메뉴 건너뛰기




Volumn 7, Issue , 2017, Pages

Performance of machine-learning scoring functions in structure-based virtual screening

Author keywords

[No Author keywords available]

Indexed keywords

BINDING AFFINITY; MACHINE LEARNING; PREDICTION; ARTICLE;

EID: 85027440798     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep46710     Document Type: Article
Times cited : (268)

References (49)
  • 1
    • 77950503976 scopus 로고    scopus 로고
    • Virtual screening: An endless staircase?
    • Schneider, G. Virtual screening: an endless staircase? Nat. Rev. Drug Discov. 9, 273-276 (2010).
    • (2010) Nat. Rev. Drug Discov , vol.9 , pp. 273-276
    • Schneider, G.1
  • 2
    • 84862027743 scopus 로고    scopus 로고
    • Recognizing pitfalls in virtual screening: A critical review
    • Scior, T. et al. Recognizing Pitfalls in Virtual Screening: A Critical Review. J. Chem. Inf. Model. 52, 867-881 (2012).
    • (2012) J. Chem. Inf. Model , vol.52 , pp. 867-881
    • Scior, T.1
  • 3
    • 84879583689 scopus 로고    scopus 로고
    • Evaluation and optimization of virtual screening workflows with dekois 2.0-A public library of challenging docking benchmark sets
    • Bauer, M. R., Ibrahim, T. M., Vogel, S. M. & Boeckler, F. M. Evaluation and Optimization of Virtual Screening Workflows with DEKOIS 2.0-A Public Library of Challenging Docking Benchmark Sets. J. Chem. Inf. Model. 53, 1447-1462 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 1447-1462
    • Bauer, M.R.1    Ibrahim, T.M.2    Vogel, S.M.3    Boeckler, F.M.4
  • 4
    • 33750981540 scopus 로고    scopus 로고
    • Do structurally similar ligands bind in a similar fashion?
    • Bostrom, J., Hogner, A. & Schmitt, S. Do Structurally Similar Ligands Bind in a Similar Fashion? J. Med. Chem. 49, 6716-6725 (2006).
    • (2006) J. Med. Chem , vol.49 , pp. 6716-6725
    • Bostrom, J.1    Hogner, A.2    Schmitt, S.3
  • 5
    • 84864264343 scopus 로고    scopus 로고
    • Directory of useful decoys, enhanced (dud-e): Better ligands and decoys for better benchmarking
    • Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 55, 6582-6594 (2012).
    • (2012) J. Med. Chem , vol.55 , pp. 6582-6594
    • Mysinger, M.M.1    Carchia, M.2    Irwin, J.J.3    Shoichet, B.K.4
  • 6
    • 31544439666 scopus 로고    scopus 로고
    • Discovery of two novel, small-molecule inhibitors of DNA methylation
    • Siedlecki, P. et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J. Med. Chem. 49, 678-683 (2006).
    • (2006) J. Med. Chem , vol.49 , pp. 678-683
    • Siedlecki, P.1
  • 7
    • 84884967922 scopus 로고    scopus 로고
    • Discovery of novel potent Δ F508-CFTR correctors that target the nucleotide binding domain
    • Odolczyk, N. et al. Discovery of novel potent Δ F508-CFTR correctors that target the nucleotide binding domain. EMBO Mol. Med. 5, 1484-1501 (2013).
    • (2013) EMBO Mol. Med , vol.5 , pp. 1484-1501
    • Odolczyk, N.1
  • 8
    • 84874298502 scopus 로고    scopus 로고
    • How far can virtual screening take us in drug discovery?
    • Kar, S. & Roy, K. How far can virtual screening take us in drug discovery? Expert Opin. Drug Discov. 8, 245-261 (2013).
    • (2013) Expert Opin. Drug Discov , vol.8 , pp. 245-261
    • Kar, S.1    Roy, K.2
  • 9
    • 44949168495 scopus 로고    scopus 로고
    • Discovery of novel human histamine h4 receptor ligands by large-scale structure-based virtual screening
    • Kiss, R. et al. Discovery of Novel Human Histamine H4 Receptor Ligands by Large-Scale Structure-Based Virtual Screening. J. Med. Chem. 51, 3145-3153 (2008).
    • (2008) J. Med. Chem , vol.51 , pp. 3145-3153
    • Kiss, R.1
  • 11
    • 34250205587 scopus 로고    scopus 로고
    • The consequences of scoring docked ligand conformations using free energy correlations
    • Spyrakis, F. et al. The consequences of scoring docked ligand conformations using free energy correlations. Eur. J. Med. Chem. 42, 921-933 (2007).
    • (2007) Eur. J. Med. Chem , vol.42 , pp. 921-933
    • Spyrakis, F.1
  • 12
    • 84923588607 scopus 로고    scopus 로고
    • Improving autodock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
    • Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets. Mol. Inform. 34, 115-126 (2015).
    • (2015) Mol. Inform , vol.34 , pp. 115-126
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 13
    • 84945475267 scopus 로고    scopus 로고
    • Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
    • Ain, Q. U., Aleksandrova, A., Roessler, F. D. & Ballester, P. J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. WIREs Comput Mol Sci (2015).
    • (2015) WIREs Comput Mol Sci
    • Ain, Q.U.1    Aleksandrova, A.2    Roessler, F.D.3    Ballester, P.J.4
  • 14
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester, P. J. & Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinforma. Oxf. Engl. 26, 1169-1175 (2010).
    • (2010) Bioinforma. Oxf. Engl , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 15
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: A neural-network receptor-ligand scoring function
    • Durrant, J. D. & McCammon, J. A. NNScore 2.0: a neural-network receptor-ligand scoring function. J Chem Inf Model 51, 2897-2903 (2011).
    • (2011) J Chem Inf Model , vol.51 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 16
    • 52249113723 scopus 로고    scopus 로고
    • SFCscore: Scoring functions for affinity prediction of protein-ligand complexes
    • Sotriffer, C. A., Sanschagrin, P., Matter, H. & Klebe, G. SFCscore: scoring functions for affinity prediction of protein-ligand complexes. Proteins 73, 395-419 (2008).
    • (2008) Proteins , vol.73 , pp. 395-419
    • Sotriffer, C.A.1    Sanschagrin, P.2    Matter, H.3    Klebe, G.4
  • 17
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein-ligand complexes
    • Zilian, D. & Sotriffer, C. A. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model. 53, 1923-1933 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 18
    • 84862795414 scopus 로고    scopus 로고
    • Structure-based virtual screening for drug discovery: A problem-centric review
    • Cheng, T., Li, Q., Zhou, Z., Wang, Y. & Bryant, S. H. Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review. AAPS J. 14, 133-141 (2012).
    • (2012) AAPS J , vol.14 , pp. 133-141
    • Cheng, T.1    Li, Q.2    Zhou, Z.3    Wang, Y.4    Bryant, S.H.5
  • 19
    • 77957898063 scopus 로고    scopus 로고
    • Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions
    • Huang, S.-Y., Grinter, S. Z. & Zou, X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys. Chem. Chem. Phys. 12, 12899-12908 (2010).
    • (2010) Phys. Chem. Chem. Phys , vol.12 , pp. 12899-12908
    • Huang, S.-Y.1    Grinter, S.Z.2    Zou, X.3
  • 20
    • 84873686290 scopus 로고    scopus 로고
    • Drug repositioning by structure-based virtual screening
    • Ma, D.-L., Chan, D. S.-H. & Leung, C.-H. Drug repositioning by structure-based virtual screening. Chem Soc Rev 42, 2130-2141 (2013).
    • (2013) Chem Soc Rev , vol.42 , pp. 2130-2141
    • Ma, D.-L.1    Chan, D.S.-H.2    Leung, C.-H.3
  • 21
    • 80051984855 scopus 로고    scopus 로고
    • Comments on 'leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets': Significance for the validation of scoring functions
    • Ballester, P. J. & Mitchell, J. B. O. Comments on 'Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets': Significance for the Validation of Scoring Functions. J. Chem. Inf. Model. 51, 1739-1741 (2011).
    • (2011) J. Chem. Inf. Model , vol.51 , pp. 1739-1741
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 22
    • 84897010735 scopus 로고    scopus 로고
    • Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?
    • Ballester, P. J., Schreyer, A. & Blundell, T. L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model 54, 944-955 (2014).
    • (2014) J Chem Inf Model , vol.54 , pp. 944-955
    • Ballester, P.J.1    Schreyer, A.2    Blundell, T.L.3
  • 23
    • 84906829436 scopus 로고    scopus 로고
    • Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
    • Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 15, 291 (2014).
    • (2014) BMC Bioinformatics , vol.15 , pp. 291
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 24
    • 84938280812 scopus 로고    scopus 로고
    • Low-quality structural and interaction data improves binding affinity prediction via random forest
    • Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest. Molecules 20, 10947-10962 (2015).
    • (2015) Molecules , vol.20 , pp. 10947-10962
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 25
    • 84927634713 scopus 로고    scopus 로고
    • A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction
    • Ashtawy, H. M. & Mahapatra, N. R. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction. IEEEACM Trans. Comput. Biol. Bioinforma. IEEE ACM 12, 335-347 (2015).
    • (2015) IEEEACM Trans. Comput. Biol. Bioinforma. IEEE ACM , vol.12 , pp. 335-347
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 26
    • 84995688316 scopus 로고    scopus 로고
    • Correcting the impact of docking pose generation error on binding affinity prediction
    • Li, H., Leung, K.-S., Wong, M.-H. & Ballester, P. J. Correcting the impact of docking pose generation error on binding affinity prediction. BMC Bioinformatics 17, 13-25 (2016).
    • (2016) BMC Bioinformatics , vol.17 , pp. 13-25
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 27
    • 85008692166 scopus 로고    scopus 로고
    • CSM-lig: A web server for assessing and comparing protein-small molecule affinities
    • Pires, D. E. V. & Ascher, D. B. CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44, W557-W561 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. W557-W561
    • Pires, D.E.V.1    Ascher, D.B.2
  • 28
    • 84932194253 scopus 로고    scopus 로고
    • Open drug discovery toolkit (oddt): A new open-source player in the drug discovery field
    • Wojcikowski, M., Zielenkiewicz, P. & Siedlecki, P. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J. Cheminformatics 7, 26 (2015).
    • (2015) J. Cheminformatics , vol.7 , pp. 26
    • Wojcikowski, M.1    Zielenkiewicz, P.2    Siedlecki, P.3
  • 30
    • 41449114598 scopus 로고    scopus 로고
    • Community benchmarks for virtual screening
    • Irwin, J. J. Community benchmarks for virtual screening. J Comput Aided Mol Des 22, 193-199 (2008).
    • (2008) J Comput Aided Mol des , vol.22 , pp. 193-199
    • Irwin, J.J.1
  • 31
    • 80053313926 scopus 로고    scopus 로고
    • Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
    • Li, L., Wang, B. & Meroueh, S. O. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 51, 2132-2138 (2011).
    • (2011) J Chem Inf Model , vol.51 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 32
    • 84873041650 scopus 로고    scopus 로고
    • Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
    • Ding, B., Wang, J., Li, N. & Wang, W. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J Chem Inf Model 53, 114-122 (2013).
    • (2013) J Chem Inf Model , vol.53 , pp. 114-122
    • Ding, B.1    Wang, J.2    Li, N.3    Wang, W.4
  • 33
    • 84964225053 scopus 로고    scopus 로고
    • Constructing and validating high-performance miec-SVM models in virtual screening for kinases: A better way for actives discovery
    • Sun, H. et al. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery. Sci Rep 6, 24817 (2016).
    • (2016) Sci Rep , vol.6 , pp. 24817
    • Sun, H.1
  • 34
    • 84984910946 scopus 로고    scopus 로고
    • A D3R prospective evaluation of machine learning for protein-ligand scoring
    • Sunseri, J., Ragoza, M., Collins, J. & Koes, D. R. A D3R prospective evaluation of machine learning for protein-ligand scoring. J Comput Aided Mol Des 1-11 (2016).
    • (2016) J Comput Aided Mol des , pp. 1-11
    • Sunseri, J.1    Ragoza, M.2    Collins, J.3    Koes, D.R.4
  • 35
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455-461 (2010).
    • (2010) J Comput Chem , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 36
    • 84883247468 scopus 로고    scopus 로고
    • Lessons learned in empirical scoring with smina from the csar 2011 benchmarking exercise
    • Koes, D. R., Baumgartner, M. P & Camacho, C. J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53, 1893-1904 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 1893-1904
    • Koes, D.R.1    Baumgartner, M.P.2    Camacho, C.J.3
  • 37
    • 77957222180 scopus 로고    scopus 로고
    • Rapid context-dependent ligand desolvation in molecular docking
    • Mysinger, M. M. & Shoichet, B. K. Rapid Context-Dependent Ligand Desolvation in Molecular Docking. J. Chem. Inf. Model. 50, 1561-1573 (2010).
    • (2010) J. Chem. Inf. Model , vol.50 , pp. 1561-1573
    • Mysinger, M.M.1    Shoichet, B.K.2
  • 39
    • 66449110287 scopus 로고    scopus 로고
    • DOCK 6: Combining techniques to model RNA-small molecule complexes
    • Lang, P. T. et al. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15, 1219-1230 (2009).
    • (2009) RNA , vol.15 , pp. 1219-1230
    • Lang, P.T.1
  • 40
    • 80053512597 scopus 로고    scopus 로고
    • Open Babel: An open chemical toolbox
    • O'Boyle, N. M. et al. Open Babel: An open chemical toolbox. J Cheminform 3, 33 (2011).
    • (2011) J Cheminform , vol.3 , pp. 33
    • O'Boyle, N.M.1
  • 41
    • 85038828393 scopus 로고    scopus 로고
    • Certara USA Inc
    • Certara USA, Inc. SybylX 2.1.
    • SybylX 2.1
  • 42
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation of a genetic algorithm for flexible docking
    • Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267, 727-748 (1997).
    • (1997) J Mol Biol , vol.267 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 43
    • 0032533791 scopus 로고    scopus 로고
    • Flexible docking using Tabu search and an empirical estimate of binding affinity
    • Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R. & Eldridge, M. D. Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins 33, 367-382 (1998).
    • (1998) Proteins , vol.33 , pp. 367-382
    • Baxter, C.A.1    Murray, C.W.2    Clark, D.E.3    Westhead, D.R.4    Eldridge, M.D.5
  • 44
    • 33749242403 scopus 로고    scopus 로고
    • PMF scoring revisited
    • Muegge, I. PMF scoring revisited. J Med Chem 49, 5895-5902 (2006).
    • (2006) J Med Chem , vol.49 , pp. 5895-5902
    • Muegge, I.1
  • 45
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • Svetnik, V. et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 1947-1958 (2003).
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , pp. 1947-1958
    • Svetnik, V.1
  • 46
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins, D. M. The problem of overfitting. J Chem Inf Comput Sci 44, 1-12 (2004).
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1-12
    • Hawkins, D.M.1
  • 47
    • 84969545588 scopus 로고    scopus 로고
    • Docking screens for novel ligands conferring new biology
    • Irwin, J. J. & Shoichet, B. K. Docking Screens for Novel Ligands Conferring New Biology. J Med Chem 59, 4103-4120 (2016).
    • (2016) J Med Chem , vol.59 , pp. 4103-4120
    • Irwin, J.J.1    Shoichet, B.K.2
  • 48
    • 84885838906 scopus 로고    scopus 로고
    • LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy
    • Lin, C. et al. LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123, 424-435 (2014).
    • (2014) Neurocomputing , vol.123 , pp. 424-435
    • Lin, C.1
  • 49
    • 84948719605 scopus 로고    scopus 로고
    • A novel features ranking metric with application to scalable visual and bioinformatics data classification
    • Zou, Q., Zeng, J., Cao, L. & Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing 173, Part 2, 346-354 (2016).
    • (2016) Neurocomputing , vol.173 , pp. 346-354
    • Zou, Q.1    Zeng, J.2    Cao, L.3    Ji, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.