.1
-
2
-
-
84862027743
-
Recognizing pitfalls in virtual screening: A critical review
-
Scior, T. et al. Recognizing Pitfalls in Virtual Screening: A Critical Review. J. Chem. Inf. Model. 52, 867-881 (2012).
-
(2012)
J. Chem. Inf. Model
, vol.52
, pp. 867-881
-
-
Scior, T.1
-
3
-
-
84879583689
-
Evaluation and optimization of virtual screening workflows with dekois 2.0-A public library of challenging docking benchmark sets
-
Bauer, M. R., Ibrahim, T. M., Vogel, S. M. & Boeckler, F. M. Evaluation and Optimization of Virtual Screening Workflows with DEKOIS 2.0-A Public Library of Challenging Docking Benchmark Sets. J. Chem. Inf. Model. 53, 1447-1462 (2013).
-
(2013)
J. Chem. Inf. Model
, vol.53
, pp. 1447-1462
-
-
Bauer, M.R.1
Ibrahim, T.M.2
Vogel, S.M.3
Boeckler, F.M.4
-
4
-
-
33750981540
-
Do structurally similar ligands bind in a similar fashion?
-
Bostrom, J., Hogner, A. & Schmitt, S. Do Structurally Similar Ligands Bind in a Similar Fashion? J. Med. Chem. 49, 6716-6725 (2006).
-
(2006)
J. Med. Chem
, vol.49
, pp. 6716-6725
-
-
Bostrom, J.1
Hogner, A.2
Schmitt, S.3
-
5
-
-
84864264343
-
Directory of useful decoys, enhanced (dud-e): Better ligands and decoys for better benchmarking
-
Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 55, 6582-6594 (2012).
-
(2012)
J. Med. Chem
, vol.55
, pp. 6582-6594
-
-
Mysinger, M.M.1
Carchia, M.2
Irwin, J.J.3
Shoichet, B.K.4
-
6
-
-
31544439666
-
Discovery of two novel, small-molecule inhibitors of DNA methylation
-
Siedlecki, P. et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J. Med. Chem. 49, 678-683 (2006).
-
(2006)
J. Med. Chem
, vol.49
, pp. 678-683
-
-
Siedlecki, P.1
-
7
-
-
84884967922
-
Discovery of novel potent Δ F508-CFTR correctors that target the nucleotide binding domain
-
Odolczyk, N. et al. Discovery of novel potent Δ F508-CFTR correctors that target the nucleotide binding domain. EMBO Mol. Med. 5, 1484-1501 (2013).
-
(2013)
EMBO Mol. Med
, vol.5
, pp. 1484-1501
-
-
Odolczyk, N.1
-
8
-
-
84874298502
-
How far can virtual screening take us in drug discovery?
-
Kar, S. & Roy, K. How far can virtual screening take us in drug discovery? Expert Opin. Drug Discov. 8, 245-261 (2013).
-
(2013)
Expert Opin. Drug Discov
, vol.8
, pp. 245-261
-
-
Kar, S.1
Roy, K.2
-
9
-
-
44949168495
-
Discovery of novel human histamine h4 receptor ligands by large-scale structure-based virtual screening
-
Kiss, R. et al. Discovery of Novel Human Histamine H4 Receptor Ligands by Large-Scale Structure-Based Virtual Screening. J. Med. Chem. 51, 3145-3153 (2008).
-
(2008)
J. Med. Chem
, vol.51
, pp. 3145-3153
-
-
Kiss, R.1
-
11
-
-
34250205587
-
The consequences of scoring docked ligand conformations using free energy correlations
-
Spyrakis, F. et al. The consequences of scoring docked ligand conformations using free energy correlations. Eur. J. Med. Chem. 42, 921-933 (2007).
-
(2007)
Eur. J. Med. Chem
, vol.42
, pp. 921-933
-
-
Spyrakis, F.1
-
12
-
-
84923588607
-
Improving autodock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
-
Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets. Mol. Inform. 34, 115-126 (2015).
-
(2015)
Mol. Inform
, vol.34
, pp. 115-126
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
-
13
-
-
84945475267
-
Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
-
Ain, Q. U., Aleksandrova, A., Roessler, F. D. & Ballester, P. J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. WIREs Comput Mol Sci (2015).
-
(2015)
WIREs Comput Mol Sci
-
-
Ain, Q.U.1
Aleksandrova, A.2
Roessler, F.D.3
Ballester, P.J.4
-
14
-
-
77952825581
-
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
-
Ballester, P. J. & Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinforma. Oxf. Engl. 26, 1169-1175 (2010).
-
(2010)
Bioinforma. Oxf. Engl
, vol.26
, pp. 1169-1175
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
15
-
-
82355186299
-
NNScore 2.0: A neural-network receptor-ligand scoring function
-
Durrant, J. D. & McCammon, J. A. NNScore 2.0: a neural-network receptor-ligand scoring function. J Chem Inf Model 51, 2897-2903 (2011).
-
(2011)
J Chem Inf Model
, vol.51
, pp. 2897-2903
-
-
Durrant, J.D.1
McCammon, J.A.2
-
16
-
-
52249113723
-
SFCscore: Scoring functions for affinity prediction of protein-ligand complexes
-
Sotriffer, C. A., Sanschagrin, P., Matter, H. & Klebe, G. SFCscore: scoring functions for affinity prediction of protein-ligand complexes. Proteins 73, 395-419 (2008).
-
(2008)
Proteins
, vol.73
, pp. 395-419
-
-
Sotriffer, C.A.1
Sanschagrin, P.2
Matter, H.3
Klebe, G.4
-
17
-
-
84883250593
-
SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein-ligand complexes
-
Zilian, D. & Sotriffer, C. A. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model. 53, 1923-1933 (2013).
-
(2013)
J. Chem. Inf. Model
, vol.53
, pp. 1923-1933
-
-
Zilian, D.1
Sotriffer, C.A.2
-
18
-
-
84862795414
-
Structure-based virtual screening for drug discovery: A problem-centric review
-
Cheng, T., Li, Q., Zhou, Z., Wang, Y. & Bryant, S. H. Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review. AAPS J. 14, 133-141 (2012).
-
(2012)
AAPS J
, vol.14
, pp. 133-141
-
-
Cheng, T.1
Li, Q.2
Zhou, Z.3
Wang, Y.4
Bryant, S.H.5
-
19
-
-
77957898063
-
Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions
-
Huang, S.-Y., Grinter, S. Z. & Zou, X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys. Chem. Chem. Phys. 12, 12899-12908 (2010).
-
(2010)
Phys. Chem. Chem. Phys
, vol.12
, pp. 12899-12908
-
-
Huang, S.-Y.1
Grinter, S.Z.2
Zou, X.3
-
20
-
-
84873686290
-
Drug repositioning by structure-based virtual screening
-
Ma, D.-L., Chan, D. S.-H. & Leung, C.-H. Drug repositioning by structure-based virtual screening. Chem Soc Rev 42, 2130-2141 (2013).
-
(2013)
Chem Soc Rev
, vol.42
, pp. 2130-2141
-
-
Ma, D.-L.1
Chan, D.S.-H.2
Leung, C.-H.3
-
21
-
-
80051984855
-
Comments on 'leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets': Significance for the validation of scoring functions
-
Ballester, P. J. & Mitchell, J. B. O. Comments on 'Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets': Significance for the Validation of Scoring Functions. J. Chem. Inf. Model. 51, 1739-1741 (2011).
-
(2011)
J. Chem. Inf. Model
, vol.51
, pp. 1739-1741
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
22
-
-
84897010735
-
Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?
-
Ballester, P. J., Schreyer, A. & Blundell, T. L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model 54, 944-955 (2014).
-
(2014)
J Chem Inf Model
, vol.54
, pp. 944-955
-
-
Ballester, P.J.1
Schreyer, A.2
Blundell, T.L.3
-
23
-
-
84906829436
-
Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
-
Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 15, 291 (2014).
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 291
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
-
24
-
-
84938280812
-
Low-quality structural and interaction data improves binding affinity prediction via random forest
-
Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest. Molecules 20, 10947-10962 (2015).
-
(2015)
Molecules
, vol.20
, pp. 10947-10962
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
-
25
-
-
84927634713
-
A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction
-
Ashtawy, H. M. & Mahapatra, N. R. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction. IEEEACM Trans. Comput. Biol. Bioinforma. IEEE ACM 12, 335-347 (2015).
-
(2015)
IEEEACM Trans. Comput. Biol. Bioinforma. IEEE ACM
, vol.12
, pp. 335-347
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
26
-
-
84995688316
-
Correcting the impact of docking pose generation error on binding affinity prediction
-
Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Correcting the impact of docking pose generation error on binding affinity prediction. BMC Bioinformatics 17, 13-25 (2016).
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 13-25
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
-
27
-
-
85008692166
-
CSM-lig: A web server for assessing and comparing protein-small molecule affinities
-
Pires, D. E. V. & Ascher, D. B. CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44, W557-W561 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. W557-W561
-
-
Pires, D.E.V.1
Ascher, D.B.2
-
28
-
-
84932194253
-
Open drug discovery toolkit (oddt): A new open-source player in the drug discovery field
-
Wojcikowski, M., Zielenkiewicz, P. & Siedlecki, P. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J. Cheminformatics 7, 26 (2015).
-
(2015)
J. Cheminformatics
, vol.7
, pp. 26
-
-
Wojcikowski, M.1
Zielenkiewicz, P.2
Siedlecki, P.3
-
29
-
-
79954553074
-
-
eds Liu, L. & Tamer Ozsu, M. Springer US
-
Refaeilzadeh, P., Tang, L. & Liu, H. In Encyclopedia of Database Systems (eds Liu, L. & Tamer Ozsu, M.) 532-538 (Springer US, 2009).
-
(2009)
Encyclopedia of Database Systems
, pp. 532-538
-
-
Refaeilzadeh, P.1
Tang, L.2
Liu, H.3
-
30
-
-
41449114598
-
Community benchmarks for virtual screening
-
Irwin, J. J. Community benchmarks for virtual screening. J Comput Aided Mol Des 22, 193-199 (2008).
-
(2008)
J Comput Aided Mol des
, vol.22
, pp. 193-199
-
-
Irwin, J.J.1
-
31
-
-
80053313926
-
Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
-
Li, L., Wang, B. & Meroueh, S. O. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 51, 2132-2138 (2011).
-
(2011)
J Chem Inf Model
, vol.51
, pp. 2132-2138
-
-
Li, L.1
Wang, B.2
Meroueh, S.O.3
-
32
-
-
84873041650
-
Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
-
Ding, B., Wang, J., Li, N. & Wang, W. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J Chem Inf Model 53, 114-122 (2013).
-
(2013)
J Chem Inf Model
, vol.53
, pp. 114-122
-
-
Ding, B.1
Wang, J.2
Li, N.3
Wang, W.4
-
33
-
-
84964225053
-
Constructing and validating high-performance miec-SVM models in virtual screening for kinases: A better way for actives discovery
-
Sun, H. et al. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery. Sci Rep 6, 24817 (2016).
-
(2016)
Sci Rep
, vol.6
, pp. 24817
-
-
Sun, H.1
-
34
-
-
84984910946
-
A D3R prospective evaluation of machine learning for protein-ligand scoring
-
Sunseri, J., Ragoza, M., Collins, J. & Koes, D. R. A D3R prospective evaluation of machine learning for protein-ligand scoring. J Comput Aided Mol Des 1-11 (2016).
-
(2016)
J Comput Aided Mol des
, pp. 1-11
-
-
Sunseri, J.1
Ragoza, M.2
Collins, J.3
Koes, D.R.4
-
35
-
-
76149120388
-
AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
-
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455-461 (2010).
-
(2010)
J Comput Chem
, vol.31
, pp. 455-461
-
-
Trott, O.1
Olson, A.J.2
-
36
-
-
84883247468
-
Lessons learned in empirical scoring with smina from the csar 2011 benchmarking exercise
-
Koes, D. R., Baumgartner, M. P & Camacho, C. J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53, 1893-1904 (2013).
-
(2013)
J. Chem. Inf. Model
, vol.53
, pp. 1893-1904
-
-
Koes, D.R.1
Baumgartner, M.P.2
Camacho, C.J.3
-
37
-
-
77957222180
-
Rapid context-dependent ligand desolvation in molecular docking
-
Mysinger, M. M. & Shoichet, B. K. Rapid Context-Dependent Ligand Desolvation in Molecular Docking. J. Chem. Inf. Model. 50, 1561-1573 (2010).
-
(2010)
J. Chem. Inf. Model
, vol.50
, pp. 1561-1573
-
-
Mysinger, M.M.1
Shoichet, B.K.2
-
38
-
-
0020491251
-
A geometric approach to macromolecule-ligand interactions
-
Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R. & Ferrin, T. E. A geometric approach to macromolecule-ligand interactions. J Mol Biol 161, 269-288 (1982).
-
(1982)
J Mol Biol
, vol.161
, pp. 269-288
-
-
Kuntz, I.D.1
Blaney, J.M.2
Oatley, S.J.3
Langridge, R.4
Ferrin, T.E.5
-
39
-
-
66449110287
-
DOCK 6: Combining techniques to model RNA-small molecule complexes
-
Lang, P. T. et al. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15, 1219-1230 (2009).
-
(2009)
RNA
, vol.15
, pp. 1219-1230
-
-
Lang, P.T.1
-
40
-
-
80053512597
-
Open Babel: An open chemical toolbox
-
O'Boyle, N. M. et al. Open Babel: An open chemical toolbox. J Cheminform 3, 33 (2011).
-
(2011)
J Cheminform
, vol.3
, pp. 33
-
-
O'Boyle, N.M.1
-
41
-
-
85038828393
-
-
Certara USA Inc
-
Certara USA, Inc. SybylX 2.1.
-
SybylX 2.1
-
-
-
42
-
-
0031552362
-
Development and validation of a genetic algorithm for flexible docking
-
Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267, 727-748 (1997).
-
(1997)
J Mol Biol
, vol.267
, pp. 727-748
-
-
Jones, G.1
Willett, P.2
Glen, R.C.3
Leach, A.R.4
Taylor, R.5
-
43
-
-
0032533791
-
Flexible docking using Tabu search and an empirical estimate of binding affinity
-
Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R. & Eldridge, M. D. Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins 33, 367-382 (1998).
-
(1998)
Proteins
, vol.33
, pp. 367-382
-
-
Baxter, C.A.1
Murray, C.W.2
Clark, D.E.3
Westhead, D.R.4
Eldridge, M.D.5
-
44
-
-
33749242403
-
PMF scoring revisited
-
Muegge, I. PMF scoring revisited. J Med Chem 49, 5895-5902 (2006).
-
(2006)
J Med Chem
, vol.49
, pp. 5895-5902
-
-
Muegge, I.1
-
45
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V. et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 1947-1958 (2003).
-
(2003)
J. Chem. Inf. Comput. Sci
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
-
46
-
-
1642380461
-
The problem of overfitting
-
Hawkins, D. M. The problem of overfitting. J Chem Inf Comput Sci 44, 1-12 (2004).
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1-12
-
-
Hawkins, D.M.1
-
47
-
-
84969545588
-
Docking screens for novel ligands conferring new biology
-
Irwin, J. J. & Shoichet, B. K. Docking Screens for Novel Ligands Conferring New Biology. J Med Chem 59, 4103-4120 (2016).
-
(2016)
J Med Chem
, vol.59
, pp. 4103-4120
-
-
Irwin, J.J.1
Shoichet, B.K.2
-
48
-
-
84885838906
-
LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy
-
Lin, C. et al. LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123, 424-435 (2014).
-
(2014)
Neurocomputing
, vol.123
, pp. 424-435
-
-
Lin, C.1
-
49
-
-
84948719605
-
A novel features ranking metric with application to scalable visual and bioinformatics data classification
-
Zou, Q., Zeng, J., Cao, L. & Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing 173, Part 2, 346-354 (2016).
-
(2016)
Neurocomputing
, vol.173
, pp. 346-354
-
-
Zou, Q.1
Zeng, J.2
Cao, L.3
Ji, R.4
|